phyton ,Digital Image Processing

 Can you please help me on the following question it is crucial for me to have the answer so i need your help .you should fill in the # blanks in the project06 file.

#!/usr/bin/env python
# coding: utf-8
#
# ## Project 6 – Color Theory
#
#
#
# In this project, you will implement the following:
#
# 1. Extract the YUV bands of an image
# 2. Decimate the Y band and show its effect on the quality of the RGB image
# 3. Decimate the U band and show its effect on the quality of the RGB image
# 4. Decimate the V band and show its effect on the quality of the RGB image
#
#
# In[9]:

Don't use plagiarized sources. Get Your Custom Essay on
phyton ,Digital Image Processing
Just from $13/Page
Order Essay

# import necessary packages
# reading/writing image files
from skimage import io
from skimage import color
# displaying images and plots
import matplotlib.pyplot as plt
# array operations
import numpy as np
# mathematical calculations
import math
import cmath
# DFT calculations
from scipy import fftpack as ft
# histogram calculation
from skimage import exposure
# signal processing operations
from scipy import signal
from scipy.linalg import circulant

# In[10]:

# display an image in original size
def my_display_actual_size(img, str_caption):
height = img.shape[0]
width = img.shape[1]
ndim = img.ndim
isColor = True
if ndim == 1: isColor=False
elif ndim != 3: assert False

# determine a figure size big enough to accomodate an axis of xpixels by ypixels
# as well as the ticklabels, etc.
margin = 0.05
dpi = 80
figsize = (1.0+margin)*height/dpi, (1.0+margin)*width/dpi
# define the figure
fig = plt.figure(figsize=figsize, dpi=dpi)

# make the axis the right size
ax = fig.add_axes([margin, margin, 1 – 2*margin, 1 – 2*margin])
# display the image
if isColor:
ax.imshow(img, interpolation=’none’)
else:
ax.imshow(img, cmap=’gray’, vmin=0, vmax=255, interpolation=’none’)
plt.title(str_caption)
plt.show()

return
# end of function

# In[11]:

# STEP 0 Pick an image
# set image folder
image_folder = r’/Users/tanjuerdem/EE421521/images’
# read input image
image_file = r’/peppers ‘
image_path = image_folder + image_file
imgRGB = io.imread(image_path)
# display image
my_display_actual_size(imgRGB,’Input Image’)

# In[12]:

# STEP 1 Transform the image into YUV color space
#—————————————————————
# Extract the YUV bands of the image using “my_RGB2YUV()” function
#—————————————————————
# ADD YOUR CODE BELOW

# In[13]:

# STEP 2.a Demonstrate the effect of the Y band on image resolution
#—————————————————————
# Decimate the Y band by a factor of 4 in horizontal and vertical directions
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Interpolate the decimated Y band back to its original size
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Convert from YUV back to RGB (use the processed Y band)
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Calculate and print the RMSE between the above image and the original image
#—————————————————————
# ADD YOUR CODE BELOW

# In[14]:

# STEP 2.b Demonstrate the effect of the U band on image resolution
#—————————————————————
# Decimate the U band by a factor of 4 in horizontal and vertical directions
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Interpolate the decimated U band back to its original size
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Convert from YUV back to RGB (use the processed U band)
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Calculate and print the RMSE between the above image and the original image
#—————————————————————
# ADD YOUR CODE BELOW

# In[15]:

# STEP 2.c Demonstrate the effect of the V band on image resolution
#—————————————————————
# Decimate the V band by a factor of 4 in horizontal and vertical directions
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Interpolate the decimated V band back to its original size
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Convert from YUV back to RGB (use the processed V band)
#—————————————————————
# ADD YOUR CODE BELOW
#—————————————————————
# Calculate and print the RMSE between the above image and the original image
#—————————————————————
# ADD YOUR CODE BELOW

# In[16]:

# STEP 3 Display the images obtained in STEP 2 above together with the original image
#—————————————————————
# Display the original RGB image and the three RGB images obtained above in a 2×2 grid:
# [Original RGB] [Y decimated RGB]
# [U decimated RGB] [V decimated RGB]
#—————————————————————
# ADD YOUR CODE BELOW

# *STEP 4 Comments on the results*
#
# *ADD YOUR COMMENTS HERE*
#
# Compare the three RGB images obtained in STEP 2 to the original RGB image in terms of (a) visual quality and (b) RMSE value and explain why decimation of different YUV bands have different effects on the RGB image quality.
#
# In[ ]:

#!/usr/bin/env python
# coding: utf-8
#
#
#
#
# #### 29 March 2021
#
# In this lecture, you will learn the following:
#
# 1. How to display RGB colors in the CIE XYZ color space
# 2. How to convert from additive RGB color space to subtractive CMY color space
# 3. How to convert between RGB and HSV color spaces
# 4. How to convert between RGB and YCbCr (YUV) color spaces
# 5. Fourier analysis of YUV color bands
#
#
# In[66]:

# import necessary packages
# reading/writing image files
from skimage import io
from skimage import color
# displaying images and plots
import matplotlib.pyplot as plt
# array operations
import numpy as np
# mathematical calculations
import math
# DFT calculations
from scipy import fftpack as ft
# histogram calculation
from skimage import exposure
# signal processing operations
from scipy import signal
from scipy.linalg import circulant

# ### **Part 1:** Displaying RGB colors in the CIE XYZ color space
#
# In[67]:

# 1. Construct and display the RGB triangle in the CIE XYZ Color Gamut
# set CIE XYZ image size
N = 256
# create an empty image to store the color gamut
img_cie_gamut = np.zeros((N,N,3))
# define transformation matrix
rgb2xyz = np.array([[0.449941, 0.316877, 0.181278],
[ 0.244768, 0.673364, 0.081868],
[ 0.025197, 0.141463, 0.906392]])
# go over all RGB colors (use steps of 4 to run faster)
step = 4
for R in range(0,256,step):
for G in range(0,256,step):
for B in range(0,256,step):

if R == 0 and B == 0 and G == 0: continue

RGB = np.array([R,G,B])
XYZ = np.dot(rgb2xyz,RGB)

X = XYZ[0]
Y = XYZ[1]
Z = XYZ[2]

S = X+Y+Z
x = X/S
y = Y/S
x_int = min(int(np.round(x*256,0)),255)
y_int = min(int(np.round(y*256,0)),255)
img_cie_gamut[y_int,x_int] = RGB

# end of loops
# set type as byte
img_cie_gamut = img_cie_gamut.astype(‘uint8’)
# draw a diagonal line on the image
for n in range(N):
img_cie_gamut[n,N-n-1] = 255
# flip the y axis
img_cie_gamut[:,:,:] = img_cie_gamut[-1::-1,:,:]
# display CIE-XYZ color gamut for RGB primaries
plt.imshow(img_cie_gamut)
plt.title(‘CIE-XYZ Color Gamut’)
plt.xticks([]), plt.yticks([])
plt.xlabel(‘x’), plt.ylabel(‘y’)
plt.show()

# ### **Part 2:** Additive RGB Space vs. Subtractive CMY Space
#
# In[68]:

# 2.1 RGB color space and the additive color system
# set image size
N =256
# create an empty image to store the colors
img_RGB_colors = np.zeros((N,N,3),dtype=int)
# fill the color image
for n in range(N):
for m in range(N-n):
# find coefficient BG
coeff_BG = (float(n)/float(N))
# find coefficient BR
coeff_BR = (float(m)/float(N-n))

# calculate additive color
val_G = coeff_BG
val_R = (1.0-coeff_BG)*coeff_BR
val_B = (1.0-coeff_BG)*(1.0-coeff_BR)

# find largest
val_max = max(val_R, val_G, val_B)

# scale so that largest is 1
val_G /= val_max
val_R /= val_max
val_B /= val_max

# scale to 255
color_G = int(255*val_G)
color_R = int(255*val_R)
color_B = int(255*val_B)
# set image value
img_RGB_colors[n,m] = np.array([color_R,color_G,color_B])

# flip the y axis
img_RGB_colors[:,:,:] = img_RGB_colors[-1::-1,:,:]
# display color image
plt.imshow(img_RGB_colors)
plt.title(‘RGB Additive Color System’)
plt.xticks([]), plt.yticks([])
plt.show()

# In[69]:

# 2.2 CMY color space and the subractive color system
# set image size
N =256
# create full white image to store the colors
img_CMY_colors = np.ones((N,N,3),dtype=int)
img_CMY_colors *= 255
# fill the color image
for n in range(N):
for m in range(N-n):
# find coefficient BG
coeff_BG = (float(n)/float(N))
# find coefficient BR
coeff_BR = (float(m)/float(N-n))

# calculate subtractive color
val_G = coeff_BG
val_R = (1.0-coeff_BG)*coeff_BR
val_B = (1.0-coeff_BG)*(1.0-coeff_BR)

# find largest
val_max = max(val_R, val_G, val_B)

# scale so that largest is 1
val_G /= val_max
val_R /= val_max
val_B /= val_max

# scale to 255
color_G = int(255*val_G)
color_R = int(255*val_R)
color_B = int(255*val_B)
# set image value by subtracting from white
img_CMY_colors[n,m] -= np.array([color_R,color_G,color_B])

# flip the y axis
img_CMY_colors[:,:,:] = img_CMY_colors[-1::-1,:,:]
# display color image
plt.imshow(img_CMY_colors)
plt.title(‘CMY Subtractive Color System’)
plt.xticks([]), plt.yticks([])
plt.show()

# In[70]:

def my_rgb2cmy(imgRGB):

height, width, ndim = imgRGB.shape
assert ndim == 3
# define RGB to CMY conversion table
rgb2cmy = np.array([[-1, 0, 0, 1],
[ 0, -1, 0, 1],
[ 0, 0, -1, 1]])

# create an image with 4 colors
imgRGB4 = np.zeros((height,width,4))

# first 3 colors are the original image data
imgRGB4[:,:,:3] = imgRGB
# 4th color is 255
imgRGB4[:,:,3] = 255

imgCMY = np.dot(imgRGB4, np.transpose(rgb2cmy))
imgCMY = imgCMY.astype(‘uint8′)
return imgCMY

# In[71]:

# 2.3 Conversion from RGB to CMY
#set image folder
image_folder = r’/Users/tanjuerdem/EE421521/images’
# read input image
image_file = r’/rgb_color_wheel ‘
image_path = image_folder + image_file
imgRGB = io.imread(image_path)
# convert from RGB to CMY
imgCMY = my_rgb2cmy(imgRGB)
# back conversion function is the same as the conversion function!
imgRGB_fromCMY = my_rgb2cmy(imgCMY)
# display RGB and HSV images
plt.figure(figsize=(15,5))
plt.subplot(131), plt.imshow(imgRGB)
plt.title(‘Input RGB Image’)
plt.xticks([]), plt.yticks([])
plt.subplot(132), plt.imshow(imgCMY)
plt.title(‘RGB Image Converted CMY’)
plt.xticks([]), plt.yticks([])
plt.subplot(133), plt.imshow(imgRGB_fromCMY)
plt.title(‘CMY Image Converted Back to RGB’)
plt.xticks([]), plt.yticks([])
plt.show()
plt.close()

# ### **Part 3:** Conversion between RGB and HSV Color Spaces
#
# In[72]:

# my function to convert from RGB to HSV
def my_RGB2HSV(imgRGB):

N, M, D = imgRGB.shape

assert N > 0
assert M > 0
assert D == 3

imgHSV = np.zeros((N,M,3), dtype=float)
imgHue = np.zeros((N,M), dtype=’uint8′)
imgSat = np.zeros((N,M), dtype=’uint8′)
imgVal = np.zeros((N,M), dtype=’uint8′)
for n in range(N):
for m in range(M):

# get pixel color
val = imgRGB[n,m]
R = int(val[0])
G = int(val[1])
B = int(val[2])
# obtain Value
V = max(R,G,B)

# find minimum value
Min_val = min(R,G,B)

# find difference
Diff_val = V – Min_val

# obtain Saturation
if V == 0:
S = 0.0
else:
S = float(V-Min_val)/float(V)

# obtain Hue
if Diff_val == 0:
H = 0.0
else:
if V == R:
H = 60.0 + 60.0*float(G-B)/float(Diff_val)
elif V == G:
H = 180.0 + 60.0*float(B-R)/float(Diff_val)
else:
H = 300.0 + 60.0*float(R-G)/float(Diff_val)

# set HSV image value
imgHSV[n,m] = np.array([H,S,float(V)])

# hue image
imgHue[n,m] = int(round(H,0))
# saturation image
imgSat[n,m] = int(round(S*100,0))
# value image
imgVal[n,m] = V

return imgHSV, imgHue, imgSat, imgVal
# end of my function

# In[73]:

# 3.1 Read an image and convert to HSV
# set image folder
image_folder = r’/Users/tanjuerdem/EE421521/images’
# read input image
image_file = r’/peppers ‘
image_path = image_folder + image_file
imgRGB = io.imread(image_path)
# convert to HSV
imgHSV, imgHue, imgSat, imgVal = my_RGB2HSV(imgRGB)
# calculate the histogram of HSV bands
hist_H, bins = exposure.histogram(imgHue, source_range=’dtype’)
hist_S, bins = exposure.histogram(imgSat, source_range=’dtype’)
hist_V, bins = exposure.histogram(imgVal, source_range=’dtype’)
# original image and histrogram plot of Hue
plt.imshow(imgRGB)
plt.title(‘Original RGB Image’)
plt.show()
# display HSV histogram data
plt.figure(figsize=(15,5))
plt.subplot(131), plt.plot(hist_H, color = ‘b’)
plt.xlim([0,360])
plt.title(‘Histogram of Hue’)
plt.subplot(132), plt.plot(hist_S, color = ‘b’)
plt.xlim([0,100])
plt.title(‘Histogram of Saturation’)
plt.subplot(133), plt.plot(hist_V, color = ‘b’)
plt.xlim([0,256])
plt.title(‘Histogram of Value’)
plt.show()
plt.close()
# display HSV image
# auto-stretch to 0-255 range for display
plt.figure(figsize=(15,5))
plt.subplot(131), plt.imshow(imgHSV[:,:,0], cmap=’gray’)
plt.title(‘Hue’)
plt.subplot(132), plt.imshow(imgHSV[:,:,1], cmap=’gray’)
plt.title(‘Saturation’)
plt.subplot(133), plt.imshow(imgHSV[:,:,2], cmap=’gray’)
plt.title(‘Value’)
plt.show()
plt.close()

# In[74]:

# my function to convert from HSV to RGB
def my_HSV2RGB(imgHSV):

N, M, D = imgHSV.shape

assert N > 0
assert M > 0
assert D == 3
imgRGB = np.zeros((N,M,3), dtype=’uint8′)

for n in range(N):
for m in range(M):

# get pixel HSV value
val = imgHSV[n,m]
H = val[0]
S = val[1]
V = val[2]

if V != 0.0:
Min_val = V – S*V
else:
Min_val = 0.0

if H >= 0.0 and H < 120.0: R = V if H < 60.0: G = Min_val B = G - (H-60.0)*(V-Min_val)/60.0 else: B = Min_val G = B + (H-60.0)*(V-Min_val)/60.0 elif H >= 120.0 and H < 240.0: G = V if H < 180.0: B = Min_val R = B - (H-180.0)*(V-Min_val)/60.0 else: R = Min_val B = R + (H-180.0)*(V-Min_val)/60.0 else: B = V if H < 300.0: R = Min_val G = R - (H-300.0)*(V-Min_val)/60.0 else: G = Min_val R = G + (H-300.0)*(V-Min_val)/60.0 # integer values R_int = min(max(int(round(R,0)),0),255) G_int = min(max(int(round(G,0)),0),255) B_int = min(max(int(round(B,0)),0),255) # set RGB image value imgRGB[n,m] = np.array([R_int,G_int,B_int]) return imgRGB # end of my function # In[75]: # 3.2 Convert HSV space back to RGB space imgRGB_back = my_HSV2RGB(imgHSV) # display orginal and HSV-then-RGB-back converted image plt.figure(figsize=(10,5)) plt.subplot(121), plt.imshow(imgRGB) plt.title('Original Image') plt.subplot(122), plt.imshow(imgRGB_back) plt.title('HSV-then-RGB Converted Image') plt.show() plt.close() # In[76]: # 3.3 The Effect of Setting Saturation to 1 imgHSV_S1 = imgHSV.copy() imgHSV_S1[:,:,1] = 1.0 imgRGB_S1 = my_HSV2RGB(imgHSV_S1) # display orginal and HSV converted image plt.figure(figsize=(10,5)) plt.subplot(121), plt.imshow(imgRGB) plt.title('Original Image') plt.subplot(122), plt.imshow(imgRGB_S1) plt.title('HSV Saturation Set to 1') plt.show() plt.close() # In[77]: # 3.4 The Effect of Setting Value to 255 imgHSV_V255 = imgHSV.copy() imgHSV_V255[:,:,2] = 255.0 imgRGB_V255 = my_HSV2RGB(imgHSV_V255) # display orginal and HSV converted image plt.figure(figsize=(10,5)) plt.subplot(121), plt.imshow(imgRGB) plt.title('Original Image') plt.subplot(122), plt.imshow(imgRGB_V255) plt.title('HSV Value Set to 255') plt.show() plt.close() # In[78]: # 3.5 The Effect of Setting Value to 255 & Saturation to 1 imgHSV_S1_V255 = imgHSV.copy() imgHSV_S1_V255[:,:,1] = 1.0 imgHSV_S1_V255[:,:,2] = 255.0 imgRGB_S1_V255 = my_HSV2RGB(imgHSV_S1_V255) # compare all results plt.figure(figsize=(10,10)) plt.subplot(221), plt.imshow(imgRGB) plt.title('Original Image') plt.subplot(222), plt.imshow(imgRGB_S1) plt.title('HSV Saturation Set to 1') plt.subplot(223), plt.imshow(imgRGB_V255) plt.title('HSV Value Set to 255') plt.subplot(224), plt.imshow(imgRGB_S1_V255) plt.title('HSV Saturation Set to 1 & Value Set to 255') plt.show() plt.close() # ### **Part 4:** Conversion between RGB and YUV Color Spaces # # In[79]: # my function to convert from RGB to YUV def my_RGB2YUV(imgRGB): N, M, D = imgRGB.shape assert N > 0
assert M > 0
assert D == 3

# RGB to YUV conversion matrix
rgb2yuv = np.array([[0.299, 0.587, 0.114 ],
[-0.168736, -0.331264, 0.5 ],
[ 0.5, -0.418688, -0.081312]])

# convert from RGB to YUV
imgYUV = np.dot(imgRGB, np.transpose(rgb2yuv))

# add 128 to U and V bands
imgYUV[:,:,1] += 128.0
imgYUV[:,:,2] += 128.0

return imgYUV
# end of my function

# In[80]:

# 4.1 Conversion from RGB to YUV
# set image folder
image_folder_new = r’/Users/tanjuerdem/EE421521/images’
# read input image
image_file_new = r’/peppers ‘ #lena, fruits
image_path_new = image_folder_new + image_file_new
imgRGB_new = io.imread(image_path_new)
imgYUV = my_RGB2YUV(imgRGB_new)
# display original & YUV image
# auto-stretch to 0-255 range for display
plt.figure(figsize=(10,10))
plt.subplot(221), plt.imshow(imgRGB_new)
plt.title(‘Input RGB Image’)
plt.subplot(222), plt.imshow(imgYUV[:,:,0], cmap=’gray’, vmin=0, vmax=255)
plt.title(‘Luminance (Y)’)
plt.subplot(223), plt.imshow(imgYUV[:,:,1], cmap=’gray’, vmin=0, vmax=255)
plt.title(‘Chrominance-B (U)’)
plt.subplot(224), plt.imshow(imgYUV[:,:,2], cmap=’gray’, vmin=0, vmax=255)
plt.title(‘Chrominance-R (V)’)
plt.show()
plt.close()

# In[81]:

# my function to convert from YUV to RGB
def my_YUV2RGB(imgYUV):

N, M, D = imgYUV.shape

assert N > 0
assert M > 0
assert D == 3

# YUV to RGB conversion matrix
yuv2rgb = np.array([[1.0, 0.0, 1.402 ],
[ 1.0, -0.344136, -0.714136],
[ 1.0, 1.772, 0.0 ]])

# subtract 128 from U and V bands
imgYUV_new = imgYUV.copy()
imgYUV_new[:,:,1] -= 128.0
imgYUV_new[:,:,2] -= 128.0
# convert from YUV to RGB
imgRGB = np.dot(imgYUV_new, np.transpose(yuv2rgb))

imgRGB = np.round(imgRGB, 0)
imgRGB = np.minimum(imgRGB, 255)
imgRGB = np.maximum(imgRGB, 0)
imgRGB = imgRGB.astype(‘uint8’)

return imgRGB
# end of my function

# In[82]:

# 4.2 Conversion from YUV back to RGB
imgRGB_fromYUV = my_YUV2RGB(imgYUV)
# display RGB image converted back from YUV
plt.figure(figsize=(10,5))
plt.subplot(121), plt.imshow(imgRGB_new)
plt.title(‘Original Image’)
plt.subplot(122), plt.imshow(imgRGB_fromYUV)
plt.title(‘RGB Image Converted Back from YUV’)
plt.show()
plt.close()

# In[83]:

# display RGB & YUV color bands together
x_R = imgRGB_new[:,:,0]
x_G = imgRGB_new[:,:,1]
x_B = imgRGB_new[:,:,2]
x_Y = imgYUV[:,:,0]
x_U = imgYUV[:,:,1]
x_V = imgYUV[:,:,2]
# apply no stretching
plt.figure(figsize=(15,10))
plt.subplot(231), plt.imshow(x_R, cmap=’gray’, vmin=0, vmax=255)
plt.xticks([]), plt.yticks([]), plt.title(‘R’)
plt.subplot(232), plt.imshow(x_G, cmap=’gray’, vmin=0, vmax=255)
plt.xticks([]), plt.yticks([]), plt.title(‘G’)
plt.subplot(233), plt.imshow(x_B, cmap=’gray’, vmin=0, vmax=255)
plt.xticks([]), plt.yticks([]), plt.title(‘B’)
plt.subplot(234), plt.imshow(x_Y, cmap=’gray’, vmin=0, vmax=255)
plt.xticks([]), plt.yticks([]), plt.title(‘Luminance (Y)’)
plt.subplot(235), plt.imshow(x_U, cmap=’gray’, vmin=0, vmax=255)
plt.xticks([]), plt.yticks([]), plt.title(‘Chrominance-B (U)’)
plt.subplot(236), plt.imshow(x_V, cmap=’gray’, vmin=0, vmax=255)
plt.xticks([]), plt.yticks([]), plt.title(‘Chrominance-R (V)’)
plt.show()
plt.close()

# ### **Part 5:** Fourier Analysis of YUV Bands
#
# In[84]:

# my function to multiply an image with (-1)^(i+j)
# so that the origin of its DFT is displayed at the center
def my_img_shift(img):

height, width = img.shape
assert height%2 == 0 and width%2 == 0

img_shift = img.copy() + 0.0
for i in range(height):
for j in range(width):
if (i+j)%2 == 1:
img_shift[i,j] *= -1.0

return img_shift
# end of function

# In[85]:

# my function to obtain a display-friendly version of 2-D DFT of an image
# (used for displaying DFT magnitude, DFT real part, and DFT imaginary part)
def my_log_display(X_orig):

X = X_orig.copy()

shapeX = X.shape
X = X.reshape(-1)
for i in range(X.size):
if X[i] < 0: # this is needed for real and imaginary parts X[i] = - np.log(1-X[i]) else: # magnitude is always non-negative X[i] = np.log(1+X[i]) return X.reshape(shapeX) # end of function # In[86]: # 5.1 Calculate and plot the DFT of the YUV bands height, width, dim = imgYUV.shape # multiply the image with (-1)^(i+j) before DFT so that DFT origin is displayed at the center x_Y_shift = my_img_shift(x_Y) x_U_shift = my_img_shift(x_U) x_V_shift = my_img_shift(x_V) # calculate the 2-D DFT via SciPy's 2-D DFT function X_Y_shift = ft.fft2(x_Y_shift) X_U_shift = ft.fft2(x_U_shift) X_V_shift = ft.fft2(x_V_shift) # DFT magnitude X_Y_mag = np.abs(X_Y_shift) X_U_mag = np.abs(X_U_shift) X_V_mag = np.abs(X_V_shift) # get a display friendly version for magnitude X_Y_mag_pr = my_log_display(X_Y_mag) X_U_mag_pr = my_log_display(X_U_mag) X_V_mag_pr = my_log_display(X_V_mag) # extract the center line X_Y_center = X_Y_mag_pr[height//2,:] X_U_center = X_U_mag_pr[height//2,:] X_V_center = X_V_mag_pr[height//2,:] # smooth the center line smt_size = 5 smt_filter = np.ones((smt_size,)) smt_filter /= smt_filter.sum() X_Y_center_smooth = signal.convolve(X_Y_center, smt_filter, 'same') X_U_center_smooth = signal.convolve(X_U_center, smt_filter, 'same') X_V_center_smooth = signal.convolve(X_V_center, smt_filter, 'same') plt.figure(figsize=(15,10)) plt.subplot(231), plt.imshow(X_Y_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude Y') plt.subplot(232), plt.imshow(X_U_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude U') plt.subplot(233), plt.imshow(X_V_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude V') plt.subplot(234), plt.ylim((8, 15)), plt.plot(X_Y_center_smooth) plt.title('Horizontal Cross Section Y') plt.subplot(235), plt.ylim((8, 15)), plt.plot(X_U_center_smooth) plt.title('Horizontal Cross Section U') plt.subplot(236), plt.ylim((8, 15)), plt.plot(X_V_center_smooth) plt.title('Horizontal Cross Section V') plt.show() plt.close() # In[87]: # 5.2 Calculate and plot the DFT of the RGB bands height, width, dim = imgRGB_new.shape # multiply the image with (-1)^(i+j) before DFT so that DFT origin is displayed at the center x_R_shift = my_img_shift(x_R) x_G_shift = my_img_shift(x_G) x_B_shift = my_img_shift(x_B) # calculate the 2-D DFT via SciPy's 2-D DFT function X_R_shift = ft.fft2(x_R_shift) X_G_shift = ft.fft2(x_G_shift) X_B_shift = ft.fft2(x_B_shift) # DFT magnitude X_R_mag = np.abs(X_R_shift) X_G_mag = np.abs(X_G_shift) X_B_mag = np.abs(X_B_shift) # get a display friendly version for magnitude X_R_mag_pr = my_log_display(X_R_mag) X_G_mag_pr = my_log_display(X_G_mag) X_B_mag_pr = my_log_display(X_B_mag) # extract the center line X_R_center = X_R_mag_pr[height//2,:] X_G_center = X_G_mag_pr[height//2,:] X_B_center = X_B_mag_pr[height//2,:] # smooth the center line smt_size = 5 smt_filter = np.ones((smt_size,)) smt_filter /= smt_filter.sum() X_R_center_smooth = signal.convolve(X_R_center, smt_filter, 'same') X_G_center_smooth = signal.convolve(X_G_center, smt_filter, 'same') X_B_center_smooth = signal.convolve(X_B_center, smt_filter, 'same') plt.figure(figsize=(15,10)) plt.subplot(231), plt.imshow(X_R_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude R') plt.subplot(232), plt.imshow(X_G_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude G') plt.subplot(233), plt.imshow(X_B_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude B') plt.subplot(234), plt.ylim((8, 15)), plt.plot(X_R_center_smooth) plt.title('Horizontal Cross Section R') plt.subplot(235), plt.ylim((8, 15)), plt.plot(X_G_center_smooth) plt.title('Horizontal Cross Section G') plt.subplot(236), plt.ylim((8, 15)), plt.plot(X_B_center_smooth) plt.title('Horizontal Cross Section B') plt.show() plt.close() # In[88]: # calculate the standard deviation of pixel values in an image band def my_std(img): # single band image only assert img.ndim == 2 # calculate the average value ave_val = img.sum()/float(img.size) # calculate and return the standard deviation return math.sqrt(((img-ave_val)**2).sum() / img.size) # end of function # In[89]: # 5.5 Compare the Fourier bandwidths and standard deviations of RGB and YUV bands plt.figure(figsize=(15,10)) plt.subplot(231), plt.imshow(X_R_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude R (std = {:.2f})'.format(my_std(x_R))) plt.subplot(232), plt.imshow(X_G_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude G (std = {:.2f})'.format(my_std(x_G))) plt.subplot(233), plt.imshow(X_B_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude B (std = {:.2f})'.format(my_std(x_B))) plt.subplot(234), plt.imshow(X_Y_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude Y (std = {:.2f})'.format(my_std(x_Y))) plt.subplot(235), plt.imshow(X_U_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude U (std = {:.2f})'.format(my_std(x_U))) plt.subplot(236), plt.imshow(X_V_mag_pr, cmap='gray', vmin=8, vmax=15) plt.title('DFT Magnitude V (std = {:.2f})'.format(my_std(x_V))) plt.show() plt.close() # In[ ]:

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy