Robust Training of Deep Neural Networks with Extremely Noisy Labels

This paper introduces and investigates a co-teaching machine learning strategy to increase the robustness of a deep neural network to training datasets with noisy labels. The motivation for this investigation stems from the fact that typically in the world, it is not inconceivable that noisy labels may exist in various datasets and neural networks should be robust to such noise. The authors point out that deep neural networks are notoriously known to fitting noisy labels as training epochs become large due to the so-called memorizing effect. The authors assert that deep neural networks memorize easy instances first and then gradually try to adapt to noisy instances. The proposed approach exploits this phenomenon by training two neural networks simultaneously similar to the Co-training approach introduced in [1]. The training of each network is done with the biased selection of small loss instances from each mini batch of the peer network to update the parameters. Unlike in the existing MentorNet or Decoupling approaches, in which the error in one network is directly fed back into the same network in the second mini batch, the Co-teaching approach leverages the fact that two networks have different learning capabilities and this serves the purpose of filtering out errors introduced by noisy labels. The optimization method used for both networks was the stochastic gradient descent algorithm with momentum is known to generalize well. The authors argue that when deep neural networks memorize clean data, they become robust and hence will attenuate errors from the subsequent noisy data. To prove the proposed approach introduced, experiments were conducted on different noisy renditions of the popular MNIST, CIFAR-100 and CIFAR-10 datasets. Results from the experiments showed the proposed Co-teaching approach performed better than existing state-of-the-art baselines after training with varying degrees of noisy conditions.
Details of the Approach
The Co- teaching approach proposed trains two deep neural networks f, with parameter
Wf
and g with parameter Wg. During the first mini-batch pass, network f is trained with a percentage of instances in the minibatch with a small training loss. This selection is controlled by the parameter R(T). The R(T) selected instances are then fed into network g as useful knowledge for updating the parameters and the process is repeated with networks f and g swapped. The error flow therefore takes a crisscross path between the two networks.

Don't use plagiarized sources. Get Your Custom Essay on
Robust Training of Deep Neural Networks with Extremely Noisy Labels
Just from $13/Page
Order Essay

Get Help With Your Essay
If you need assistance with writing your essay, our professional essay writing service is here to help!
Essay Writing Service

The authors acknowledged that in order for this approach to work it was important to establish that the small-loss instances selected were indeed clean. Working with the ability of neural networks to filter out noisy instances using their loss values at the initial stages of training explained by the memorizing effect, more instances in the mini batch were kept at the beginning of training and then gradually dropped the noisy instances by increasing R(T). This is similar to boosting and active learning which have been shown to be to be sensitive to outliers. The proposed Co-teaching combats this problem exploiting the fact that two classifiers can produce different hyperplanes and would have different abilities to filter noise when exposed to noisy data. This was the motivation behind exchanging selected small-loss instances between the networks to update the respective parameters. Although the authors drew motivation from Co-training, they argue the proposed approach needs a single set of features unlike Co-training which needs two and exploits memorization of deep neural networks which Co-training does not.
As stated earlier the authors used three popular benchmark datasets to verify the effectiveness of their proposed model MNIST, CIFAR-100 and CIFAR-10. The authors had to manually corrupt the datasets by using the transition matrix Q which flipped clean labels to noisy labels. The authors defined two structures for Q. Pair flipping where labels are flipped within very similar classes and symmetry flipping were labels are flipped based on a constant probability. Noise rate of 0.45 was chosen for the Pair flipping and 0.5 for the symmetry flipping. The model was also evaluated on data with noise rate of 0.2 in order to measure its performance against low-level noisy data. The performance on these datasets was compared to MentorNet, Decoupling, S-Model, Bootstrap, F-correction and the standard Deep neural network trained on noisy data. All of these methods were implemented with a Convolutional Neural Network with Leaky-RELU as the activation function.9 CNN layer structure with Adam optimizer and a learning rate of 0.001 was used. Test accuracy and label precision were used as the performance metrics. The results from the MNIST database revealed Co-teaching achieved better results with both 45% pair flipping noise rate and 50% symmetry flipping than all the other state-of-the-art methods. It was also performed better than all the other models except F-correction on data with 20% noise rate. The Co-teaching algorithm again outperformed its competitors on both CIFAR-100 and CIFAR-10 datasets in the various noise level conditions defined except in the 20% noise rate case where the F-correction was better.
The idea presented is elegant and relevant given that real data may have noisy labels. The experiments produced consistent results proving the reliability of the proposed approach. In the implementation of the Co-teaching approach, it is assumed the quality of the labels is unknown. The confidence of the labels is therefore estimated by the small -loss and the noise rate estimated by τ in the experiments which determines the drop rate R(T)
References
[1] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy