Review of Cathodes for Use in Proton-conducting Solid Oxide Fuel Cells

In this literature review, research of cathode material for solid oxide fuel cell/electrolysers shall be discussed, specifically investigating novel material research into proton-conducting solid oxide fuel cells. Research in this topic is being divided into two main field; materials that block or conduct protons. The review covers previous cathode materials used within generic oxide- conducting fuel cell and modern research articles relevant to the development of Proton-conducting solid oxide fuel cell cathodes and their key properties between the two categories.  

Don't use plagiarized sources. Get Your Custom Essay on
Review of Cathodes for Use in Proton-conducting Solid Oxide Fuel Cells
Just from $13/Page
Order Essay

Introduction

First invented by Sir William Grove in 1839 in Swansea, Fuel Cells (FC) are electrochemical devices that convert chemical energy into electrical energy and sometimes heat energy. Fuel cell technology has been more prominent in recent years due to being; more efficient than traditional chemical combustion devices, being silent and potential of being more reliable due to have no moving parts, producing minimal to zero harmful emissions including NOx and SOx and due to their modular nature can be scalable in terms of power and capacity unlike batteries. Fuel Cells main components are an electrolyte usually in the centre of the cell, which allows ions to move from each Electrode; an anode and a cathode which are where the half reaction (fuel oxidation reaction or HOR and oxygen reduction reaction or ORR respectively) take place. There’s also an external circuit which connects the anode to the cathode which conducts free electrons. The biggest challenges facing Fuel cells the large expense of the materials and techniques in cell production, the need for high purity within its fuel and durability over a long period, especially within stop-start cycle conditions.

There are many types of fuel cells, usually named after the material of the electrolyte. One of the most promising types is Solid Oxide Fuel Cells (SOFC’s). SOFC’s are made from metal oxides with the electrolyte commonly a ceramic material. They conventionally work at an operating of 500-1000 oC, rather high compared to other FC’s but allows the energy output to both electrical and heat. Because of these dual energy outputs SOFC’s are a possible combined heat and power alternative for stationary purposes in permanent installations such a homes and large buildings. Another advantage of SOFC’s is there fuel flexibility running on essentially any pure form of proton-containing fuel (pure hydrogen, hydrocarbons, ammonia etc). This allows SOFC’s to be potentially implemented regardless of the fuel infrastructure of a given country or region.

Get Help With Your Essay
If you need assistance with writing your essay, our professional essay writing service is here to help!
Essay Writing Service

The largest barriers for SOFC’s to overcome before being commercially viable is the reduction usage of expensive materials, increasing in durability (Especially hydrocarbon-based fuels which have impurities) and the reduction in operating temperature to >500 oC. A novel attempt at solving these barriers is the use of proton-conducting oxides to form a proton conducting solid oxide fuel cell (H-SOFC’s). Conventionally, SOFC has a carrier ion of oxide ions which are formed by the ORR within the cathode and electrolyte conducts the ions to the anode where the ions oxidise the chosen fuel. H-SOFC’s work by changing the carrier ion to the protons being conducted to the cathode. Theoretically the use of proton-conducting oxides would allow for low-cost material use, lower operating temperature with a maximum of around 600 oC, and many of the issue around durability and voltage losses being reduced.

One of the biggest challenges facing this new technology is the losses that where present in the anode material (usually a nickel-based material that had issues with carbon deposition and sulphur poisoning) are reduced but issue is faced at the cathode. Cathodes are now required to be have good conductivity of proton, oxygen ions and electrons, be highly stable at the operating temperature and oxidisation, to have a similar thermal expansion coefficient (TEC) as the electrolyte (Usually a form of barium cerium yttrium zirconate or BZCY and to provide good catalytic ability to the ORR.

Conventional SOFC’s Cathode Materials

This section shall discuss the basis of cathode material research and specifically developments of cathodes in SOFC’s more generally.

2.1 Traditional perovskite’s

Cathodes tend to need to be mixed ionic electronic conductors (MIEC) and traditionally, the choice of material has predominately been perovskite structures (ABO3). The current state of the art material is lanthanum strontium manganite (LSM or LaxSr1-xMnO3). Doping the material with strontium was found to enhance the mixed variance of the manganese (Mn3+/Mn4+) forming a p-type semiconductor material. The changing in variance means LSM is high catalytic to the ORR, however has poor oxygen ion conductivity. Efforts have been used to combined with yttria-stabilised zirconia, a very porous and well-used electrolyte material to combat poor ion conductivity. However, issues remain with the use of YSZ due to deceasing the performance of the cell.

A similar cathode material is lanthanum strontium cobalt (LSC or La1-xSrxCoO3). LSC has been found to have improved cell performance, especially when used with cerium gadolinium oxide (CGO) electrolytes. The main research of the material is looking how to reduce the material high TEC in comparison to other material within the cell. The main interest seems to be looking at either doping with Fe (becoming LSCF) which improves high temperature stability and reduced TEC and forming other cobalt composites for low temperature uses i.e.  gadolinium strontium cobalt (GSC or Gd1-xSrxCoO3) and samarium strontium cobalt (SSC or Sm1-xSrxCoO3).

H-SOFC’s cathode research

Due to the difference in carrier ion, H-SOFC’s have other requirements to consider to more general SOFC’s. Herein the current research of H-SOFC cathodes is broken into two section based on the two mains types of material and its effect on ion; being proton-blocking or proton-conducting.

3.1 Proton-blocking cathodes (PBC)

3.1.1 Single Electronic Conductor (SEC)

SEC is materials which conduct electrons usually in a single-phase material. Oxygen gas usually interacts with the electrons on the surface of the cathode, but the ion needs to move around the cathode and interact with proton at the three-phase boundary site, forming water within the electrolyte.

SEC’s tend not to be the best form of cathode within H-SOFC. Although they have usually excellent electron conduction, there poor oxygen ion mobility is a real issue because it impedes the ORR and causing slower kinetics within the cell.

Examples of materials tested that are electronic conductor include Pt and (La0.6Ba0.4)MnO3

3.1.2 Mixed Ionic and Electronic Conductors (MIEC) 

The traditional perovskite such as LSM are within the category of MIEC. With the ability to conduct of electrons and ions they allow ORR to within the interface electrolyte and the cathode, allowing for easier mass transport of water. The majority of formed from metal oxides and normal are structured perovskites, double layered perovskites and ruddleston-popper phase materials.

The main characteristics of a MIEC material is that they have high electrochemical catalytic ability towards ORR but tend to have lower oxygen ion transport and has slower reaction kinetics due to the slow mobility, but less of an issue than an oxygen-ion carrier electrolyte. The research has prioritised this effect due to the cathode material being an integral part of the ORR, therefore reactivity of the material is prioritised over the ion conduction.

Research has also used multi-layered to help improve ion conduction with MIEC materials. These usually involves mixing with the electrolyte usually a more porous material chosen for its ion conduction and an added effect is improved matching of thermal expansion coefficient to electrolyte material. However, optimising the concertation of mixture is critical so that electron conduction and catalytic effectiveness is not affected.

An alternative, in terms of material structure too perovskite is the Ruddleston-Popper phases (An+1BnO3n+1). These are in fact, two perovskites adjacent to another and interleaved via the cations in the form of a rock salt layer or layers (see Figure).  The materials give very strong electronic conductivity in comparison to perovskite due to its structural characterises. The most researched of these structures is the La2NiO4+δ. There has also been testing of the material which have doped or substituted Ni on the B sites. Materials chosen to have included Co, Fe and Cu and have been shown to perform well with lanthanum strontium gallium manganate electrolytes (LSGM). However, all types of above Ruddleston-Popper structures have reactivity with numerous electrolytes including CGO and YSZ, reducing effectiveness of the cell.

Another type of perovskite which has been heavily researched is the layered double perovskite. There structure, AA’B2O6-δ usually is a mixture of a Ba and a chosen Lanthanide and the B-site consisting of a front row transition metal. The most studied version of double perovskites is LnBaCo2O5+δ where Ln can be variety of different lanthanides i.e Pr, Nd, Sm and Gd. The structure works by barium and the lanthanide formed in alternate layers.

With these types of materials, the larger the ionic radius of the material, the more likely they too have improved oxide ion mobility. An example of this would be PrBaCo2O5+δ, which has been shown to have excellent ion conduction and has been testing within a cell. However, the largest disadvantage is the high activation energy required by the material.

GdBaCo2O5+δ is another candidate having showed good ASR value on a CGO electrolyte at the operational temperature of 625 ⁰C. GdBaCo2O5+δ has been tested on other electrolytes at various operating temperatures. The material was shown to be highly reactive with a YSZ based cell at a higher temperature of 700 ⁰C

Example of new materials researched with the last decade of Proton-Blocking blockers include within a BZCY electrolyte Ba0.5Sr0.5FeO3-δ-SDC1, Sm0.5Sr0.5Fe0.8Cu0.2O3-δ-SDC2, La0.7Sr0.3FeO3-δ-SDC3,4, Ba0.5Sr0.5Fe0.9Ni0.1O3-δ-SDC5, La0.6Pr0.2Sr0.2FeO3-δ-SDC6, La2NiO4+δ-LaNi0.6Fe0.4O3-δ737, Pr0.6Sr0.4Cu0.2Fe0.8O3-δ-SDC8, La2NiO4+δ-LaNi0.6Fe0.4O3-δ9. Pr2NiO4+d10, PrBaCuFeo5+x11, SmBaCuCoO5+X12, SmBaCuFeO5+X12

3.2 Proton-conducting cathode (PCC)

3.2.1 Mixed Protonic and Electronic conductors (MPEC)

MPEC’s are a mixture of good mobility of protons and electrons within a material. MPEC are usually material which has been doped by a transition and post transition elements e.g Fe, Co and Bi. Cobalt is especially good when it comes to a doping metal within MPEC’s due to its ability to improve the protonic ability of the material.

Example of new materials researched with the last decade of Proton-conducting blockers include within a BZCY electrolyte include; BaCe0.5B0.5O31, BaCe0.5Fe0.5O32, Ba(Pr0.8Gd0.2)O2.93.

Tao et al Bi doping

Tao et al Fe doping

Has strong performance with Co

Duan et al

Relatively poor electro-catalytic abilities

Zhu et al with BZCY electrolytes

3.2.2 Mixed Proton, Ion and Electronic conductors (MPIEC or MPOEC)

Combinations of oxygen ion, proton and electron transport

Tends mixture of MIEC and/with a proton conductor

Most research looks at multi-phase materials

Very likely to contain cobalt

Tends to be costly and to have high thermal expansion coefficients

Also issues with water incorporation.

Example of new materials researched with the last decade of MIEC’s with a proton conducting include Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δ 1, PrBaCo2O5+δ-BZCY2, GaBaCoFe5+δ-BZCY3, La0.6Sr0.4Co0.2Fe0.8O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ4, Ba0.5Sr0.5Co0.8Fe0.2O3-BaCe0.8Sm0.2O2.95

3.3.1 Comparing both categories

Sun et al has started comparing the two categories by using mixed phases with the same cathode-base. As in example, he evaluated the different composites, one a proton-blocking material, La0.7Sr0.3FeO3-δ-Ce0.8Sm0.2O2-δ or LSF-SDC and the other a proton-conducting, La0.7Sr0.3FeO3-δ-BaZr0.1Ce0.7Y0.2O3-δ or LSF-BZCY. Both materials where characterised via XRD, Impedance and then cell tested with a BZCY electrolyte-based H-SOFC cell. The results demonstrated that as a composite cathode, LSF-BZCY showed lower area specific polarization resistances than the LSF-SDC, whilst LSF-SDC demonstrated higher performance than its proton-conducting counterpart. However, whilst measuring as a single cell the polarization resistances were very similar (LSF-SFC 0.11 Ω cm-2 and LSF-BZCY value of 0.13 0.11 Ω cm-2) and power densities showed that the proton-blocking conductor material was higher and more powerful, 449 mW cm-2, 405 mW cm-2 at 700 ⁰C, LSF-SDC and LSF-BZCY respectively. Sun concluded that LSF-SDC was “superior” than LSF-BZCY as H-SOFC cathode material and suggested than in the case of BZCY electrolytes that proton-blocking cathodes are preferable than proton-conducting materials.

Sun et al is one of a very limited number of papers that tend to suggest that proton-blocking conductor materials are the preferred category material for cathodes. However, the limitation of the paper available suggest that more specific work should be conducted over several types of cathode and electrolyte materials.

4. Conclusions

PBC is weaker oxygen ion mobility than PCC but has issues with electronic conduction

Single layers seem not to be the answer and multi-layers are being heavily researched

References

J Hou, L Miao, J Hui, L Bi, W Liu, J Irvine, J. Mater. Chem. A, 2018, 6, 10411

J Hou, J Qian, L Bi, Z Gong, R Peng, W Liu, J. Mater. Chem. A, 2015, 3, 2207-2215

Z Wang, W Yang, S Shafi, L Bi, Z Wang, C Xia, W Liu, Y Liu, J. Mater. Chem A, 2015, 3, 8405-8412

General Fuel Cell Books

R O’Hayre, S-W Cha, W Colella, F Prinz, Fuel Cell Fundamentals, John Wiley and Sons Inc, Hoboken, 10th edn., 2006

A Appleby, F Foulkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York, 1th Edn, 1989

A Dicks, D Rand, Fuel Cell Systems Explained, John Wiley and Sons Inc, 3rd edn, 2018

Electronic Conductor

R Mukunsan, P Davies and W Worrell, J. Electrochem. Soc., 2001, 148, A82-A86

H Iwahara, T Yajima, H Uchida and K Morimoto, Proceddings of the Second Internatinal Symposium on Solid Oxide Fuel Cells, held from 2 to 5 July 1991 in Athens, Greece, CEC, Brussels, 1991

Mixed Ionic and Electronic Conductors (MIEC) 

W. Sun, Z. Shi, S Fang, L. Yan, Z. Zhu and W.Liu, Int J. Hydrogen Energy, 2010, 35, 7925-7929

Y. Ling, J. Yu, B. Lin, X. Zhang, L. Zhao and Z. Liu, J .Power Sources, 2011, 196, 2631-2634

Q. Li, L.P. Sun, L.H.-Huo, H. Zhao and J.C.-Grenier, J. Power Sources, 2011, 196, 1712-1716

W. Sun, Z. Zhu, Y. Jiang, Z.Shi, L.Yan and W. Liu, Int. J. Hydrogen Energy, 2011, 36, 9956-89966

Y. Ding , Y. Chen, X.Lu and B. Lin. Int J. Hydrogen Energy, 201, 37, 9830-9835

Y Chen, Q. Gu, D. Tian, Y. Ding, X. Lu, W. Yu, T. T. Isimjan and B. Lin, Int J. Hydrogen Energy , 2014, 39, 13665-13670

J. Hou, Z. Zhu, J. Qian, W. Liu, Electrochem. Commun., 2009, 11, 1618-1622

Z. Gong, J. Hou, Z. Wang, J. Cao, J. Zhang and W. Liu, Electochim. Acta, 2015, 178, 60-64

J Hou, J.Qian, L Bi, Z Gong, R Peng and W Liu, J. Mater. Chem. A., 2015, 3, 2207-2215

 G Taillades, J Dailly, M Taillades-Jacqui, F Mauvy, A Essouhmi, M Marrony, C Lalanne, S Fourcade, D. J. Jones, J-C Grenier and J.Roziere, Fuel Cells, 2010, 10, 166-173

L Zhao, B He, Q. Nian, Z Xun, R Peng, G Meng and X. Liu, J. Power Sources, 2009, 194, 291-294

Q Nian, L Zhao B He, B Lin, R Peng, G Meng and X Liu, J, Alloys compd.,2010, 492, 291-194

Mixed Protonic and Electronic conductors (MPEC)

Z Tao, L. Bi, L Yan, W. Sun, Z. Zhu, R Peng and W.Liu, Electrochem. Commun, 2009, 11

Z Tao, L Bi, Z Zhu and W Liu, J. Power Sources, 2009, 194, 801-804

Same as reference 1 in Electronic Conductor

Mixed Proton, Ion and Electronic conductors (MPIEC or MPOEC)

F. He, T. Wu, R. Peng and C. Xia, J. Power Sources, 2009, 194, 263-268

C. Yang and Q. Xu, J. Power Sources, 2012, 212, 186-191

H. Ding and X. Xue, Int. J. Hydrogen Energy, 2010, 35, 4311-4315

B. H. Rainwater, M. Liu and M. Liu, Int. J. Hydrogen Energy, 2012, 37, 18342-18348

R. Peng, Y Wu, L. Yang and Z.Mao, Solid State Ionics, 2006, 194, 389-393

Comparing both categories

W. Sun, S. Fang, L.Yan and W. Liu, J.Electrochem. Soc., 2011, 158, B1432

 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy