Experiment on Distillation Principles

Abstract

Don't use plagiarized sources. Get Your Custom Essay on
Experiment on Distillation Principles
Just from $13/Page
Order Essay

The general objective of this experiment is to investigate and understand distillation principles, the parameters affecting the operation of distillation columns and how to determine optimal operating conditions. To achieve this, two experiments were carried out. Experiment one was carried out to investigate the relationship between the column pressure drop and the boil-up rate, the second experiment was performed to determine the composition of the mixture of dichloromethane-trichloroethylene. The data obtained in experiment one and two were used to determine the overall column efficiency.

Get Help With Your Essay
If you need assistance with writing your essay, our professional essay writing service is here to help!
Essay Writing Service

In order to investigate the pressure drop of the column, the power was set to 0.65 kW, 0.75 kW, 0.85, and lastly 0.95 kW. For each power input, the sample was collected for 10 seconds and then the procedures were repeated for each increment. Afterward, a graph of pressure drops against the boil-up rate (log/log) to determine the relationship between the two parameters. It was observed that the pressure drop and the boil- up rate increased as the power input increased and also that the degree of foaming increases as the power was increased from gentle at 0.65 kW to violent over the whole tray at 0.95 kW. The samples collected were tested for its Refractive Index. It was observed that the degree of foaming increases as the power was increased from gentle at 0.65 kW to violent over the whole tray at 0.95 kW.

The overall efficiency of the column for a power of 0.65 kW is 42.5%. However, that may not be the most optimal condition since it was not possible to test for other three power input due to some systematic and technical errors.

 

Table of Contents

Nomenclature…………………………………………………………………………..

Introduction…………………………………………………………………………….

Objectives………………………………………………………………………………

Methodology………………………………………………………………………………..

Results…………………………………………………….………………………………..

Discussion of Results…………..………………………………..………………………..

Conclusions ………………………………………………………………………………..

References ………………………………………………………………………………..

Nomenclature

n = number of theoretical plates

XA = mole fraction of the more volatile component

XB = mole fraction of the least volatile component

αav = average relative volatility

Subscripts D, B or d, b indicates distillate and bottoms respectively

∆H̅vap = average latent heat of vaporisation of DCM-TCE mixture (J/mol)

R = 8.314 J/mol*K

Tb(TCE) = boiling point of trichloroethylene (K)  

Tb(DCM) = boiling point of dichloromethane (K)

Introduction

Distillation is defined as a process in which a liquid or vapour mixture being made of two or more components is separated into its component fractions with the desired purity, by the input and removal of heat.

Distillation is one of the most common liquid-liquid separation processes and can be carried out in a continuous or batch system. The basic theory behind them is very simple and relies on separating a mixture being made of two or more components of different boiling points, though partial vaporisation of a liquid mixture or by partial condensation of the gas mixture. As the mixture is fed to the column, some fractions may vaporise and move up the column. The vapour components will condense and leave the column at different levels as the temperature is lower at the top of the tower. Based on a binary mixture, the more volatile component will leave at the top of the tower, and the less volatile component will leave at the bottom as a liquid.

Objectives

The objectives of this experiment are:

To investigate the pressure drop of the distillation column for four boil-up rates, and observe the degree of forming for each power supply

Use of refractometer to determine the overhead and bottom mixture composition

To determine the overall column efficiency

Literature Review

Distillation columns are usually made up of a vertical tower containing a series of plates. As liquid runs down the tower vapour goes towards the top. In order to understand its working principle, consider what happens when heating a liquid. At its boiling point, the molecules of the liquid possess enough kinetic energy to escape into the vapour phase (evaporation) and if the temperature decreases some molecule in the vapour phase return to the liquid phase (condensation). The same with the mixture of dichloromethane and trichloroethylene for this experiment. As heat is applied to the column, the eventually the most volatile component (in this case trichloroethylene) begins to vaporize. As the trichloroethylene vaporizes it takes with it some part of dichloromethane. The vapour mixture is then condensed and evaporated again, giving a higher mole fraction of the least volatile component in the liquid phase and a higher mole fraction of the most volatile in the vapour phase.

For this experiment, the column was be set to operate at total reflux. Which means that all the overhead products are be condensed and fed back into the top of the tower and allowed to flow to the bottom of the column, i.e. overall no top product is taken out of the system while the column is operational.

The total pressure drop across each tray is the sum of that caused by the restriction of the holes in the sieve tray, and that caused by passing through the liquid (foam) on top of the tray.

As the velocity of the vapours passing up the column increases then so does the overall pressure drop. The velocity can be monitored by varying the boil-up rate which is done by changing the power input to the reboiler. Under certain conditions where only the vapour phase is present, the trays will act as an orifice and in that, the velocity will be directly proportional to the square root of pressure drop. However; this relationship does not become visible until the head of liquid has been overcome and foaming is taking place. In a graph of log pressure drop vs. log boil-up rate, at low boil-up rates, the pressure drop will remain almost constant until foaming occurs when the pressure drop would be expected to rise sharply for unit increases in boil-up rate.

Key Definitions

Column efficiency:  The overall efficiency is defined as the ratio of the number of theoretical trays to the actual number of trays required for an entire column.

Foaming: Foaming regarding distillation column is defined as the expansion of liquid due to the passage of vapour, or gas. Although it provides good liquid-vapour contact interfacial, however, excessive foaming may lead to liquid build-up on column trays.

Boil- up Rate: Also called the distillation load. It is the rate at which the mixture is being distilled in the column.

McCabe Thiele Diagram. It is a diagram where y is plotted as a function x along the column provides an insightful graphical solution to the combined components. It is mainly used to determine the minimum theoretical plates required in a distillation column for separation of binary mixtures.

 

The Fenske Method: similar to McCabe Thiele Diagram, it is a method used to determine the minimum number of theoretical plates required in a distillation column for separation of binary mixtures. It uses equation (4).

Methodology

 

APPARATUS

       Figure 1: Distillation Column Apparatus

Distillation Column

Condenser

Electromagnet (reflux control)

Reboiler

Cooler

Bottom

Distillate

Feed

 

Distillation column

Dichloromethane 4.15L

Trichloroethylene 5.85L

Automatic digital refractometer

Distilled water

Measuring cylinder

Conical flask

Dropper

Manometer

Stopwatch

Procedure for Experiment A: Variation of column pressure drop

Ensure all the valves on the equipment are closed and then open valve 10 (V10)

Reboiler heater power is switched on at the console and power to the heater is adjusted until a reading of 0.65 kW is obtained on the digital wattmeter. Water in the reboiler began to heat up and this is observed by selecting T9 (the reboiler temperature) on the process temperature digital display.

The temperature is let stabilize for 5-10 minutes.

Open V6 and V7 and measure the pressure difference in the manometer. Then close V6 and V7.

Volume collection. Open V3 so that all condensate is delivered into a measuring cylinder for 10 seconds

Few drops of the sample are taken and the refractive index for the sample is checked by using the refractometer.

Repeat steps 1 to 6 for power of 0.75, 0.85 and 0.95kW.

Procedure for Experiment B:  Determining the Mixture Composition

 Using the reflectometer, the refractive index (R.I) of pure dichloromethane and pure trichloroethylene are measured.

Measure the refractive index of small quantities of 25%, 50%, 75 and 100 mol percent of dichloromethane/trichloroethylene. The volume of constituents is calculated are shown in the results section.

Procedure for Experiment C:  Overall Column Efficiency

Note: The overall efficiency was determined using the data from part A and B

Results

Experiment A:

Table 1.  Measured and calculated parameters

Power (kW)

Overhead RI

Bottom RI

Pressure drop (mm H2O)

Average column T

Degree of foaming on trays

0.65

1.4235

1.4490

104

41.5

Gentle localized

0.75

1.4220

1.4510

108

41.5

Gentle localized

0.85

1.4123

1.4520

121

41.5

Violently localized

0.95

1.4080

1.4500

123

40.7

Violent Over whole tray

Table 1.  Measured and calculated parameters

Power (kW)

Collection time (s)

Boil-up rate (L/s)

Pressure drop (mm H2O)

Refractive index

Degree of foaming on trays

0.65

10

5.20

104

1.4490

Gentle localized

0.75

10

5.30

108

1.4510

Gentle localized

0.85

10

5.40

121

1.4123

Violently localized

0.95

10

6.20

122

1.4082

Violent Over whole tray

Figure 2. Relationship between pressure drop and boil-up rate

 

Experiment B:

Table 3. Recorded refractive index of dichloromethane at different concentrations

Sample

Dichloromethane Concentration (mol %)

Refractive index

A

0

1.4343

B

25

1.4410

C

50

1.4600

D

75

1.4700

E

100

1.4755

Figure 3: Refractive index vs mole fraction of dichloromethane

The compositions of the mixture were determined using the equation obtained from figure 3. The equation is Y = -0.013×2 -0.0315x + 1.4768. Where y represents the refractive index and x represents the molar composition of dichloromethane in the mixture. The value for X was found by substituting the value for the refractive index for a given power input and solve the quadratic equation to determine the molar composition x.

For the first power input (0.65kW)

Overhead RI = 1.4235 so Y = 1.4235   then the equation becomesː

1.4235 = -0.013×2 -0.0315x + 1.4768        

0.04×2 + 0.0315x – 0.00533

By solving the quadratic equation the values for x can be obtained.

X1 = 0.73         X2 = -0.138

Bottom RI = 1.449 so Y = 1.449   then the equation becomesː

1.449 = -0.04×2 -0.0315x + 1.4768        

0.04×2 + 0.0315x – 0.00333

By solving the quadratic equation the values for x can be obtained.

X1 = 0.41         X2 = -0.76

This means that the composition of dichloromethane in the overhead product is = 0.41 thus the composition of trichloroethylene is 1-0.41 = 0.59.

For the first power input (0.75kW)

Overhead RI = 1.422 so Y = 1.422   then the equation becomesː

1.4222 = -0.013×2 -0.0315x + 1.4768        

0.013×2 + 0.0315x – 0.065

By solving the quadratic equation the values for x can be obtained.

X1 = 1.23                   X2 = -0.65

Applying the above procedure for bottom RI, we obtainː

X1 = 1.6                   X2 = -0.85

This implies that some errors have affected the experiment because the mole fraction of both components must not be greater than one. The same problem was identified with the next two power increments for both overhead and bottom refractive index (0.85 and 0.95kW).

 

 

Experiment C:

The overall column efficiency is defined as the ratio of the total number of theoretical plates and the actual number of plates present in the distillation column as previously stated. The actual number of plates in the column is 8.

Fenske’s method was used to determine the total number of theoretical plates of the distillation column, equation (4) below is the Fenske’s equation used.

N + 1 =
  log⁡[XAXB d*XBXAb]  log⁡αav
                                                                           (4)

αAv =

αd* αb

αAv = exp[
∆HvapR(   1  Tb(tce)–
   1  Tb(dcm) )]

E =
Number of theoretical platesNumber of actual plates*
100%

Tb(DCM) = 312.9 K

Tb(TCE) = 360.5 K

∆H̅vap = 27.9J/mol

The actua number of plates is 8.

Power input of  0.65kW

By calculating the value for α and then substituting all the known parameters into equation (4), It was found that the number of theoretical plates for a power of 0.65kW is 3.4.

E =
3.48*
100%                            E = 42.5%

Using McCabe Thiele diagram for distillation of the binary mixture,  as shown in figure 4 below. It was found that the number of theoretical stages is 4. This yields an overall efficiency of 50%.

Figure 4. McCabe Thiele diagram for dichloromethane/trichloroethylene binary mixture

The column efficiency for the power of 0.75,0.85, and 0.95 could not be calculated because the molar compositions of dichloromethane in the mixture was more than one which implies that some technical errors were made while performing the experiment.

Discussion of Results

At the beginning of the experiment, the power was first set to 0.5kW and that power, no pressure drop really occurred. The pressure only began to drop at power>0.6kW. That because the energy that was being generated was not high enough to boil up the solution. When the power was set up at a higher value, the boil-up rate getting higher and the pressure start to drop as the boil- up rate reached its needed rate. However, when the power was set up at 65kW, the pressure starts to drop as the boil- up rate reached its needed rate. As shown in table 1, the boil-up rate (column load) and input power increased as the pressure drop increased. Except for the last input power supply of 0.95 kW was the value of pressure drop decreased. The reason for that might be due to technical errors while performing the experiment as it was quite challenging to record the pressure drop. This situation violates the theory that says that pressure drop is proportional to the column load.

Find Out How UKEssays.com Can Help You!
Our academic experts are ready and waiting to assist with any writing project you may have. From simple essay plans, through to full dissertations, you can guarantee we have a service perfectly matched to your needs.
View our services

Conclusions

From the results, it is noticeable that there is a constantly increase in pressure drop as the boil-up rate increased. From the results, it is also noticeable that the pressure drop in the column is a function of the input power supplied. The pressure drop increased as the more power was supplied to the column. This would be caused by the energy loses through increased thermal radiation and frictional forces with an increased vapour velocity through the column.

There might be some significant errors that might have affected the results. The values for pressure drop and refractive index are not 100% accurate since the readings were taken using the naked eye. As experiments were only conducted once without repetition for each power input, it is probable that some other results would not be highly accurate.

References:

Perry’s Chemical Engineering Handbook 7th ed. 13-12

Chemical Engineering Vol 1 – Coulson and Richardson

Chemical Engineering Laboratories Handbook 08-09

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy