Physics lab report

Physics lab report

Title of the Report

Don't use plagiarized sources. Get Your Custom Essay on
Physics lab report
Just from $13/Page
Order Essay

A. Partner, B. Partner, and C. Partner

Abstract

The report abstract is a short summary of the report. It is usually one paragraph (100-

2

00 words) and should include
about one or two sentences on each of the following main points:

1. Purpose of the experiment
2. Key results

3

. Major points of discussion

4

. Main conclusions

Tip: It may be helpful if you complete the other sections of the report before writing the abstract. You can basically
draw these four main points from them.

example: In this experiment a very important physical effect was studied by measuring the dependence of a quantity
V of the quantity X for two different sample temperatures. The experimental measurements confirmed the quadratic
dependence V = kX2 predicted by Someone’s first law. The value of the mystery parameter k = 15.4 ± 0.5 s was
extracted from the fit. This value is not consistent with the theoretically predicted ktheory = 17.34 s. This discrepancy
is attributed to low efficiency of the V -detector.

1.

  • Introduction
  • This section is also often referred to as the purpose or
    plan. It includes two main categories:

    Purpose: It usually is expressed in one or two sen-
    tences that include the main method used for accomplish-
    ing the purpose of the experiment.

    Ex: The purpose of the experiment was to determine
    the mass of an ion using the mass spectrometer.

    Background and theory: related to the experiment.
    This includes explanations of theories, methods or equa-
    tions used, etc.; for the example above, you might want to
    explain the theory behind mass spectrometer and a short
    description about the process and setup you used in the
    experiment. It is important to remember that report needs
    to be as straightforward as possible. You should comprise
    only as much information as needed for the reader to un-
    derstand the purpose and methods. Your should also pro-

    vide additional information such as a hypothesis (what is
    expected to happen in the experiment based on the theory)
    or safety information. The main focus of the introduction
    mainly focuses on supporting the reader to understand the
    purpose, methods, and reasons for these particular meth-
    ods.Purpose of the experiment

    Example:

    Calculation of the pressure coefficient Cp

    From the lectures notes, Cp can be obtained by the eq.

    (1)

    −Cp =
    P −P∞

    1
    2 ∗ρ∗U

    2

    (1)

    Where P and P∞ are respectively the local pressure and
    the atmosphere pressure far away. U∞ is the wind velocity

    Preprint submitted to supervisor September 9, 2019

    of the wind tunnel.

    Calculation of the lift coefficient CL

    First, the expression for the pressure force acting nor-
    mal to the chord line is given in the lecture notes as eq.(2),

    Cn =

    Cp(−n̂∗ ŷ)dl, (2)

    with Cp the coefficient of lift and n̂ the unit normal vector
    pointing out of the surface, ŷ is the unit vector in the
    direction normal to the chord line. dl is the length of an
    infinitesimal line element. Similarly, the axial component
    can be express as eq.(3)

    Ca =

    Cp(−n̂∗ x̂)dl, (3)

    2.

  • Method
  • This is a short (half a page or so) passage in your report
    which should include the experimental process exactly as
    it was done in the laboratory. The procedure should be
    written in paragraph form. You should not copy the lab
    manual. It is possible that the experiment you have done
    has slightly difference procedures than in the manual. You
    should not include any results (things happened during the
    procedure). A good rule of thumb for complete but brief
    experimental procedures is to provide enough information
    so that the reader of your report would be able to repeat
    the experiment.

    A first offset measurement was taken with the pressure
    scanner, sample at 800 Hz for 10 seconds , while matlab
    was taking an offset measurement. After the offset measur-
    ment done , the wind tunnel VFD RPM was set to reach
    the target U∞ within ±0.5m/s. For each of the following
    α= [-8 -6 -4 -2 0 2 4 6 7 8 9 10 11 12 13 14 16 18], the
    same procedure was repeated :

    The turntable was set to the right angle of attack (as
    shown in fig.(1)). Then the dynamic pressure and the tem-
    perature were taken (1000 Hz for 30 seconds for pressure,
    and 14 Hz for 10 seconds for the temperature).

    While Matlab was taking the data , the pressure scan-
    ner was run to take measurement at 800 Hz for 60 seconds.
    After changing the angle, a break of 5 seconds was taken
    in order to fully settle the flow into a steady state before
    taking the next set of measurements.

    The post-experiment calculations were realized with
    Matlab. First, the pressure offset was computed in order
    to get the right pressure measurement. With the 2 off-
    set measurements and the getfiledate.m Matlab code, the
    time of each offset has been taken. A linear interpolation
    was realized to get the offset at any time.

    The pressure points were linked to the corresponding
    measurement value of the scanner and the time of each
    measurement was obtained with the getfiledate.m code.
    The new pressure were finally taken by subtraction of each
    corresponding time offset to the measurement pressure for
    every angle of attack.

    The lower and upper Cp values were computed with
    eq.(1). The denominator in the eq.(1) (P − P∞) corre-
    spond to the new pressure calculated by subtraction of
    the offset . As the pressure points does not surround the
    airfoil entirely, the Cp curves had to be closed by interpo-
    lation of the data points using piecewises cubic Hermite
    polynomials (PCHIP) for the last three points to estimate
    a value for the trailing edge. An example of a Cp curve for
    a certain angle of attack is shown in fig.(5).

    Next, the CL values for each angle of attack were com-
    puted using eq.(6). The coordinate system used in eq.(6)
    is shown in fig.(2). fig.(5) shows the resulting plot of this
    calculation.

    Finally, the errors in the lift coefficient were computed
    using eq.(9). The different variance values were given
    in the lab document and calculated using eq.(8). fig.(3)
    shows the resulting plot of this calculation.

    Figure 1: Set up of the airfoil experiment

    2

    3.

  • Results
  • In this section all the results of the experiment is re-
    ported, including:

    Raw data- in forms of graphs or tables. Each graph,
    table, or figure should be labeled and titled properly. Mak-
    ing tables and figures is helpful when you refer to and
    explain each of them in the report. Make sure that you
    attach the appropriate units to all physical quantities.

    Assume that the reader has not done the lab; so give
    clear definition of each symbol that is used in the re-
    port. (ex: âĂIJL is the length of the pendulumâĂİ.)

    Important results âĂŞ It is expected to use complete
    sentences to communicate the main results, which also
    should be expended to discussion section. (Ex: âĂIJThe
    gravitational acceleration was calculated to be 9.98 m/sâĂİ)
    This enables the important results to stand out from all
    the calculations, tables, and figures.

    Calculations Normally, one sample of each calcula-
    tion is necessary. For example, if the speed of an object is
    calculated for 6 trials, you are expected to write out calcu-
    lations for only one of them. However, it is important to
    mention that the calculation was repeated 6 times and give
    the average of all 6. Significant figures should be consid-
    ered in all calculations (see appendix of âĂIJSignificant
    Figure RulesâĂİ as a resource with significant figures).
    Again, make sure units are included in all calculations.

    Example: The resulting slope of the Cl for α ∈ [−8, 8]
    is 6.174 rad and 6.209 rad for α ∈ [−4, 4] . This devi-
    ates by 0.1090 and 0.0745 respectively from the 2π value
    predicted by thin airfoil theory, indicating larger errors for
    higher AoA’s.

    The max theoretical error ∆Cl was calculated to be
    0.0887, and occurred at α = 16◦, which is in the stall re-
    gion. Outside of the stall region the max error was calcu-
    lated to be 0.0391, at α = 8◦

    The standard deviations presented in tab.1 were used
    in the result above. σqinf , and σPi were found with eqn
    (8). However, σPi is a vector for all of the pressure ports,
    and will not be presented.

    Figure 2: Resulting plot of ∆CL

    Table 1: Value of variance
    σP0 σα σqinf
    3.000 0.250 0.453
    [Pa] [deg] [Pa]

    Figure 3: Resulting plot of CL compared to experimental data

    Figure 4: – Cp for α = 8◦

    4.

  • Discussion
  • The most important part of your report is the discus-
    sion section. Here you explain your results and allow your
    instructor to see that you have a thorough understanding
    of the scientific concept of the experiment and the results.
    In this section you also compare the expected (theoreti-
    cal) results with actual (experimental) ones. It is possible
    that your experiment turns out not exactly the way it was
    supposed to. Analyze and discuss why the results might
    have been different and try to explain why you obtained
    the results you did. Be specific what caused the error:
    faulty equipment, inaccurate measurements or calculation
    errors. After you have discussed the cause of the error,

    3

    try to suggest how to avoid the error and how to setup
    the experiment more effectively (ex: be more careful with
    measurements, use more precise equipment, etc.)

    Example According to thin airfoil theory, the Cl curve
    for cambered airfoils should be straight for low angles of
    attack with a slope of ¡textit2π. It should also have a
    positive lift at α = 0◦. The resulting CL curve clearly
    follows this trend, albeit not perfectly, especially at higher
    AoA’s. This likely follows from the assumption of a thin
    airfoil, as the NREL S826 has a non negligible aspect ratio
    of 5 .

    Furthermore, the boundary layer acts as a streamline,
    essentially adding some minute thickness to the airfoil flow.
    It would therefore experience a higher adverse pressure
    gradient due to the curvature, and thus earlier separation.
    This can also be observed in figure 4, where a high pressure
    gradient is starting to form already for α = 8◦ at x

    c
    ≈ 0.2.

    Furthermore, stall can be predicted to be about α =
    12◦ from figure 3. This seems to fit well with previous
    experimental data shown in pink [2], . Larger theoreti-
    cal errors are expected in this region, as separation and
    irregular flow further complicates the theory.

    The discrepancies are also likely to be due to the mea-
    surement errors described in the theory section. The max
    calculated error ∆CL is 5.93 % of the total CL.

    5.

  • Conclusion
  • This section is a short paragraph that includes one or
    two sentences. Conclusion summarizes the major result(s)
    of the experiment.

    Example The goal of this lab was experimentally mea-
    sure pressure around an airfoil for different AoA’s and to
    compare the resulting lift data with theory. This was done
    with numerical integration of the pressure distrubution,
    while also adjusting for measurment errors. There seems
    to be good agreement between the lab data and theory.
    The resulting slope of the CL curve deviates at a maxi-
    mum 0.109 from thin airfoil theory outside the stall region.
    This is probably due to the thickness of the airfoil, as well
    as the measurement error in the equipment. As expected
    stall occurs at about α = 12◦, which can be qualitatively
    observed in both the CL and CP curves.

    References

    [1] Scanivalve: MPS4264 Miniature Pressure ScannerManual,
    http://www-cs-faculty.stanford.edu/˜uno/abcde.html

    [2] Airfoil tools: Previous experimental data for the NREL S826,
    http://airfoiltools.com/airfoil/details?airfoil=s826-nr

    4

      Introduction
      Method
      Results
      Discussion
      Conclusion

    2

    >Sheet

    1

    Har

    m

    onic

    Number n

    Frequency o

    f

    Vibrator f(Hz) L

    ength of String Ln(m) Hanging mass m(kg)

    (fL/n)^2

    (Hz.meter)^2

    →原数据 Harmonic

    f L m (fL/n)^2

    7 170 0.79 0.07 3 6

    8.092

    7

    1

    5

    3 0.

    81

    2

    0.07

    31

    4

    .

    99

    1

    50

    4 6

    130 0.97 0.09 44

    1.7

    00

    6 99

    1.1

    55

    0.09

    363.18830625 5

    95 1.155 0.1

    1 48

    1.5

    83

    5 95 1.155 0.11

    481.583025 4 81

    1.148 0.13 540.423

    4 81 1.155 0.13

    547.03362

    65

    625 3

    75 0.95

    4 0.15 568.823

    3 65 1.155 0.15

    626.250625 2 55

    0.943 0.17 672.495

    2 50 1.155 0.17

    833.765625 1 50

    0.588 0.19 864.360

    1 50

    0.656

    0.19

    1075.84 10.624712 0.0841542857

    →原数据

    Stretch Amount (m) Tension (N) Average Time(sec) Average Velocity (m/s)

    V^2

    (m^2/s^2) Tension (N)

    Stretch Amount (m) Tension (N)

    Time1(sec) Time2(sec)

    Average Time(sec) Average Velocity (m/s)

    V^2(m^2/s^2)

    0.1

    0.8

    0.95

    6.0141052632 36.1694621163

    0.8
    0.1 0.8

    1.3

    3 1.39 1.36 4.201 17.649

    0.15 1

    1.32 4.4040909091 19.3960167355

    1
    0.15 1

    1.43 1.2

    5 1.34 4.338 18.821 0.2

    1.3

    1.31

    5 4.4968821293 20.2219488846

    1.3
    0.2 1.3 1.31 1.32

    1.315 4.497 20.222 0.25

    1.5

    1.345 4.470929368 19.9892094139

    1.5
    0.25 1.5

    1.24 1.41 1.325 4.538 20.597 0.3 1.6

    1.25

    4.89072 23.9191421184

    1.6
    0.3 1.7 1.2 1.36

    1.28 4.776 22.811 Tension (N) V^2(m^2/s^2)
    0.8 17.649
    slope

    1 18.821
    5.2202

    1.3 20.222
    1.5 20.597
    1/slope

    1.7 22.811

    1.355 0.1915635416

    1.36
    v2 是纵轴 1.37 error3 error4 T 是横轴

    1.39
    0.1752364517 0.0477 1.38

    (fL/n)^2 (Hz.meter)^2

    7.0000000000000007E-2 0.09 0.11 0.13 0.15 0.17 0.19 368.09163265306125 441.70027777777773 481.58302500000002 540.42300899999998 568.82249999999988 672.49455624999985 864.3599999999999

    m

    (fL/n)^2

    V^2(m^2/s^2)

    0.8 1 1.3 1.5 1.7 17.648648118512114 18.821351949209173 20.221948884615941 20.59721156852973 22.811071508789055

    T tension

    V^2

    Title of the Report

    A. Partner, B. Partner, and C. Partner

    Abstract

    The report abstract is a short summary of the report. It is usually one paragraph (100-

    2

    00 words) and should include
    about one or two sentences on each of the following main points:

    1. Purpose of the experiment
    2. Key results

    3

    . Major points of discussion

    4

    . Main conclusions

    Tip: It may be helpful if you complete the other sections of the report before writing the abstract. You can basically
    draw these four main points from them.

    example: In this experiment a very important physical effect was studied by measuring the dependence of a quantity
    V of the quantity X for two different sample temperatures. The experimental measurements confirmed the quadratic
    dependence V = kX2 predicted by Someone’s first law. The value of the mystery parameter k = 15.4 ± 0.5 s was
    extracted from the fit. This value is not consistent with the theoretically predicted ktheory = 17.34 s. This discrepancy
    is attributed to low efficiency of the V -detector.

    1.

  • Introduction
  • This section is also often referred to as the purpose or
    plan. It includes two main categories:

    Purpose: It usually is expressed in one or two sen-
    tences that include the main method used for accomplish-
    ing the purpose of the experiment.

    Ex: The purpose of the experiment was to determine
    the mass of an ion using the mass spectrometer.

    Background and theory: related to the experiment.
    This includes explanations of theories, methods or equa-
    tions used, etc.; for the example above, you might want to
    explain the theory behind mass spectrometer and a short
    description about the process and setup you used in the
    experiment. It is important to remember that report needs
    to be as straightforward as possible. You should comprise
    only as much information as needed for the reader to un-
    derstand the purpose and methods. Your should also pro-

    vide additional information such as a hypothesis (what is
    expected to happen in the experiment based on the theory)
    or safety information. The main focus of the introduction
    mainly focuses on supporting the reader to understand the
    purpose, methods, and reasons for these particular meth-
    ods.Purpose of the experiment

    Example:

    Calculation of the pressure coefficient Cp

    From the lectures notes, Cp can be obtained by the eq.

    (1)

    − Cp =
    P − P∞

    1
    2 ∗ ρ ∗ U2∞

    (1)

    Where P and P∞ are respectively the local pressure and
    the atmosphere pressure far away. U∞ is the wind velocity

    Preprint submitted to supervisor March 4, 2020

    of the wind tunnel.

    Calculation of the lift coefficient CL

    First, the expression for the pressure force acting nor-
    mal to the chord line is given in the lecture notes as eq.(2),

    Cn =

    Cp(−n̂ ∗ ŷ)dl, (2)

    with Cp the coefficient of lift and n̂ the unit normal
    vector pointing out of the surface, ŷ is the unit vector in
    the direction normal to the chord line. dl is the length of an
    infinitesimal line element. Similarly, the axial component
    can be express as eq.(3)

    Ca =

    Cp(−n̂ ∗ x̂)dl, (3)

    2.

  • Method
  • This is a short (half a page or so) passage in your report
    which should include the experimental process exactly as
    it was done in the laboratory. The procedure should be
    written in paragraph form. You should not copy the lab
    manual. It is possible that the experiment you have done
    has slightly difference procedures than in the manual. You
    should not include any results (things happened during the
    procedure). A good rule of thumb for complete but brief
    experimental procedures is to provide enough information
    so that the reader of your report would be able to repeat
    the experiment.

    A first offset measurement was taken with the pressure
    scanner, sample at 800 Hz for 10 seconds , while matlab
    was taking an offset measurement. After the offset measur-
    ment done , the wind tunnel VFD RPM was set to reach
    the target U∞ within ±0.5m/s. For each of the following
    α= [-8 -6 -4 -2 0 2 4 6 7 8 9 10 11 12 13 14 16 18], the
    same procedure was repeated :

    The turntable was set to the right angle of attack (as
    shown in fig.(1)). Then the dynamic pressure and the tem-
    perature were taken (1000 Hz for 30 seconds for pressure,
    and 14 Hz for 10 seconds for the temperature).

    While Matlab was taking the data , the pressure scan-
    ner was run to take measurement at 800 Hz for 60 seconds.
    After changing the angle, a break of 5 seconds was taken
    in order to fully settle the flow into a steady state before
    taking the next set of measurements.

    The post-experiment calculations were realized with
    Matlab. First, the pressure offset was computed in order
    to get the right pressure measurement. With the 2 off-
    set measurements and the getfiledate.m Matlab code, the
    time of each offset has been taken. A linear interpolation
    was realized to get the offset at any time.

    The pressure points were linked to the corresponding
    measurement value of the scanner and the time of each
    measurement was obtained with the getfiledate.m code.
    The new pressure were finally taken by subtraction of each
    corresponding time offset to the measurement pressure for
    every angle of attack.

    The lower and upper Cp values were computed with
    eq.(1). The denominator in the eq.(1) (P − P∞) corre-
    spond to the new pressure calculated by subtraction of
    the offset . As the pressure points does not surround the
    airfoil entirely, the Cp curves had to be closed by interpo-
    lation of the data points using piecewises cubic Hermite
    polynomials (PCHIP) for the last three points to estimate
    a value for the trailing edge. An example of a Cp curve for
    a certain angle of attack is shown in fig.(5).

    Next, the CL values for each angle of attack were com-
    puted using eq.(6). The coordinate system used in eq.(6)
    is shown in fig.(2). fig.(5) shows the resulting plot of this
    calculation.

    Finally, the errors in the lift coefficient were computed
    using eq.(9). The different variance values were given
    in the lab document and calculated using eq.(8). fig.(3)
    shows the resulting plot of this calculation.

    Figure 1: Set up of the airfoil experiment

    2

    3.

  • Results
  • In this section all the results of the experiment is re-
    ported, including:

    Raw data- in forms of graphs or tables. Each graph,
    table, or figure should be labeled and titled properly. Mak-
    ing tables and figures is helpful when you refer to and
    explain each of them in the report. Make sure that you
    attach the appropriate units to all physical quantities.

    Assume that the reader has not done the lab; so give
    clear definition of each symbol that is used in the re-
    port. (ex: âĂIJL is the length of the pendulumâĂİ.)

    Important results âĂŞ It is expected to use complete
    sentences to communicate the main results, which also
    should be expended to discussion section. (Ex: âĂIJThe
    gravitational acceleration was calculated to be 9.98 m/sâĂİ)
    This enables the important results to stand out from all
    the calculations, tables, and figures.

    Calculations Normally, one sample of each calcula-
    tion is necessary. For example, if the speed of an object is
    calculated for 6 trials, you are expected to write out calcu-
    lations for only one of them. However, it is important to
    mention that the calculation was repeated 6 times and give
    the average of all 6. Significant figures should be consid-
    ered in all calculations (see appendix of âĂIJSignificant
    Figure RulesâĂİ as a resource with significant figures).
    Again, make sure units are included in all calculations.

    Example: The resulting slope of the Cl for α ∈ [−8, 8]
    is 6.174 rad and 6.209 rad for α ∈ [−4, 4] . This devi-
    ates by 0.1090 and 0.0745 respectively from the 2π value
    predicted by thin airfoil theory, indicating larger errors for
    higher AoA’s.

    The max theoretical error ∆Cl was calculated to be
    0.0887, and occurred at α = 16◦, which is in the stall re-
    gion. Outside of the stall region the max error was calcu-
    lated to be 0.0391, at α = 8◦

    The standard deviations presented in tab.1 were used
    in the result above. σqinf , and σPi were found with eqn
    (8). However, σPi is a vector for all of the pressure ports,
    and will not be presented.

    Figure 2: Resulting plot of ∆CL

    Table 1: Value of variance
    σP0 σα σqinf
    3.000 0.250 0.453
    [Pa] [deg] [Pa]

    Figure 3: Resulting plot of CL compared to experimental data

    Figure 4: – Cp for α = 8◦

    4.

  • Discussion
  • The most important part of your report is the discus-
    sion section. Here you explain your results and allow your
    instructor to see that you have a thorough understanding
    of the scientific concept of the experiment and the results.
    In this section you also compare the expected (theoreti-
    cal) results with actual (experimental) ones. It is possible
    that your experiment turns out not exactly the way it was
    supposed to. Analyze and discuss why the results might
    have been different and try to explain why you obtained
    the results you did. Be specific what caused the error:
    faulty equipment, inaccurate measurements or calculation
    errors. After you have discussed the cause of the error,

    3

    try to suggest how to avoid the error and how to setup
    the experiment more effectively (ex: be more careful with
    measurements, use more precise equipment, etc.)

    Example According to thin airfoil theory, the Cl curve
    for cambered airfoils should be straight for low angles of
    attack with a slope of ¡textit2π. It should also have a
    positive lift at α = 0◦. The resulting CL curve clearly
    follows this trend, albeit not perfectly, especially at higher
    AoA’s. This likely follows from the assumption of a thin
    airfoil, as the NREL S826 has a non negligible aspect ratio
    of 5 .

    Furthermore, the boundary layer acts as a streamline,
    essentially adding some minute thickness to the airfoil flow.
    It would therefore experience a higher adverse pressure
    gradient due to the curvature, and thus earlier separation.
    This can also be observed in figure 4, where a high pressure
    gradient is starting to form already for α = 8◦ at xc ≈ 0.2.

    Furthermore, stall can be predicted to be about α =
    12◦ from figure 3. This seems to fit well with previous
    experimental data shown in pink [2], . Larger theoreti-
    cal errors are expected in this region, as separation and
    irregular flow further complicates the theory.

    The discrepancies are also likely to be due to the mea-
    surement errors described in the theory section. The max
    calculated error ∆CL is 5.93 % of the total CL.

    5.

  • Conclusion
  • This section is a short paragraph that includes one or
    two sentences. Conclusion summarizes the major result(s)
    of the experiment.

    Example The goal of this lab was experimentally mea-
    sure pressure around an airfoil for different AoA’s and to
    compare the resulting lift data with theory. This was done
    with numerical integration of the pressure distrubution,
    while also adjusting for measurment errors. There seems
    to be good agreement between the lab data and theory.
    The resulting slope of the CL curve deviates at a maxi-
    mum 0.109 from thin airfoil theory outside the stall region.
    This is probably due to the thickness of the airfoil, as well
    as the measurement error in the equipment. As expected
    stall occurs at about α = 12◦, which can be qualitatively
    observed in both the CL and CP curves.

    References

    [1] Scanivalve: MPS4264 Miniature Pressure ScannerManual,
    http://www-cs-faculty.stanford.edu/˜uno/abcde.html

    [2] Airfoil tools: Previous experimental data for the NREL S826,
    http://airfoiltools.com/airfoil/details?airfoil=s826-nr

    4

      Introduction
      Method
      Results
      Discussion
      Conclusion

    What Will You Get?

    We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

    Premium Quality

    Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

    Experienced Writers

    Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

    On-Time Delivery

    Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

    24/7 Customer Support

    Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

    Complete Confidentiality

    Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

    Authentic Sources

    We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

    Moneyback Guarantee

    Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

    Order Tracking

    You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

    image

    Areas of Expertise

    Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

    Areas of Expertise

    Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

    image

    Trusted Partner of 9650+ Students for Writing

    From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

    Preferred Writer

    Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

    Grammar Check Report

    Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

    One Page Summary

    You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

    Plagiarism Report

    You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

    Free Features $66FREE

    • Most Qualified Writer $10FREE
    • Plagiarism Scan Report $10FREE
    • Unlimited Revisions $08FREE
    • Paper Formatting $05FREE
    • Cover Page $05FREE
    • Referencing & Bibliography $10FREE
    • Dedicated User Area $08FREE
    • 24/7 Order Tracking $05FREE
    • Periodic Email Alerts $05FREE
    image

    Our Services

    Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

    • On-time Delivery
    • 24/7 Order Tracking
    • Access to Authentic Sources
    Academic Writing

    We create perfect papers according to the guidelines.

    Professional Editing

    We seamlessly edit out errors from your papers.

    Thorough Proofreading

    We thoroughly read your final draft to identify errors.

    image

    Delegate Your Challenging Writing Tasks to Experienced Professionals

    Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

    Check Out Our Sample Work

    Dedication. Quality. Commitment. Punctuality

    Categories
    All samples
    Essay (any type)
    Essay (any type)
    The Value of a Nursing Degree
    Undergrad. (yrs 3-4)
    Nursing
    2
    View this sample

    It May Not Be Much, but It’s Honest Work!

    Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

    0+

    Happy Clients

    0+

    Words Written This Week

    0+

    Ongoing Orders

    0%

    Customer Satisfaction Rate
    image

    Process as Fine as Brewed Coffee

    We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

    See How We Helped 9000+ Students Achieve Success

    image

    We Analyze Your Problem and Offer Customized Writing

    We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

    • Clear elicitation of your requirements.
    • Customized writing as per your needs.

    We Mirror Your Guidelines to Deliver Quality Services

    We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

    • Proactive analysis of your writing.
    • Active communication to understand requirements.
    image
    image

    We Handle Your Writing Tasks to Ensure Excellent Grades

    We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

    • Thorough research and analysis for every order.
    • Deliverance of reliable writing service to improve your grades.
    Place an Order Start Chat Now
    image

    Order your essay today and save 30% with the discount code Happy