Review of The Impact of Insecticides on Pollinators

Introduction
Worldwide agriculture is dependent upon pesticide or insecticide. The agriculture industry uses pesticides with the intent to protect produce from invasive pests. Regrettably, the pesticide is unable to differentiate between the pests and non-target organisms like the honeybee or butterfly. Due to pesticides inability to distinguish, science is predicting a 40% risk of extinction of pollinators globally (Hall & 2019). Historically, honeybee pollination yielded fruit-like seeds, oilseed, nuts, and fiber crops, providing economic value (Pashte et al., 2018). Moreover, historically, the presence of butterflies served as an indicator of landscape fragmentation, climate change, and environmental health (Braak, Neeve, Jones, Gibbs, & Breuker, 2018). Pollinators pollinate 87% of flowering plants worldwide, delivering environmental health and agriculture services. However, the mass use of pesticides is threatening the economic importance of honeybees and butterflies. Without the honeybee crop yield could decrease by 90% (Aronstein 2019). Moreover, there is a 58% decline risk of the agriculture farmland pollinating butterfly (Braak, Neeve, Jones, Gibbs, & Breuker, 2018). Fortunately, a new nanotechnology is promising. Nanotechnology could improve pest management while increasing productivity and decreasing the impact on non-target organisms prolonging their life (Oliveira et al. 2019). This literature review examines how pesticides are contributing to the decline of honeybees and butterflies, economic ramifications, and scientific methods to reduce their decline.
The effect of pollinator declines on agro-economics
Agro-economics is the economics of agriculture. The current decline of pollinators, including butterflies and honeybees, is putting agro-economics at risk. Hanley, N., Breeze, T. D., Ellis, C., & Goulson, D. (2015) explain, “pollinators primarily provide economic value to crop production through increasing the quantity and quality of crops produced, resulting in greater economic output which is in turn influenced by market prices for the crop” (p 3). Understanding the economic value of pollinators is important in understanding why their decline is affecting agro-economics. Aronstein, Drummond, Eitzer, Ellis, Spivak, Ostiguy, Sheppard (2019) notes, “agriculture depends strongly on the services of the honeybee, which is responsible for providing more than 90% of commercial pollination services. Thus, elevated loss rates seen in managed honeybee colonies threatens the pollination services they provide” (p. 1). Without interference produce and other goods dependent on pollination is at risk. Brewster, Fell, Fulton, Hartz, Lydy, Reeve (2019) state, “large-scale honeybee colony loss threatens pollination services throughout the United States” (p.1). Today, two million acres in America are pollinated by honeybees attributing to a $14.6 billion industry (Brewster, Fell, Fulton, Hartz, Lydy, Reeve 2019). This data is important to note because fundamentally, the value placed on pollinators is dependent on their economic benefit (Hanley, N., Breeze, T. D., Ellis, C., & Goulson, D. 2015). Moreover, it is important to note that pollination influences consumer welfare by maintaining supply and demand, moderating prices, and increasing consumers surplus Hanley, N., Breeze, T. D., Ellis, C., & Goulson, D. (2015). If agriculture cannot supply demands, prices will inflate creating affordability for the consumer. Essentially, the decline of pollinators is affecting their economic benefit, and without implementing sustainable agriculture methods, a further decline may provoke economic turmoil.
The effect of pesticide on the honeybee and butterfly population
Pesticides can be found commercially in agriculture fields and residentially in urban areas. Moreover, pesticides are abundant in parks, golf courses, and other urbanized areas (Braak, Breukera Gibbs, Jones, Neve 2018). Due to accessibility and affordability, the use of pesticides is the chief choice of pest management among the agriculture industry (Pashte et al. 2018). Agricultures dependency on pesticides is directly affecting the decline of honeybees and butterflies. Since 1996, 84% of Monarch butterflies are on the decline, alongside 23% of the honeybee population (Hall & Steiner 2019). These alarming declines and predictions are the reason behind recent scientific research on pollinators.
Pesticides effects on non-target organisms biologically
Pesticides are toxic to target and non-target organisms alike. Right now, neonicotinoids are the pesticide used in much of the world, and neonicotinoids are highly neurotoxic (Braak, Breuker, Gibbs, Jones, Neve 2018). Biologically, neonicotinoids disrupt the fundamental functions of insects like their flight ability and immune health (Barron, Colin, Meikle, & Paten, 2019). Previously, only eight scientific studies examined the influence of industrial pesticides on butterflies (Braak, Breuker, Gibbs, Jones, Neve 2018). However, the present research is focusing on the effect of non-industrial pesticides on butterflies. Braak, Neeve, Jones, Gibbs, & Breuker (2018) state, “pesticides, especially insecticides and herbicides were found to hurt butterfly abundance” (p. 3). Despite this research being conducted on small gardens vs. agriculture land, understanding the effects are very important (Braak, Breuker, Gibbs, Jones, Neve 2018). While examining pesticide use on butterflies, the authors also learned that pesticides affect larvae and butterfly reproduction. The research found the sensitivity to pesticides is dependent on the life stage of the butterfly, caterpillar, cocoon, or adult butterfly.  The authors also noted, “larval density seems to be highest in unsprayed transects and increased in transects that ceased insecticide application” (p. 3). However, it was noted more studies are necessary to determine how pesticides impact each stage of the butterflies life butterfly. Conclusively, the research reveals the importance of researching honeybees and butterflies, physically, mentally, and reproductively.
Defining and examining Nanotechnology
While the various studies are being conducted to reduce pollinator decline, nanoscience and nanotechnology are the most notable. Nanotechnology is the manipulation of atoms and molecules to manufacture materials into nanometers (Rawtani, D., Khatri, N., Tyagi, S., & Pandey, G. 2018). The nanotechnology used in pest management is made of pyrethrum, a natural pesticide made from chrysanthemums (Oliveira et al., 2019). Currently, nanotechnology is in its infancy and may be used for herbicide in the future (Oliveira et al., 2019). Despite the concern of pyrethrum in large quantities that is causing digestive harm to honeybees, a sublethal dose is relatively safe (Oliveira et al., 2019). This revolutionary science is at the forefront of sustainable pest management (Oliveira et al., 2019). However, there are concerns about the sustainability of nanotechnology. Parikhani R., Sadighi H., & Bijani, M. (2018) state, “Some studies suggest that nanotechnology can have numerous effects and consequences, including health and environmental consequences, which can be positive or negative” (p 5). The biggest concern is that the size and mobility of nanoparticles could risk environmental or human health Parikhani R., Sadighi H., & Bijani, M. (2018). However, there is little research to prove in entirety the positive or negative effects of nanotechnology Parikhani R., Sadighi H., & Bijani, M. (2018). The literature suggests despite nanotechnology being a relatively new concept, the pros of nanotechnologies sustainability, and economic value outweighs concerns.
The potential solutions to curbing pollinator decline
Toxicity exposure from the use of pesticides is harming pollinators. Honeybees colony numbers have fallen by 50% in 28 years (Brewster, Fell, Fulton, Hartz, Lydy, Reeve 2019). This rapid decline is the basis for scientific research to determine the amount of toxicity exposure to land use. This research is important because the use of improper pesticides is problematic to low honeybee concentrations (Brewster, Fell, Fulton, Hartz, Lydy, Reeve 2019). Scientific research in Virginia determined the probability of detecting pesticides varied on land use in agriculture, residential, and urban areas (Brewster, Fell, Fulton, Hartz, Lydy, Reeve 2019). Ultimately, pesticides were less frequent in pollen forests than in pastures, urban areas, or agriculture settings (Brewster, Fell, Fulton, Hartz, Lydy, Reeve 2019). This finding is in alignment with the scientists predictions that pesticides would be lower in forested landscapes than residential or agriculture landscapes (Brewster, Fell, Fulton, Hartz, Lydy, Reeve 2019). This research suggests that pesticide and land use is a significant factor in reducing pollinator decline.

Don't use plagiarized sources. Get Your Custom Essay on
Review of The Impact of Insecticides on Pollinators
Just from $13/Page
Order Essay

Find Out How UKEssays.com Can Help You!
Our academic experts are ready and waiting to assist with any writing project you may have. From simple essay plans, through to full dissertations, you can guarantee we have a service perfectly matched to your needs.
View our services

A different scientific approach to curbing pollinator decline involved examining long-term symptoms of various insecticide on the honeybee. According to Pashte, “distinct poisoning symptoms observed in A. mellifera mellifera were extended proboscis, expanded wings, unhooked wings, extended legs and twisted bodies, defecation on cage covers, stinger in release-out position and anus with excreta. All the tested pesticides are harmful to the honeybee except azadirachtin” (p. 1). The different poisoning symptoms could provide beekeepers with tools to identify colony collapse (Pashte et al. 2018). Moreover, the data revealed by this author could one day minimize pollinator decline by choosing or formulating a lower dose of pesticide in crop management. Another approach to pollinator decline is by treating pesticide toxicity. Scientists are attempting to reverse or cure pesticide toxicity on pollinators using imidacloprid and thymol treatments (Barron, Colin, Meikle, Paten 2019). Imidacloprid is a type of pesticide, and thymol is a standard treatment (Barron, Colin, Meikle, Paten 2019). This research could explain why the effect of pesticides on bee colonies vary in environments (Barron, Colin, Meikle, Paten 2019). The methodology in this research includes keeping the dynamics of food, and the brood of bees consistent while feeding treatments over six weeks in two different locations the U.S.A, and Australia (Barron, Colin, Meikle, Paten 2019). Despite noting thymol to weaken hives, the samples collected determined the imidacloprid and thymol treatments successful (Barron, Colin, Meikle, Paten 2019). This research is critical to understand the long-term effects of pesticide and environmental stress on honeybees (Barron, Colin, Meikle, Paten 2019). Ultimately, the findings in this research could one day reduce pollinator decline.
Conclusion
Pollinators are indispensable to ecology, agriculture, the environment, and humanity. They are responsible for pollinating wildflowers worldwide, aiding agriculture, and being the leading indicator of environmental health. Furthermore, they are profitable and support the world economy; however, their decline due to pesticides and consequential lack of pollination could create a massive economic loss. Pollinators now rely on scientific research on pesticide effects, nanotechnology, and land use to reduce pollinator decline. The future is uncertain, but the threat of pollinator decline is likely to lessen with further scientific research.
References

Aronstein K., F. Drummond, B. Eitzer, J. Ellis, M. Spivak N. Ostiguy, W. Sheppard (2019). Honeybee exposure to pesticides: A Four-Year Nationwide Study. Insects (2075-4450), 10(1), 13–1. https://doi-org.ezproxy.umuc.edu/10.3390/insects10010013 
Barron A., T. Colin, W. Meikle, A. Paten (2019). Long-term dynamics of honeybee colonies following exposure to chemical stress. The Science of the Total Environment. https://doi-org.ezproxy.umuc.edu/10.1016/j.scitotenv.2019.04.402
Braak N., Breukera C., Gibbs M., Jones A., Neve R. (2018). The effects of insecticides on butterflies – A review. Environmental Pollution. Retrieved from https://doi.org/10.1016/j.envpol.2018.06.100
Breeze, T., Ellis, C., Goulson, D. & Hanley, N. (2015). Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosystem Services, 14, 124. Retrieved from http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=edo&AN=108551457&site=eds-live&scope=site
Brewster C., Fell R., Fulton C., Hartz K., Lydy M., Reeve J. (2019). An assessment of pesticide exposures and land use of honeybees in Virginia. Chemosphere. Retrieved from https://doi-org.ezproxy.umuc.edu/10.1016/j.chemosphere.2019.01.156 
Costa M., Domingues C., Fraceto L., Malaspina O., Oliveria C., Roat T., Zacarin E. (2019). Nano pesticide based on botanical insecticide pyrethrum and its potential effects on honeybees. Chemosphere, 236, 124282. Retrieved from https://www-sciencedirect-com.ezproxy.umuc.edu/science/article/pii/S0045653519314936  
Hall, D. M., & Steiner, R. (2019). Insect pollinator conservation policy innovations at subnational levels: Lessons for lawmakers. Environmental Science and Policy, 93, 118–128. https://doi-org.ezproxy.umuc.edu/10.1016/j.envsci.2018.12.026  
Parikhani, R. S., Sadighi, H., & Bijani, M. (2018). Ecological Consequences of Nanotechnology in Agriculture: Researchers’ Perspective. Journal of Agricultural Science & Technology, 20(2), 205. Retrieved from http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=edb&AN=129413711&site=eds-live&scope=site
Rawtani, D., Khatri, N., Tyagi, S., & Pandey, G. (2018). Nanotechnology-based recent approaches for sensing and remediation of pesticides. Journal of Environmental Management, 206, 749–762 https://doi-org.ezproxy.umuc.edu/10.1016/j.jenvman.2017.11.037
Vijaykumar P., Patil. Shivshankar P. (2018) Toxicity and Poisoning Symptoms of selected Insecticides to honeybees (Apis mellifera mellifera L.). Archives of Biological Sciences, 70(1), 5. Retrieved from http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=edb&AN=128556421&site=eds-live&scope=site

 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy