Reduce The Incidence Perioperative Hypothermia Health And Social Care Essay

A Summary of fewer than 150 words should state the purpose of the study or investigation, basic procedures, main findings (giving actual results not just a broad description) and their statistical significance (using actual p values), and principal conclusions. The Summary should not be structured nor in note or abbreviated form. It should not state that ‘the results are discussed’ or that ‘work is presented’. Abbreviations should not be used except for units of measurement. Use the same order when discussing the methods and results as in the main body of the text, and always mention the groups in the same order.

Don't use plagiarized sources. Get Your Custom Essay on
Reduce The Incidence Perioperative Hypothermia Health And Social Care Essay
Just from $13/Page
Order Essay

Get Help With Your Essay
If you need assistance with writing your essay, our professional essay writing service is here to help!
Essay Writing Service

Introduction:
Perioperative hypothermia, defined as a core temperature below 36°C, is still one of the most common side effects of general anaesthesia (1, 12) and results from low preoperative core temperatures (19), anaesthetic-induced inhibition of thermoregulatory defenses with redistribution of heat after induction of anaesthesia combined with a cold surgical environment, administration of unwarmed intravenous fluids, and evaporation from surgical incisions (25).
Several prospective, randomized trials and retrospective studies have shown that perioperative hypothermia is associated with numerous adverse effects and outcomes (24). Following head and neck surgery perioperative hypothermia can cause delayed extubation, the development of early perioperative wound complications e.g. neck seromas, and flap dehiscence (2, 26). Although the authors of these studies recommend active warming for patients at risk for intraoperative hypothermia (2, 26) most patients are not actively warmed during head and neck surgery.
The purpose of this prospective, randomized, controlled study was to test the hypothesis that the use of a new conductive warming system (PerfecTempâ„¢, The Laryngeal Mask Company Limited, St. Helier, Jersey) in combination with insulation is superior to reduce the incidence of intraoperative and postoperative hypothermia during head and neck surgery compared to insulation only.
Methods:
After approval of the protocol by our local hospital ethics committee, 40 patients were recruited. Written, informed consent was obtained from all patients on the day prior to anaesthesia and surgery. All patients in the study were required to be adults between 18 and 75 yrs, to have American Society of Anesthesiology physical status I-III and to undergo elective, head or neck surgery that was scheduled to last between 90 min and 180 min.
The exclusion criteria were: age > 75 yr; body mass index 30 kg/m²; preoperative temperature > 38°C or 180 min.
All patients were premedicated with 7.5 mg oral midazolam. General anaesthesia was induced with propofol (2 to 2.5 mg per kg of body weight) and remifentanil (0.2-0.5µg/kg) followed by rocuronium (0.4-0.6 mg/kg) to facilitate tracheal intubation. Anaesthesia was maintained with infusions of remifentanil and propofol titrated to maintain adequate anaesthetic depth and hemodynamic stability.
The ambient temperature of the O.R. was 19°C. Sublingual temperatures were measured preoperatively with an electronic thermometer (Geratherm rapid, Geratherm Medical AG, Geschwenda, Germany). During all measurements, sublingual placement and mouth closure was carried out by member of the study team (A.R.) experienced in the use of this device. Following induction, until the end of surgery, oesophageal temperatures were measured every 15 minutes using a temperature probe (TEMPRECISE #4-1512-A, Arizant International Corp. Eden Prairie, MN, USA) inserted 30 to 35 cm into the distal oesophageus.
All patients were identified through the daily surgical schedule. A computer generated randomisation list with four blocks of ten patients was used to allocate patients to either the treatment group (conductive warming and insulation) or control group (insulation only).
In the treatment group the patients were positioned supine on the conductive warming mattress (190.5 cm x 50.8 cm) (LMA PerfecTempâ„¢, The Laryngeal Mask Company Limited, St. Helier, Jersey) placed on the operating table, as suggested by the manufacturer. Then the patients were immediately insulated with a standard hospital duvet (188 cm x 122 cm), filled with Trevira (100% polyester) (Brinkhaus GmbH & Co. KG, Warendorf, Germany) with an insulation value of 1.29 clo (6). The conductive patient warming system was set to a temperature of 40.5°C throughout the study and warming was stopped when the oesophageal temperature was > 37.5°C.
Patients of the control group were positioned supine on the operating table and were immediately insulated with the standard hospital duvet.
All intravenous fluids were infused at room temperature. The duration of anaesthesia and surgery (time from skin incision to last suture) were recorded.
Power analysis, assuming a clinically important reduction in the incidence of intraoperative and postoperative hypothermia from 50 % to 90% suggested that eleven patients were required in each group (α = 0.05; β = 0.2). To compensate for unexpected dropout of patients with a shorter or longer duration of surgery than planned the initial total number of recruited patients was increased to 20 patients in each group.
Comparisons of nominal data were made using the Fisher’s exact test. A Kolmogorov-Smirnov test was used prior to parametric testing to ascertain that values came from a Gaussian distribution. Comparisons of normally distributed data were made using the Student’s t-test. Comparisons of not normally distributed data were made using the Mann-Whitney-U test. Time-dependent changes of core temperature were evaluated using repeated-measures analysis of variance (ANOVA) and post hoc Scheffé’s test. Results are expressed as means ± SD or as median and interquantil range as appropriate. A value for p Results
A total of 86 patients were assessed for eligibility. 25 patients could not be asked to participate, because they came to the hospital on the day of the operation. 21 patients refused to participate. Of the 40 patients recruited, 10 patients had to be excluded because of an operating time below 60 minutes (five patients in the treatment and four in the control group) or above 180 minutes (one patient).
Figure 1: Flow diagram of the study
In three patients the conductive warming mattress did not fully heat up to 40.5°C for unknown technical reasons. These patients were still included in the data analyses. Data were therefore complete for 15 patients in each group. Patient characteristics, ambient temperature of the O.R., core temperatures before induction of anaesthesia and duration of surgery were not different (table 1).
Table 1 Patient characteristics and perioperative variables. Values are presented as mean values ± SD, median and interquantil range [IQR] or numbers of patients.
Variable
Treatment group (n = 15)
Control group (n = 15)
P-value
Age [yr]
51±18
51±15
0.99
Sex [m/f]
7/8
10/5
0.46
Height [cm]
173±11
175±10
0.64
Weight [kg]
74±16
80±9
0.21
Temperature of the O.R [°C]
19±1
19±1
0.3
Core temperature before induction of anaesthesia [°C]
36.1±0.4
35.9±0.5
0.33
Duration from positioning on the conductive warming mattress to induction of anaesthesia [min]
7 [IQR: 5-9]


Duration of anaesthesia [min]
118±28
122±38
0.74
Duration of surgery [min]
97±25
103±37
0.61
The ANOVA identified a significantly higher core temperature in the treatment group at 45, 60, 75, 90, 105 and 120 min (Figure 2). Further testing was futile as there were only three patients with a longer duration of surgery included.
Figure 2 Mean pre- and intraoperative temperatures of the treatment group and control group. Error bars represent SD. In each group data were complete for at least sixty minutes.
Furthermore, Fishers’s exact test confirmed a lower incidence of intraoperative (3 vs. 9 patients; p = 0.03) and postoperative hypothermia (0 vs. 6 patients; p = 0.008) in the treatment group. However, the mean duration of hypothermia was not significantly shorter in the treatment group (55±17 min vs. 80±51 min; p = 0.42). No adverse effects could be observed.
Discussion:
This prospective, randomized, controlled study demonstrates that, during head and neck surgery under general anaesthesia, a conductive warming mattress combined with insulation significantly reduces the incidence of intraoperative and postoperative hypothermia compared to insulation only. With this approach the incidence of intraoperative and postoperative hypothermia could be reduced significantly. However, the mean intraoperative duration of mild hypothermia could not be reduced significantly.
Redistribution of body heat from the core to the periphery was unusually small in this study and similar in both groups as core temperature decreased only 0.1°C in the control group and 0.2°C in the study group. In most clinical studies redistribution of heat after induction of anaesthesia leads to a reduction in core temperature of about 0.3°C to 0.8 °C (3, 4, 8, 28) in the first hour whereas under experimental conditions it can reach up to 1.7°C (17). This small decrease in core temperature may be explained by the fact that patients were kept comfortably warm during the whole preoperative period (ward, transport to the O.R. and induction of anaesthesia) with the same good insulating hospital blanket as used intraoperatively. This approach refers to the recent NICE guideline “Inadvertent perioperative hypothermia. The management of inadvertent perioperative hypothermia in adults” (22).
Patients during head and neck surgery are often thought to have a relatively low risk for perioperative hypothermia because in most cases no body cavity is opened, the surgical incisions as well as blood losses are small. This is probably why there are almost no studies about perioperative hypothermia and its prevention during head and neck surgery. However, many patients undergoing head and neck surgery are prone to hypothermia by advanced age (2, 14, 27) and cancer with associated malnutrition and low body weight (2, 16). According to their preoperative risk profile (e.g. ischemic heart disease, diabetes mellitus, chronic obstructive pulmonary disease, preoperative radiotherapy, preoperative chemotherapy) (20, 26) they are often vulnerable to hypothermia associated complications. These complications include an increasing incidence of myocardial ischemia (10, 11, 11) which is also a relevant complication after reconstructive head and neck surgery (7), augmenting blood loss (23), decreasing resistance to surgical wound infections or increasing local wound complications (2, 15, 18, 26), thus prolonging hospitalization.
The few existing studies were particularly focused on longer operations like parotidectomies, neck dissections (2) and reconstructive surgery with free tissue or regional flaps (13, 26). In the study of Agrawal et al. (2) the incidence of perioperative hypothermia was 65% in the unwarmed group showing clearly the high risk of perioperative hypothermia in patients during head and neck surgery. In our study with relatively short operations we observed an incidence of perioperative hypothermia of 40% in the control group. In contrast to the study of Agrawal et al. (2) we used a high insulation of 1.29 clo for these patients which is much more than the insulation value of most commercially available materials designed for use in the operating room. With this insulation heat losses from the covered skin can be reduced about 70%. (6). In most of our patients this insulation was able to maintain a stable thermal steady state with a relative constant core temperature. However, this thermal steady state was at a core temperature of about 36.0°C with many patients being hypothermic.
In general the efficacy of posterior patient-warming systems is limited (5, 9, 13, 21). These devices have the disadvantage that warming the back of the patient in the supine position is suboptimal. During surgery, little heat is lost from the back (9) and heat gain via the back is also limited, resulting in a small change in heat balance. However, in this special setting the additional heat generated by the conductive warming system leads to a positive thermal balance and an increasing core temperature after 30 minutes. In contrast to conventional circulating water mattresses the new conductive system is made of thick viscoelastic foam. This material enhances contact between the mattress and the back, thereby reducing thermal contact resistance and increasing the efficacy of heat exchange.
In contrast to forced-air warming the combination of good insulation and conductive warming has several advantages. There are no expensive disposables elements, low costs for maintenance, low power consumption and no relevant noise emission (28). Another advantage is that is very easy to use the system for prewarming as soon as the patient can be placed on the operating table when the controller unit is mounted at the operating table.
Our study has several limitations. First, two different anatomic locations were used to measure core temperature (oral temperature before induction of anaesthesia and oesophageal during general anaesthesia). However, both methods are reasonable methods for core temperature measurements and we could record the first reliable oesophageal temperature 5 minutes after induction of anaesthesia so that this temperature can serve as a reliable starting temperature.
Second, five patients per group had to be excluded from data analyses because the operation time was shorter or longer than planned. Nevertheless, we had to exclude these patients because it is not advisable to compare operations with durations of 30 minutes with operations of more than 3 hours.
Finally we did not fully take advantage of the possibility to prewarm our patients with the conductive system. On average time from the beginning of warming to induction of anaesthesia was only seven minutes. It seems to be likely that longer prewarming periods would enhance the efficacy of the conductive warming mattress.
Conclusion
The combination of good thermal insulation and conductive warming is effective to prevent perioperative hypothermia during head and neck surgery. In contrast to other warming methods there are no expensive disposables, low costs for maintenance, low power consumption and no relevant noise emssion.
 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy