Before posting to this discussion, be sure you have completed the assigned reading which is attached to this message
Summarize how the conclusions of this reading support class discussions about your obligations as engineers with respect to technology and product development.
After you post your original response, respond to at least one of your classmates’ posts, either asking questions about their responses or making thoughtful responses or comments on their responses. To make a better discussion try to engage with people who made arguments different from your own! Feel free to disagree to try to offer an opinion opposite the one they gave – you should engage in a healthy debate here!
As with all debates, please keep your comments civil. Disparaging comments or personal attacks will automatically be deleted and their writers will be given zeros for this discussion.
You will be graded based on the following rubric.
9.0 pts
Student lists and provides some insight into 5 to 6 items from the reading(s) that are applicable and relevant to the topics discussed thus far in the course; provides comprehensive, thoughtful reflection about specific actions that wo
5.0 pts
Student clearly communicates their ideas and uses good structure along with proper grammar and spelling.
Designing the Future | National Society of Professional Engineers Page 1 of 6
Designing the Future
Home » PE Magazine » May 2015 » Designing the Future
May 2015
Designing the Future
Do PEs have an ethical responsibility to think ahead to help prevent harmful effects of technology?
BY EVA KAPLAN-LEISERSON
In an age of uncertainty, one thing is clear: technology advances. As the saying goes, “the only constant is change.”
What is common today was science fiction to our parents. The tools designed to improve our daily lives will be ancient
history to our children. In this steady progression, is there a need to pause, to ask deeper questions about the world
we are creating? Many say yes, that it’s imperative to examine the long-term implications. Some believe engineers
should be the ones to lead this effort. And pes may be especially qualified to do so.
A Growing Chorus
Recently, several prominent scientists and technologists have
spoken up about one developing area: artificial intelligence. Tesla
and SpaceX CEO Elon Musk, Microsoft cofounder Bill Gates, and
theoretical physicist Stephen Hawking have all stressed their
concerns about AI and humans’ abilities to control it. Hawking told
the BBC, “The development of full artificial intelligence could spell
the end of the human race.”
Musk, who had tweeted that AI was “potentially more dangerous
than nukes,” took action. In January, he donated $10 million to the
Future of Life Institute for a research program aimed at ensuring AI
benefits humans.
But Musk, Gates, and Hawking are following in the fifteen-year-old
footsteps of Sun Microsystems cofounder Bill Joy, who in April
2000 published a nearly 12,000-word treatise in Wired: “Why the
Future Doesn’t Need Us.” In it, he argued that powerful 21st century technologies such as robotics, genetic
engineering, and nanotechnology could threaten human existence. And unlike previous risks such as nuclear
technology, they offered the added dangers of both self-replication and access by a greater population.
“Failing to understand the consequences of our inventions while we are in the rapture of discovery and innovation
seems to be a common fault of scientists and technologists,” wrote Joy. The overwhelming desire to know, he adds,
can cause us to overlook the fact that “the progress to newer and more powerful technologies can take on a life of its
own.”
Joy emphasized caution, even “relinquishment: to limit development of the technologies that are too dangerous.” But
it’s hard to say whether, in the 15 years since, anyone has heeded his advice.
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future 4/28/2015
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future
Designing the Future | National Society of Professional Engineers Page 2 of 6
The Engineer’s Role
Who should be the ones to give pause? According to a November Chronicle of Higher Education article, it should be
engineers.
In “Fools for Tools,” Sujata Bhatia, P.E., assistant director of undergraduate studies in biomedical engineering at
Harvard University, and John Kaag, associate professor of philosophy at University of Massachusetts, write that
engineers “need to consider and debate the far-reaching outcomes of their inventions.” That includes positing second
– and third-order effects.
Further: “If engineers fail to carefully weigh the long-term impact of their innovations and neglect to provide
appropriate guidance for novel devices, then engineers share the culpability if their machines are used in ways that
harm the public good.”
Bhatia, elaborating later, explains why she puts this responsibility on the engineer’s shoulders: “No one has a better
appreciation for the capabilities of the technology and the ways that technology might be used or misused than the
engineer who designs [it],” she notes.
While engineers could just innovate and leave it to society to determine how their creations are used, she thinks they
must take more leadership. “If we want to be seen as professionals who care about people and about saving lives, we
have to think about the long-term implications of our technologies,” she says.
Engineers are already adept at considering failure modes, she explains. They could add a societal point of view: How
could a technology, at the societal level, hurt the public’s best interests? Or, stated differently, engineers could
release technologies with not just mechanical but also societal operating instructions.
Beyond the Technical
In an article for the fall 2014 Issues in Science and Technology, Carl Mitcham, a professor at the Colorado School of
Mines who specializes in the philosophy and ethics of science, technology, and engineering, examines the engineer’s
broader responsibility.
He notes that among the National Academy of Engineering’s Grand Challenges, “only the most cursory mention was
made of the greatest challenge of all: cultivating deeper and more critical thinking, among engineers and
nonengineers alike, about the ways engineering is transforming how and why we live.”
Engineers are the “unacknowledged legislators” of the world, he writes. By designing and constructing new structures,
processes, and products, they influence how society lives as much as politicians. “Would we ever think it appropriate
for legislators to pass laws that could transform our lives without critically reflecting on and assessing those laws?”
Yet, engineers have been told they should just be concerned about the technical, says Deborah Johnson, professor
of applied ethics in the University of Virginia’s Science, Technology, and Society Program, part of the School of
Engineering and Applied Science. “It’s sort of like saying, ‘You’re just a cog…. We don’t want you to think about the
wheel that you’re designing.’”
But that process is critical, she continues. Whenever you build something physical, you also build something social.
“[Engineers] are making society,” she says. “They are making technology, but technology is society.”
And she believes engineers have signed a social contract. “In exchange for the privileges and rights of being a
member of the profession, then you owe something back…to do engineering in a way that either protects the public
health, welfare, and safety or [even] benefits society.”
PEs as Ethicists
As a professional engineer herself, Bhatia says PEs are especially suited to take a leadership role in these types of
discussions, because licensure demonstrates an understanding of and competence with ethics. “The public has an
extra level of both trust and expectation [in] licensed professionals,” she says.
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future 4/28/2015
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future
Designing the Future | National Society of Professional Engineers Page 3 of 6
John Hall, P.E., F.NSPE, agrees. His article “I, Robot, P.E.” (March PE) called for professional engineers to lead the
conversation about unintended consequences of advanced technologies such as artificial intelligence.
Professional engineers are already perceived as ethicists, he elaborates. And their education teaches them to
imagine possible outcomes and failure modes, as well as to consider competing interests and find the best solution
using good judgment. “We are, by education and training, problem solvers,” he says. “We should be applying our
problem-solving skills to more than technical problems.”
NSPE President-Elect Tim Austin, P.E., F.NSPE, believes professional engineers could fill a leadership void, standing
with the public to ask, “Just because we can do something, should we?”
He asks: “Who is in the best position to do it [if not] us?”
A Larger Trend
The responsibility to think more generally about technologies’ effects fits into an overall trend for engineering ethics,
explains Gerald Galloway Jr., P.E., chair of the National Academy of Engineering’s Center for Engineering Ethics and
Society advisory group. Over the last several decades, engineers have been asked to focus more on second- and
third-order effects, he says—for example, environmental and social sustainability.
Rachelle Hollander, who directs the CEES and is a member of the governing board of the Association for Practical
and Professional Ethics, notes that a fairly recent development in the sciences and engineering has been an
“acknowledgement of the early warning function that science and engineering can play in society,” in terms of risk
identification, evaluation, communication, and management.
Along with that comes an emphasis on “anticipatory ethics”—as Johnson defines it, “the attempt to get engineers and
developers to think about ethical issues of the technology while they’re still developing it.”
Of course, engineers are already doing some of this. As Dan O’Brien, P.E., F.NSPE, chair of NSPE’s Board of Ethical
Review, explains, engineering projects frequently use the triple bottom line assessment, which examines not only the
financial impacts but also effects on environment and society.
And ABET’s accreditation criteria for engineering programs require students to demonstrate (in part):
• “the ability to design a system, component, or process to meet desired needs within realistic constraints such
as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability”;
• “an understanding of professional and ethical responsibility”;
• “the broad education necessary to understand the impact of engineering solutions in a global, economic,
environmental, and societal context”; and
• “knowledge of contemporary issues.”
Explicit Versus Implicit
But O’Brien and others still believe this process of long-term thinking could be made more prominent and included
earlier in the process.
For instance, the Board of Ethical Review chair says that consideration of second-generation impacts by engineers
could become a regular part of the project development process.
Mark Frankel, director of the Scientific Responsibility, Human Rights, and Law Program for the American Association
for the Advancement of Science, emphasizes the need for engineers to consult with others in this process. “You can’t
just give up and say you can’t think of any [long-term] effects,” he says.
Engineers should reach out to the communities that their products will serve, Frankel says. For instance, firms could
convene outside advisory groups made up of nonengineers and community leaders.
While this adds more work and perhaps cost to development, he explains, it’s best to have a routine in place. And
such efforts can reflect positively in the event of a failure; they are a demonstrated record of making a “good faith
effort.”
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future 4/28/2015
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future
Designing the Future | National Society of Professional Engineers Page 4 of 6
In addition to taking initiative on their own technologies, engineers can also serve more generally as spokespeople,
Bhatia believes. She says popular culture, such as the movies Iron Man and Big Hero 6, demonstrates the public’s
constant tension between a fascination with technology and fear of its misuse. But engineers can stand in the
forefront to help resolve that, she says, providing trusted guidance, as doctors do. Examples could include position
statements on controversial technologies or reassurances that certain innovations don’t have the capabilities to be
misused in ways that the public fears.
Education and Training
How should engineers prepare for these conversations? David Guston, codirector of the Consortium for Science,
Policy, and Outcomes at Arizona State University, is leading the creation of a new Virtual Institute for Responsible
Innovation and editing the Journal of Responsible Innovation. He says ethics curricula have previously focused on
microethics, the responsibilities of engineers and other researchers to each other and to the profession, rather than
macroethics, the responsibility to society at large. But that’s slowly shifting, he says.
Bhatia points out that ethics cases in engineering curricula primarily examine whether a technology worked—asking
was it ready to be used rather than how it could be misused. But she says it’s important to train students to think
about why a technology should be developed and how it should or shouldn’t be used.
Such ethical discussions should be woven into everything programs teach, says Galloway.
University of Virginia offers proof that engineers with a broader mindset are in demand. Every engineering student at
the school has to take four courses in the Science, Technology, and Society program, replacing some of their usual
humanities classes. Johnson believes graduates are both better employees and world citizens. And she says
recruiters seek out the students, who make excellent managers and leaders.
A Call to Action
In “The True Grand Challenge for Engineering: Self-Knowledge,” Carl Mitcham asserts that “[a]mid the [NAE] Grand
Challenges must thus be another: The challenge of thinking about what we are doing as we turn the world into an
artifact and the appropriate limitations of this engineering power.”
It is not enough to do things right, he says later. “We, engineers and nonengineers alike, need to consider what are
the right things to do.”
Hollander stresses that engineers are critical participants in such discussions, because their expertise can help
society make informed choices. In particular, she says, the public needs to hear from engineers they can trust and
have confidence in, knowing that their training, experience, and priorities will be directed at enhancing the public
good.
That sounds very much like professional engineers.
How can PEs contribute? Send your ideas to pemagazine@nspe.org.
Questions Engineers Might Raise
FROM LEFT TO RIGHT: SUJATA BHATIA, P.E.; MARK FRANKEL; GERALD GALLOWAY, JR., P.E.; AND, RACHELLE HOLLANDER
Experts weigh in on the discussions engineers and PEs could initiate about the long-term implications of technology.
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future 4/28/2015
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future
mailto:pemagazine@nspe.org
Designing the Future | National Society of Professional Engineers Page 5 of 6
Sujata Bhatia, P.E.
• What is the societal need that this technology is addressing?
• Can existing technologies address this need? Why is this new technology advantageous over existing ones?
• Will this technology benefit a few or benefit everyone? If it benefits only a few, does it do so at the expense of
others?
• Are there ways in which the technology compromises human rights or the public health and safety?
• What is the risk/benefit ratio?
Mark Frankel
• Where is the technology most likely to have an impact? What kind of an impact?
• Who will benefit?
• Will the benefits change course over time?
• What people will be more disadvantaged by the technology than others?
• How might the technology be used beyond the way it’s designed to be used? Will it have users not originally
foreseen?
Gerald Galloway, P.E.
Ask the following of developers, proponents, and researchers who are moving technologies from R&D to
implementation:
• What don’t you know about what’s going to happen?
• What are the uncertainties you’re worried about?
Rachelle Hollander
• What is the likely impact on future generations?
• What are the questions that might arise for different social groups?
• What would happen if this new development fell into the hands of children? Of people who might want to use
it to do harm?
• What kinds of controls can be put into place to minimize the likelihood of harm? In what social circumstances
are they feasible?
• How likely is it that current and future populations will be able to manage this technology?
• Does it satisfy the ethical maxim for “due care” (the way a reasonable person would behave in looking out for
others’ safety)?
Resources
Publications Referenced (In Order of Mention)
• “Why the Future Doesn’t Need Us,” Bill Joy, Wired (April 2000)
• “Fools for Tools,” Sujata Bhatia, P.E. and John Kaag, Chronicle of Higher Education (November 2014)
Also see: “Answering to a Higher Standard,” NSPE Executive Director Mark Golden’s response to “Fools for
Tools,” PE magazine (March 2015)
• “The True Grand Challenge for Engineering: Self-Knowledge,” Carl Mitcham, Issues in Science and
Technology (Fall 2014)
• “I, Robot, P.E.,” John Hall, P.E., F.NSPE, PE magazine (March 2015)
• The Journal of Responsible Innovation
Additional Readings
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future 4/28/2015
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future
Designing the Future | National Society of Professional Engineers Page 6 of 6
• “Victor Paschkis Versus Wernher von Braun: Responsibility in Engineering,” Stephen Unger (December
2009)
• “Reckless Use of Technology,” Stephen Unger (February 2013)
• “Is Progress in Technology Always Beneficial?,” Stephen Unger (May 2014)
Organizations and Programs Referenced (In Order of Mention)
• Future of Life Institute
• Science, Technology, and Society Program at the University of Virginia
• Center for Engineering Ethics and Society, National Academy of Engineering
• Association for Practical and Professional Ethics
• Board of Ethical Review, NSPE
• Scientific Responsibility, Human Rights, and Law Program, American Association for the Advancement of
Science
• Consortium for Science, Policy, and Outcomes, Arizona State University
• The Virtual Institute for Responsible Innovation
Additional Resources Noted by or Associated With Experts
• The Center for Nanotechnology in Society
• Markkula Center for Applied Ethics
• The Society for Philosophy and Technology
• Engineering and Physical Sciences Research Council (UK), Framework for Responsible Innovation
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future 4/28/2015
http://www.nspe.org/resources/pe-magazine/may-2015/designing-future
We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.
Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.
Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.
Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.
Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.
Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.
We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.
Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.
You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.
Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.
Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.
You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.
You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.
Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.
We create perfect papers according to the guidelines.
We seamlessly edit out errors from your papers.
We thoroughly read your final draft to identify errors.
Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!
Dedication. Quality. Commitment. Punctuality
Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.
We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.
We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.
We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.
We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.