Neural System

Week 5 Exercise – Neural Network

In this exercise, you will use the R Studio interface to run the Neural Network method.  You will run the method with different parameters and will interpret the results, including the classification accuracy.
Exercise Instructions

Don't use plagiarized sources. Get Your Custom Essay on
Neural System
Just from $13/Page
Order Essay

Step 1 – Complete an exercise in the Word document on diabetes dataset.  Get familiar with the neuralnet method and with available input parameters.  

Your results might be slightly different depending on the operating system and R Studio version.  You do not need to write a report for this part.

Part 2 –  Run an exercise on a column dataset and write a report on your findings and results interpretation in your own words. The report needs to cover the exercise key points below in order.

Download the CSV file to your hard drive. Click on a dataset description URL and read the dataset description. Note: I changed normal to 0 abnormal to 1

http://archive.ics.uci.edu/ml/datasets/Vertebral+Column#              

Exercise Key points

1. Introduction

· Which variable is the dependent variable in the column dataset?

· Which variables are the independent variables in the column dataset?

· What do you expect the neuralnet method to accomplish for the column data?

2. Data pre-processing – Load the data into R studio, and discuss the data preprocessing steps you run before running the neuralnet method. For each step, include the command you ran, the output, and an explanation of what the step accomplishes.

3.  Divide the data into training and test set, and explain why we do that. Include the commands and explanation in the report. Remember to set seed.

4. Running the method on a training set

· Run the neural net function to build the network, and store the result in a variable nn.  Include the command in the report, and discuss the input parameters you used.

· Enter nn at the prompt and hit enter. Interpret the output.  Include the command, the output, and output interpretation in the report.

· Run the command nn$result.matrix. Interpret the output.  Include the command, the output, and output interpretation in the report.

· Run the command nn$net.result[[1]][1:10] to preview the first 10 predicted values. What do the values mean?  Include the command, the output, and output interpretation in the report.

5. Network Visualization – Run the plot(nn) command to visualize the network, and interpret the model.  If the plot is hard to read, you may need to click on zoom button in the plot panel to view the model in a new window.  Included the command you ran, the plot, and plot interpretation in the report.

6. Confusion Matrix for the training data

· Run the following commands to extract and store the predicted values in a variable mypredict.  Round the predictions to the whole number. Display the first 10 values of mypredict.  Explain what the values mean.  Include the commands, the output, and output interpretation in the report.

mypredict<-compute(nn, nn$covariate)$net.result mypredict<-apply(mypredict, c(1), round)

mypredict[1:10]

· Run the table command to build the confusion matrix.  Explain what the matrix shows.  Include the command you ran, the matrix, and matrix interpretation in the report.

7. Use the test data to evaluate the model.

· Use the test set to run the compute command, and store the predicted values in the variable testpred. Run the second command to run round the predictions. Include both commands in the report.

· Run the table command to build the confusion matrix for the test data.  Explain what the matrix shows.  Include the command you ran, the matrix, and matrix interpretation in the report.

· Compare the classification accuracy for the test data with the classification accuracy for the training data.

8. Different Input parameters.

· Repeat the steps 4-7 above with different input parameters.  You may change the number of hidden layers, and/or the number of nodes in the hidden layer, and/or you may use a subset of independent variables.  Include the command your ran, the output, and the output interpretation in the report.

· Compare the results of the two runs.  Which run has a higher classification accuracy and why?

9. Summary

· What differences between decision tree classification and neural network classification methods did you observe?

· Which part of this exercise did you find the most challenging, and what approach did you take to resolve the challenge?

Exercise Deliverables

Submit the following files in the Exercise 6 Assignment folder.

· The report addressing the key points above

· An R script with commands your ran and brief comments on the commands purpose

Exercise Grading

· This exercise is worth 2% of the course grade.  

· All questions must be answered in order and in your own words.  

· Grammatical and spelling errors may affect the assignment grade.

*** Start working on this exercise early in a week to allow sufficient time for debugging any potential R errors. ***  

This exercise may take 4-6 hours to complete. This estimate is a little higher than last week estimate because of the commands complexity. Post your question about this exercise in assignment 5 questions and answers discussion topic.

#Neural network method on diabetis data
#Run once to install the packaglibrary
# install.packages(“neuralnet”)
library(“neuralnet”)
#Read the diabetes data file. Change the file location.
setwd(“F:/Datasets”)
diabetes<-read.csv(file="diabetes.csv", head=TRUE, sep=",") #Preview the first 6 rows head(diabetes) #Run the summary command summary(diabetes) #scale the first 8 variables diabetes[1:8]<-scale(diabetes[1:8]) #make sure that the result is reproducible set.seed(12345) #split the data into a training and test set ind <- sample(2, nrow(diabetes), replace = TRUE, prob = c(0.7, 0.3)) train.data <- diabetes[ind == 1, ] test.data <- diabetes[ind == 2, ] #Build the model. If you receive a warning, rerun the command. nn<-neuralnet(formula = class~preg+plas+pres+skin+insu+mass+pedi+age, data = train.data, hidden=2, err.fct="ce", linear.output = FALSE) #names command displays the available neural network properties names(nn) #Run the commands to display the network properties nn$call # the command we ran to generate the model nn$response[1:10] # actual values of the dependent variable for first 10 records nn$covariate [1:12,] # input variables that were used to build the model for first 12 records nn$model.list # list dependent and independent variables in the model nn$net.result[[1]][1:10] # display the first 10 predicted probabilities nn$weights # network weights after the last method iteration nn$startweights # weights on the first method iteration nn$result.matrix # number of trainings steps, the error, and the weights plot(nn) # plot the network #Model evaluation; Round the predicted probabilities mypredict<-compute(nn, nn$covariate)$net.result mypredict<-apply(mypredict, c(1), round) mypredict [1:10] # confusion matrix for the training set table(mypredict, train.data$class, dnn =c("Predicted", "Actual")) mean(mypredict==train.data$class) # confusion matrix for the test set testPred <- compute(nn, test.data[, 0:8])$net.result testPred<-apply(testPred, c(1), round) table(testPred, test.data$class, dnn =c("Predicted", "Actual")) mean(testPred==test.data$class)

.6

1

1

0

.6

0

8

0 0

.3

1

1

66 23

.1

7

0

0

7

.1

33 1

5

6

0 0

.6

1

0

3

50 32 88 31

8

26 1

0 0 0

0

2

7

3

1

8

5

0 0 0

32

54 1

4

0 0

.6

1

30 0

10

74 0 0

34 1

10

0 0

0

1

9

23

6

1

5

72 19

51 1

7

0 0 0 30

4

32 1

0

84

1

31 1

7

74 0 0

31 1

1

30 38 83

3

33 0

1

70 30 96

9

32 1

3

88 41

27 0

8

84 0 0

8

50 0

7

0 0

51

41 1

9

80 35 0 29

3

29 1

11

3

94 33

.6

0.254 51 1

10

70 26 115

41 1

7

0 0

43 1

1

66 15

0

13

19 110

57 0

5

92 0 0

7

38 0

5

75 26 0 36

60 0

3

76 36 245

28 1

3 88 58 11 54

22 0

6 92 92 0 0

28 0

10

78 31 0

2

45 0

4 103 60 33

24

33 0

11

76 0 0

35 0

9

76 37 0

46 1

2 90 68 42 0

27 1

4

72 47

1

3

64 25 70 34

26 0

7

84 0 0

6

37 0

7

92 18 0

5

48 0

9

110 24

54 1

7

64 0 0

4

40 0

0 180 66 39 0 42

25 1

1

56 0 0

4

29 0

2 71 70 27 0 28

22 0

7 103 66 32 0

31 1

7

0 0 0 0

24 0

1 103 80 11 82

1

22 0

1

50 15 36

6

26 0

5 88 66 21 23

30 0

8

90 34

7

58 1

7

66 42 342

42 0

1

50 10 0 23

8

21 0

7

68 39

0.254 41 1

0 100 88 60 110

31 0

0 146 82 0 0

44 0

0 105 64 41

22 0

2 84 0 0 0 0

21 0

8 133 72 0 0 32.9

39 1

5 44 62 0 0 25

7 36 0

2

58 34

24 0

7

66 0 0

42 1

5 99 74 27 0 29

32 0

0 109 88 30 0

38 1

2 109 92 0 0

5

54 0

1

66 13 38

25 0

4 146 85 27 100

27 0

2 100 66 20 90 32.9

28 1

5

64 35 140

26 0

13 126 90 0 0

42 1

4

86 20

23 0

1

75 30 0 32

22 0

1 0 48 20 0

22 0

7 62 78 0 0

41 0

5 95 72 33 0 37.7

27 0

0

0 0 0

0.27 26 1

2

66 22 0 25

24 0

3

44 13 0

0.14 22 0

2 74 0 0 0 0

22 0

7 83 78 26 71

36 0

0 101 65 28 0

22 0

5

0 0

7

37 1

2 110 74 29 125

27 0

13 106 72 54 0

45 0

2 100 68 25 71

26 0

15

70 32 110 37.1

43 1

1 107 68 19 0

24 0

1 80 55 0 0

21 0

4

80 15 176 32

34 0

7 81 78 40 48

42 0

4

72 0 0

60 1

2 142 82 18 64 24.7

21 0

6

72 27

40 0

2 92 62 28 0

24 0

1 71 48 18 76

22 0

6 93 50 30 64

23 0

1 122 90 51

31 1

1

72 0 0 39

33 1

1

60 0 0

22 0

0 125 96 0 0

21 0

1 81 72 18 40

3

24 0

2 85 65 0 0

27 0

1 126 56 29

28.7

21 0

1 96 122 0 0 22.4

27 0

4 144 58 28 140

37 0

3 83 58 31 18

25 0

0 95 85 25 36

24 1

3 171 72 33

24 1

8

62 26

34

46 1

1 89 76 34 37

23 0

4 76 62 0 0 34

25 0

7

54 32

30.5

39 1

4 146 92 0 0 31.2

61 1

5

74 0 0 34 0.22 38 1

5 78 48 0 0 33.7

25 0

4 97 60 23 0

0.443 22 0

4 99 76 15 51 23.2

21 0

0

76 56 100

25 1

6 111 64 39 0

0.26 24 0

2 107 74 30 100

23 0

5

80 0 0

69 0

0 113 76 0 0 33.3

23 1

1 88 30 42 99 55

26 1

3

70 30 135

30 0

1 118 58 36 94 33.3

23 0

1

88 24 145

40 1

0 105 84 0 0

62 1

4 173 70 14 168 29.7

33 1

9 122 56 0 0 33.3

33 1

3

64 37

34.5 0.356 30 1

8 84 74 31 0

39 0

2 96 68 13 49

7

26 0

2 125 60 20 140

31 0

0 100 70 26 50

21 0

0 93 60 25 92 28.7

22 0

0 129 80 0 0 31.2

29 0

5 105 72 29 325

9

28 0

3 128 78 0 0 21.1

55 0

5 106 82 30 0

38 0

2 108 52 26 63 32.5

22 0

10 108 66 0 0 32.4

42 1

4

62 31

32.8

23 0

0 102 75 23 0 0

21 0

9 57 80 37 0 32.8

41 0

2 106 64 35 119 30.5 1.4 34 0
5 147 78 0 0 33.7

8

65 0

2 90 70 17 0

22 0

1 136 74 50

37.4

24 0

4 114 65 0 0

2

37 0

9

86 28 155 34.3

42 1

1 153 82 42

7

23 0

8 188 78 0 0

43 1

7 152 88 44 0 50 0.337 36 1
2 99 52 15 94 24.6

7

21 0

1 109 56 21 135

23 0

2 88 74 19 53 29

22 0

17

72 41 114

47 1

4 151 90 38 0 29.7

36 0

7 102 74 40 105

45 0

0 114 80 34

0.

27 0

2 100 64 23 0 29.7

21 0

0 131 88 0 0 31.6

32 1

6

74 18 156

41 1

3

66 25 0 32.5

22 0

4 120 68 0 0 29.6

34 0

4 110 66 0 0

29 0

3 111 90 12 78

29 0

6 102 82 0 0 30.8 0.18 36 1
6 134 70 23

35.4

29 1

2 87 0 23 0 28.9

25 0

1 79 60 42 48

23 0

2 75 64 24 55 29.7 0.37 33 0
8 179 72 42 130

36 1

6 85 78 0 0 31.2

42 0

0 129 110 46 130

26 1

5

78 0 0 45 0.19 47 0

5 130 82 0 0 39.1

37 1

6 87 80 0 0 23.2

32 0

0 119 64 18 92

23 0

1 0 74 20 23

21 0

5 73 60 0 0 26.8 0.268 27 0
4 141 74 0 0 27.6

40 0

7

68 28 0

41 1

8

68 36 495 30.1

5

60 1

1 128 98 41 58 32

33 1

8 109 76 39 114 27.9 0.64 31 1
5 139 80 35 160 31.6 0.361 25 1
3 111 62 0 0

21 0

9 123 70 44 94

40 0

7 159 66 0 0

36 1

11 135 0 0 0

40 1

8 85 55 20 0 24.4

42 0

5 158 84 41

39.4

29 1

1 105 58 0 0

21 0

3 107 62 13 48

0.678 23 1

4 109 64 44 99

26 1

4 148 60 27 318

0.15 29 1

0 113 80 16 0 31

21 0

1 138 82 0 0

28 0

0 108 68 20 0 27.3

32 0

2 99 70 16 44 20.4

27 0

6 103 72 32

37.7 0.324 55 0

5 111 72 28 0

27 0

8 196 76 29

57 1

5 162 104 0 0 37.7

52 1

1 96 64 27 87 33.2

21 0

7

84 33 0

41 1

2 81 60 22 0 27.7 0.29 25 0
0 147 85 54 0

24 0

7 179 95 31 0 34.2

60 0

0 140 65 26 130

24 1

9 112 82 32 175 34.2 0.26 36 1
12 151 70 40

38 1

5 109 62 41 129

25 1

6 125 68 30 120 30

32 0

5 85 74 22 0 29

32 1

5 112 66 0 0

0.261 41 1

0

60 29

34.6

21 1

2 158 90 0 0 31.6

66 1

7 119 0 0 0 25.2

37 0

7 142 60 33 190

61 0

1 100 66 15 56

6

26 0

1 87 78 27 32 34.6

22 0

0 101 76 0 0

26 0

3 162 52 38 0 37.2

24 1

4

70 39

31 0

0 117 80 31 53

24 0

4 142 86 0 0 44

22 1

6 134 80 37

46 1

1 79 80 25 37 25.4 0.583 22 0
4 122 68 0 0 35

29 0

3 74 68 28 45 29.7

23 0

4 171 72 0 0

26 1

7 181 84 21 192 35.9

51 1

0 179 90 27 0

23 1

9 164 84 21 0 30.8

32 1

0 104 76 0 0

27 0

1 91 64 24 0

0.192 21 0

4 91 70 32 88 33.1

22 0

3 139 54 0 0

22 1

6 119 50 22 176 27.1

33 1

2 146 76 35 194 38.2

29 0

9 184 85 15 0 30

49 1

10 122 68 0 0 31.2 0.258 41 0
0 165 90 33

52.3

23 0

9 124 70 33 402 35.4

34 0

1 111 86 19 0 30.1

23 0

9 106 52 0 0 31.2 0.38 42 0
2 129 84 0 0 28

27 0

2 90 80 14 55 24.4

24 0

0 86 68 32 0 35.8 0.238 25 0
12 92 62 7 258 27.6

44 1

1 113 64 35 0 33.6 0.543 21 1
3 111 56 39 0 30.1

30 0

2 114 68 22 0 28.7

25 0

1

50 16 375

24 0

11 155 76 28 150 33.3

51 1

3

68 15 130 30.9 0.299 34 0

3 141 0 0 0 30 0.761 27 1
4 95 70 32 0

24 0

3 142 80 15 0 32.4 0.2 63 0
4 123 62 0 0 32

35 1

5 96 74 18 67 33.6

43 0

0 138 0 0 0

25 1

2 128 64 42 0 40

24 0

0 102 52 0 0

21 0

2 146 0 0 0

0.24 28 1

10 101 86 37 0

38 1

2 108 62 32 56 25.2

21 0

3 122 78 0 0 23 0.254 40 0
1 71 78 50 45 33.2

21 0

13 106 70 0 0 34.2

52 0

2 100 70 52 57 40.5

25 0

7 106 60 24 0 26.5

29 1

0 104 64 23

23 0

5 114 74 0 0

57 0

2 108 62 10 278

1

22 0

0 146 70 0 0

0.334 28 1

10 129 76 28 122 35.9 0.28 39 0
7 133 88 15 155 32.4 0.262 37 0
7

86 0 0 30.4

5

47 1

2 108 80 0 0 27

52 1

7 136 74 26 135 26

51 0

5 155 84 44

34 0

1 119 86 39 220 45.6

29 1

4 96 56 17 49

26 0

5 108 72 43 75

33 0

0 78 88 29 40 36.9

21 0

0 107 62 30 74 36.6

25 1

2 128 78 37

43.3 1.224 31 1

1 128 48 45 194 40.5

24 1

0 161 50 0 0 21.9 0.254 65 0
6 151 62 31 120 35.5

28 0

2 146 70 38

28 0.337 29 1

0 126 84 29

0.52 24 0

14 100 78 25 184 36.6

46 1

8 112 72 0 0 23.6 0.84 58 0
0 167 0 0 0

30 1

2 144 58 33 135 31.6 0.422 25 1
5 77 82 41 42 35.8

35 0

5 115 98 0 0

0.209 28 1

3 150 76 0 0 21 0.207 37 0
2 120 76 37 105

29 0

10 161 68 23 132

47 1

0 137 68 14 148 24.8 0.143 21 0
0 128 68 19 180 30.5

25 1

2 124 68 28 205 32.9

30 1

6 80 66 30 0

41 0

0 106 70 37 148 39.4 0.605 22 0
2 155 74 17 96 26.6

27 1

3 113 50 10 85 29.5

25 0

7 109 80 31 0 35.9

43 1

2 112 68 22 94 34.1

26 0

3 99 80 11 64

0.284 30 0

3 182 74 0 0 30.5

29 1

3 115 66 39 140

0.15 28 0

6 194 78 0 0

59 1

4 129 60 12 231 27.5

31 0

3 112 74 30 0 31.6

25 1

0 124 70 20 0 27.4 0.254 36 1
13 152 90 33 29 26.8

1

43 1

2 112 75 32 0 35.7

21 0

1

72 21 168 25.6

24 0

1 122 64 32 156 35.1 0.692 30 1
10 179 70 0 0 35.1 0.2 37 0
2 102 86 36 120

23 1

6 105 70 32 68 30.8

37 0

8 118 72 19 0

46 0

2 87 58 16 52 32.7

25 0

1 180 0 0 0 43.3 0.282 41 1
12 106 80 0 0 23.6 0.137 44 0
1 95 60 18 58 23.9 0.26 22 0
0 165 76 43 255 47.9 0.259 26 0
0 117 0 0 0 33.8

44 0

5 115 76 0 0 31.2

44 1

9 152 78 34 171 34.2

33 1

7 178 84 0 0

41 1

1 130 70 13 105 25.9

22 0

1 95 74 21 73 25.9

36 0

1 0 68 35 0 32

22 0

5 122 86 0 0 34.7 0.29 33 0
8 95 72 0 0

57 0

8 126 88 36 108 38.5

49 0

1 139 46 19 83 28.7 0.654 22 0
3 116 0 0 0 23.5 0.187 23 0
3 99 62 19 74

26 0

5 0 80 32 0 41

37 1

4 92 80 0 0

0.237 29 0

4 137 84 0 0 31.2

30 0

3 61 82 28 0

46 0

1 90 62 12 43

0.58 24 0

3 90 78 0 0 42.7

21 0

9 165 88 0 0 30.4

49 1

1 125 50 40 167 33.3

28 1

13 129 0 30 0 39.9

44 1

12 88 74 40 54 35.3

48 0

1 196 76 36 249

0.875 29 1

5 189 64 33 325 31.2 0.583 29 1
5 158 70 0 0

0.207 63 0

5 103 108 37 0

0.305 65 0

4 146 78 0 0 38.5 0.52 67 1
4 147 74 25 293 34.9

30 0

5 99 54 28 83 34

30 0

6 124 72 0 0 27.6 0.368 29 1
0 101 64 17 0 21 0.252 21 0
3 81 86 16 66 27.5

22 0

1 133 102 28 140 32.8

45 1

3 173 82 48

25 1

0 118 64 23 89 0

21 0

0 84 64 22 66 35.8

21 0

2 105 58 40 94 34.9

25 0

2 122 52 43 158

28 0

12 140 82 43 325 39.2

58 1

0 98 82 15 84 25.2 0.299 22 0
1 87 60 37 75 37.2

22 0

4 156 75 0 0

0.238 32 1

0 93 100 39 72 43.4

35 0

1 107 72 30 82 30.8

24 0

0 105 68 22 0 20 0.236 22 0
1 109 60 8 182 25.4

21 0

1 90 62 18 59 25.1

25 0

1 125 70 24 110 24.3

25 0

1 119 54 13 50

24 0

5 116 74 29 0 32.3 0.66 35 1
8 105 100 36 0 43.3

45 1

5 144 82 26 285 32 0.452 58 1
3 100 68 23 81 31.6

28 0

1 100 66 29 196 32

42 0

5 166 76 0 0

0.34 27 1

1 131 64 14

0.389 21 0

4 116 72 12 87

37 0

4 158 78 0 0 32.9

31 1

2 127 58 24

27.7 1.6 25 0

3 96 56 34 115 24.7

39 0

0 131 66 40 0 34.3

22 1

3 82 70 0 0 21.1 0.389 25 0
3 193 70 31 0 34.9

25 1

4 95 64 0 0 32

31 1

6 137 61 0 0 24.2 0.151 55 0
5 136 84 41 88 35 0.286 35 1
9 72 78 25 0 31.6 0.28 38 0
5 168 64 0 0 32.9

41 1

2 123 48 32 165

0.52 26 0

4 115 72 0 0 28.9

46 1

0 101 62 0 0 21.9 0.336 25 0
8 197 74 0 0 25.9

39 1

1

68 49

28 1

6 102 90 39 0 35.7

28 0

1 112 72 30 176 34.4 0.528 25 0
1 143 84 23

42.4

22 0

1 143 74 22 61 26.2 0.256 21 0
0 138 60 35 167 34.6

21 1

3 173 84 33

35.7 0.258 22 1

1 97 68 21 0 27.2

22 0

4 144 82 32 0 38.5

37 1

1 83 68 0 0

27 0

3 129 64 29 115

28 1

1 119 88 41 170

26 0

2 94 68 18 76 26

21 0

0 102 64 46 78 40.6 0.496 21 0
2 115 64 22 0 30.8

21 0

8 151 78 32 210 42.9

36 1

4 184 78 39

37

31 1

0 94 0 0 0 0 0.256 25 0
1 181 64 30 180 34.1

38 1

0 135 94 46 145 40.6 0.284 26 0
1 95 82 25 180 35

43 1

2 99 0 0 0 22.2

23 0

3 89 74 16 85 30.4

38 0

1 80 74 11 60 30 0.527 22 0
2 139 75 0 0 25.6

29 0

1 90 68 8 0

36 0

0 141 0 0 0 42.4 0.205 29 1
12 140 85 33 0 37.4 0.244 41 0
5 147 75 0 0 29.9 0.434 28 0
1 97 70 15 0 18.2

21 0

6 107 88 0 0 36.8

31 0

0 189 104 25 0 34.3

41 1

2 83 66 23 50

22 0

4 117 64 27 120 33.2 0.23 24 0
8 108 70 0 0 30.5

33 1

4 117 62 12 0 29.7 0.38 30 1
0 180 78 63 14

25 1

1 100 72 12 70 25.3

28 0

0 95 80 45 92 36.5 0.33 26 0
0 104 64 37 64 33.6 0.51 22 1
0 120 74 18 63 30.5

26 0

1 82 64 13 95

23 0

2 134 70 0 0 28.9 0.542 23 1
0 91 68 32 210 39.9

25 0

2 119 0 0 0 19.6

72 0

2 100 54 28 105 37.8

24 0

14 175 62 30 0 33.6

38 1

1 135 54 0 0

0.687 62 0

5 86 68 28 71

24 0

10 148 84 48 237

51 1

9 134 74 33 60 25.9 0.46 81 0
9 120 72 22 56 20.8

48 0

1 71 62 0 0 21.8

26 0

8 74 70 40 49 35.3

39 0

5 88 78 30 0 27.6 0.258 37 0
10 115 98 0 0 24

34 0

0 124 56 13 105 21.8 0.452 21 0
0 74 52 10 36 27.8

22 0

0 97 64 36 100 36.8 0.6 25 0
8 120 0 0 0 30

38 1

6 154 78 41 140

27 0

1 144 82 40 0

28 0

0 137 70 38 0 33.2

22 0

0 119 66 27 0

0.259 22 0

7 136 90 0 0 29.9 0.21 50 0
4 114 64 0 0 28.9

24 0

0 137 84 27 0 27.3

59 0

2 105 80 45 191 33.7

29 1

7 114 76 17 110 23.8

31 0

8 126 74 38 75 25.9

39 0

4 132 86 31 0 28

63 0

3 158 70 30 328 35.5

35 1

0 123 88 37 0

0.197 29 0

4 85 58 22 49 27.8 0.306 28 0
0 84 82 31 125 38.2 0.233 23 0
0 145 0 0 0 44.2 0.63 31 1
0 135 68 42

24 1

1 139 62 41

21 0

0 173 78 32

58 0

4 99 72 17 0 25.6 0.294 28 0
8 194 80 0 0 26.1 0.551 67 0
2 83 65 28 66 36.8

24 0

2 89 90 30 0

42 0

4 99 68 38 0 32.8

33 0

4 125 70 18 122 28.9

45 1

3 80 0 0 0 0

22 0

6 166 74 0 0 26.6 0.304 66 0
5 110 68 0 0 26 0.292 30 0
2 81 72 15 76 30.1

25 0

7

70 33 145 25.1

55 1

6 154 74 32 193 29.3 0.839 39 0
2 117 90 19 71 25.2 0.313 21 0
3 84 72 32 0 37.2

28 0

6 0 68 41 0 39 0.727 41 1
7 94 64 25 79 33.3

41 0

3 96 78 39 0

0.238 40 0

10 75 82 0 0 33.3 0.263 38 0
0 180 90 26 90 36.5

35 1

1 130 60 23 170 28.6 0.692 21 0
2 84 50 23 76 30.4

21 0

8 120 78 0 0 25

64 0

12 84 72 31 0 29.7

46 1

0 139 62 17 210 22.1 0.207 21 0
9 91 68 0 0 24.2 0.2 58 0
2 91 62 0 0 27.3

22 0

3 99 54 19 86 25.6

24 0

3 163 70 18 105 31.6 0.268 28 1
9 145 88 34 165

53 1

7 125 86 0 0 37.6 0.304 51 0
13 76 60 0 0 32.8 0.18 41 0
6 129 90 7 326 19.6 0.582 60 0
2 68 70 32 66 25 0.187 25 0
3 124 80 33 130 33.2 0.305 26 0
6 114 0 0 0 0

26 0

9 130 70 0 0 34.2 0.652 45 1
3 125 58 0 0 31.6 0.151 24 0
3 87 60 18 0 21.8 0.444 21 0
1 97 64 19 82 18.2 0.299 21 0
3 116 74 15 105

24 0

0 117 66 31 188 30.8

22 0

0 111 65 0 0 24.6 0.66 31 0
2 122 60 18 106 29.8

22 0

0 107 76 0 0 45.3 0.686 24 0
1 86 66 52 65 41.3

29 0

6 91 0 0 0 29.8

31 0

1 77 56 30 56 33.3

24 0

4 132 0 0 0 32.9 0.302 23 1
0 105 90 0 0 29.6 0.197 46 0
0 57 60 0 0

67 0

0 127 80 37 210 36.3

23 0

3 129 92 49 155

0.968 32 1

8 100 74 40 215 39.4

43 1

3 128 72 25 190 32.4

27 1

10 90 85 32 0 34.9

56 1

4 84 90 23 56 39.5

25 0

1 88 78 29 76 32 0.365 29 0
8 186 90 35 225 34.5

37 1

5 187 76 27 207 43.6

53 1

4 131 68 21 166 33.1 0.16 28 0
1 164 82 43 67 32.8

50 0

4 189 110 31 0

0.68 37 0

1 116 70 28 0 27.4 0.204 21 0
3 84 68 30 106 31.9

25 0

6 114 88 0 0 27.8 0.247 66 0
1 88 62 24 44 29.9 0.422 23 0
1 84 64 23 115 36.9 0.471 28 0
7 124 70 33 215 25.5 0.161 37 0
1 97 70 40 0 38.1

30 0

8 110 76 0 0 27.8 0.237 58 0
11 103 68 40 0 46.2 0.126 42 0
11 85 74 0 0 30.1 0.3 35 0
6 125 76 0 0 33.8

54 1

0 198 66 32

41.3

28 1

1 87 68 34 77 37.6

24 0

6 99 60 19 54

0.497 32 0

0 91 80 0 0 32.4

27 0

2 95 54 14 88 26.1

22 0

1 99 72 30 18

0.412 21 0

6 92 62 32 126 32 0.085 46 0
4 154 72 29 126

37 0

0 121 66 30 165 34.3 0.203 33 1
3 78 70 0 0 32.5 0.27 39 0
2 130 96 0 0 22.6 0.268 21 0
3 111 58 31 44 29.5 0.43 22 0
2 98 60 17 120 34.7

22 0

1 143 86 30

30.1

23 0

1 119 44 47 63 35.5 0.28 25 0
6 108 44 20 130 24

35 0

2 118 80 0 0 42.9

21 1

10 133 68 0 0 27

36 0

2 197 70 99 0 34.7

62 1

0 151 90 46 0 42.1

21 1

6 109 60 27 0 25

27 0

12 121 78 17 0 26.5 0.259 62 0
8 100 76 0 0 38.7 0.19 42 0
8 124 76 24

28.7 0.687 52 1

1 93 56 11 0 22.5

22 0

8 143 66 0 0 34.9 0.129 41 1
6 103 66 0 0 24.3

29 0

3 176 86 27 156 33.3

52 1

0 73 0 0 0 21.1

25 0

11 111 84 40 0 46.8

45 1

2 112 78 50 140 39.4

24 0

3 132 80 0 0 34.4

44 1

2 82 52 22 115 28.5

25 0

6 123 72 45 230 33.6 0.733 34 0
0 188 82 14

32

22 1

0 67 76 0 0 45.3

46 0

1 89 24 19 25 27.8 0.559 21 0
1 173 74 0 0 36.8 0.088 38 1
1 109 38 18 120 23.1 0.407 26 0
1 108 88 19 0 27.1 0.4 24 0
6 96 0 0 0 23.7 0.19 28 0
1 124 74 36 0 27.8 0.1 30 0
7 150 78 29 126 35.2 0.692 54 1
4 183 0 0 0 28.4 0.212 36 1
1 124 60 32 0 35.8 0.514 21 0
1 181 78 42 293 40

22 1

1 92 62 25 41

25 0

0 152 82 39 272 41.5 0.27 27 0
1 111 62 13 182 24

23 0

3 106 54 21 158 30.9 0.292 24 0
3 174 58 22 194 32.9

36 1

7 168 88 42 321 38.2 0.787 40 1
6 105 80 28 0 32.5

26 0

11 138 74 26 144 36.1 0.557 50 1
3 106 72 0 0 25.8 0.207 27 0
6 117 96 0 0 28.7

30 0

2 68 62 13 15

0.257 23 0

9 112 82 24 0 28.2

50 1

0 119 0 0 0 32.4

24 1

2 112 86 42 160 38.4

28 0

2 92 76 20 0 24.2

28 0

6 183 94 0 0

45 0

0 94 70 27 115 43.5

21 0

2 108 64 0 0 30.8

21 0

4 90 88 47 54 37.7

29 0

0 125 68 0 0 24.7 0.206 21 0
0 132 78 0 0 32.4

21 0

5 128 80 0 0 34.6

45 0

4 94 65 22 0 24.7 0.148 21 0
7 114 64 0 0 27.4

34 1

0 102 78 40 90 34.5 0.238 24 0
2 111 60 0 0 26.2 0.343 23 0
1 128 82 17 183 27.5

22 0

10 92 62 0 0 25.9 0.167 31 0
13 104 72 0 0 31.2

38 1

5 104 74 0 0 28.8

48 0

2 94 76 18 66 31.6

23 0

7 97 76 32 91 40.9

32 1

1 100 74 12 46 19.5

28 0

0 102 86 17 105 29.3

27 0

4 128 70 0 0 34.3

24 0

6 147 80 0 0 29.5

50 1

4 90 0 0 0 28 0.61 31 0
3 103 72 30 152 27.6 0.73 27 0
2 157 74 35

39.4

30 0

1 167 74 17 144

33 1

0 179 50 36 159 37.8

22 1

11 136 84 35 130

0.26 42 1

0 107 60 25 0 26.4

23 0

1 91 54 25 100 25.2 0.234 23 0
1 117 60 23 106 33.8 0.466 27 0
5 123 74 40 77 34.1 0.269 28 0
2 120 54 0 0 26.8 0.455 27 0
1 106 70 28 135 34.2 0.142 22 0
2 155 52 27

38.7 0.24 25 1

2 101 58 35 90 21.8

22 0

1 120 80 48

41 0

11 127 106 0 0 39 0.19 51 0
3 80 82 31 70 34.2

27 1

10 162 84 0 0 27.7

54 0

1 199 76 43 0 42.9

22 1

8 167 106 46 231 37.6

43 1

9 145 80 46 130 37.9

40 1

6 115 60 39 0 33.7 0.245 40 1
1 112 80 45 132 34.8

24 0

4 145 82 18 0 32.5 0.235 70 1
10 111 70 27 0 27.5 0.141 40 1
6 98 58 33 190 34 0.43 43 0
9 154 78 30 100 30.9

45 0

6 165 68 26 168 33.6

49 0

1 99 58 10 0 25.4 0.551 21 0
10 68 106 23 49 35.5 0.285 47 0
3 123 100 35 240

0.88 22 0

8 91 82 0 0

68 0

6 195 70 0 0 30.9

31 1

9 156 86 0 0 24.8 0.23 53 1
0 93 60 0 0 35.3 0.263 25 0
3 121 52 0 0 36 0.127 25 1
2 101 58 17 265 24.2

23 0

2 56 56 28 45 24.2

22 0

0 162 76 36 0

0.364 26 1

0 95 64 39 105

22 0

4 125 80 0 0 32.3 0.536 27 1
5 136 82 0 0 0 0.64 69 0
2 129 74 26 205 33.2 0.591 25 0
3 130 64 0 0 23.1 0.314 22 0
1 107 50 19 0 28.3

29 0

1 140 74 26 180

23 0

1 144 82 46 180 46.1

46 1

8 107 80 0 0 24.6

34 0

13 158 114 0 0 42.3 0.257 44 1
2 121 70 32 95 39.1

23 0

7 129 68 49 125 38.5

43 1

2 90 60 0 0 23.5

25 0

7 142 90 24 480 30.4 0.128 43 1
3

74 19 125 29.9 0.268 31 1

0 99 0 0 0 25

22 0

4 127 88 11 155 34.5

28 0

4 118 70 0 0

26 0

2 122 76 27 200 35.9

26 0

6 125 78 31 0 27.6

49 1

1 168 88 29 0 35 0.905 52 1
2 129 0 0 0 38.5 0.304 41 0
4 110 76 20 100 28.4

27 0

6 80 80 36 0 39.8

28 0

10 115 0 0 0 0 0.261 30 1
2 127 46 21 335 34.4

22 0

9 164 78 0 0 32.8 0.148 45 1
2 93 64 32 160 38 0.674 23 1
3 158 64 13

31.2

24 0

5 126 78 27 22 29.6 0.439 40 0
10 129 62 36 0

38 1

0 134 58 20

26.4

21 0

3 102 74 0 0 29.5

32 0

7 187 50 33

33.9

34 1

3 173 78 39 185 33.8

31 1

10 94 72 18 0 23.1

56 0

1 108 60 46 178 35.5 0.415 24 0
5 97 76 27 0 35.6 0.378 52 1
4 83 86 19 0 29.3

34 0

1 114 66 36 200 38.1 0.289 21 0
1 149 68 29 127 29.3 0.349 42 1
5 117 86 30 105 39.1 0.251 42 0
1 111 94 0 0 32.8

45 0

4 112 78 40 0 39.4 0.236 38 0
1 116 78 29 180 36.1 0.496 25 0
0 141 84 26 0 32.4 0.433 22 0
2 175 88 0 0 22.9

22 0

2 92 52 0 0 30.1 0.141 22 0
3 130 78 23 79 28.4 0.323 34 1
8 120 86 0 0 28.4 0.259 22 1
2 174 88 37 120 44.5

24 1

2 106 56 27 165 29

22 0

2 105 75 0 0

0.56 53 0

4 95 60 32 0 35.4 0.284 28 0
0 126 86 27 120 27.4

21 0

8 65 72 23 0 32 0.6 42 0
2 99 60 17 160 36.6

21 0

1 102 74 0 0 39.5

42 1

11 120 80 37 150 42.3

48 1

3 102 44 20 94 30.8 0.4 26 0
1 109 58 18 116 28.5 0.219 22 0
9 140 94 0 0 32.7

45 1

13 153 88 37 140 40.6

39 0

12 100 84 33 105 30

46 0

1 147 94 41 0

27 1

1 81 74 41 57

32 0

3 187 70 22 200 36.4

36 1

6 162 62 0 0 24.3 0.178 50 1
4 136 70 0 0 31.2

22 1

1 121 78 39 74 39 0.261 28 0
3 108 62 24 0 26 0.223 25 0
0 181 88 44

43.3

26 1

8 154 78 32 0 32.4 0.443 45 1
1 128 88 39 110 36.5

37 1

7 137 90 41 0 32 0.391 39 0
0 123 72 0 0 36.3 0.258 52 1
1 106 76 0 0 37.5 0.197 26 0
6 190 92 0 0 35.5

66 1

2 88 58 26 16 28.4

22 0

9 170 74 31 0 44 0.403 43 1
9 89 62 0 0 22.5 0.142 33 0
10 101 76 48 180 32.9

63 0

2 122 70 27 0 36.8 0.34 27 0
5 121 72 23 112 26.2 0.245 30 0
1 126 60 0 0 30.1 0.349 47 1
1 93 70 31 0 30.4 0.315 23 0
preg plas pres skin insu mass pedi age class
6 1 4 8 7 2 3 5 0 33 0.6 27 50
85 66 2

9 26 0.3 51 31
1

83 64 23 0.6

72 32
89 94 28 0.

16 21
13 40 35 1

68 43 2.2

88
11 74 25 0.

20 30
78 0.

24
10 1

15 35.3 0.1 34 29
19 70 45 54 30.5 0.

1

58 53
12 96 0.2
110 92 37 0.19
168 38 0.537
1

39 80 27.1 1.4 41 57
18 60 84 30.1 0.3

98 59
166 1

75 25.8 0.5

87
100 0.

48
118 47 230 45.8 0.

55
107 29.6 0.254
103 43.3 0.18
115 34.6 0.

52
126 235 39.3 0.704
99 35.4 0.38
196 90 39.8 0.4
119 0.26
14 1

46 36
125 31.1 0.

205
147 76 39.4 0.257
97 140 23.2 0.487 22
145 82 22.2 0.

245
1

17 34.1 0.33
109 0.546
158 3

1.6 0.851
24.8 0.2

67
19.9 0.

188
122 27.6 0.51
192 0.966
138 33.2 0.

42
102 32.9 0.6

65
38.2 0.503
111 207 37.1 1.39 56
180 0.2

71
133 40.2 0.

69
106 22.7 0.23
171 240 45.4 0.721
159 27.4 0.29
1.8

93
146 29.7 0.56
0.5

86
39.1 0.3

44
105 0.305
19.4 0.

49
101 24.2 0.52
24.4 0.

342
176 300 33.7 0.46
150 34.7 0.718
73 0.24
187 304 37.7
46.8 0.9

62
40.5 1.7

81
142 41.5 0.

173
0.304
0.27
0.58
141 128 25.4 0.699
114 32.8 0.

258
0.203
32.5 0.855
42.7 0.84
95 19.6 0.334
28.9 0.

189
0.867
139 28.6 0.411
43.4 0.583
129 270 35.1 0.

231
79 0.396
24.7 0.14
32.6 0.3

91
0.37
131 43.2
112 0.307
113 22.4
0.102
29.3 0.767
24.6 0.

237
137 108 48.8 0.22
32.4 0.698
36.6 0.

178
38.5 0.324
136 0.

153
26.5 0.

165
19.1 0.258
123 0.443
46.7 0.2

61
134 23.8 0.2

77
0.761
144 228 33.9 0.

255
31.6 0.13
20.4 0.323
28.7 0.356
220 49.7 0.

325
1

63 1.222
151 26.1 0.

179
22.5 0.262
26.6 0.28
39.6 0.93
152 0.801
0.207
29.5 0.287
34.3 0.336
37.4 0.247
135 33.3 0.

199
155 495 0.543
31.2 0.192
0.391
160 175 0.588
0.539
124
0.654
28.2
0.223
162 53.2 0.759
34.2
33.6 0.404
132 26.8 0.

186
0.

278
0.496
120 42.9 0.452
0.261
117 34.5 0.403
27.9 0.741
0.361
1.114
170 225
38.3 0.457
21.1 0.64
33.8 0.088
30.8 0.597
0.532
0.703
36.9 0.15
0.268
39.5 0.286
0.

318
0.

272
154 284 0.237
0.572
0.096
0.21
27.3 0.085
204 0.399
21.9 0.43
156 1.189
485 40.6 0.68
47.9 0.137
0.63
25.2 0.833
0.229
163 40.9 0.817
0.294
37.2 0.204
285 44.2 167
0.368
0.743
104 29.9 0.722
148 0.256
0.709
31.9 0.471
28.4 0.495
130 0.542
0.773
43.5 0.678
32.7 0.719
0.382
67.1 0.319
143
0.956
0.084
34.9 0.725
27.7 0.299
0.244
194 35.9 0.745
181 0.61
1.

321
22.6 0.142
33.1 0.374
30.4 0.383
52.3 0.578
0.136
210 0.395
24.3 0.187
22.9
34.8 0.905
30.9
0.874
40.1 0.236
0.787
0.235
190
23.9 0.407
280 37.5 0.605
0.151
0.289
184 35.5 0.355
42.8 0.

375
0.

164
42.6 0.431
271 41.8 0.742
35.8 0.514
0.464
1.224
37.8
177 478 1.072
0.805
0.209
28.8 0.687
23.6 0.66
0.101
35.7 0.

198
0.652
197 744 36.7 2.329
45.2 0.089
0.645
370 46.2 0.238
0.394
0.

293
43.6 0.479
0.586
44.1 0.686
0.831
18.4 0.582
29.2
0.446
25.6 0.

402
1.318
0.329
1.213
680 0.427
0.282
0.143
0.284
0.

249
0.926
0.557
0.092
193 25.9 0.655
1.353
191
32.1 0.612
0.226
0.997
36.3 0.933
1.101
25.1 0.078
27.5
45.6 1.136
0.128
0.422
0.251
0.677
0.296
116 27.8 0.454
24.9 0.744
25.3 0.88
37.9
161 0.16
0.259
0.647
545 38.7 0.619
0.808
20.8 0.34
36.1 0.263
0.434
0.757
182
0.613
0.692
360
215 30.7
0.412
32.3 0.839
0.156
52.9
39.7 0.215
25.5 0.

326
1.391
0.875
26.2 0.313
0.433
0.626
1.

127
0.315
19.3
0.345
38.1
23.5 0.129
0.527
0.197
0.73
0.148
157 0.123
45.5 0.127
0.122
23.1 1.476
0.166
0.932
0.343
0.893
39.9 0.331
0.472
0.673
0.389
36.8 0.485
0.349
21.8 0.279
0.346
42.2
0.252
34.4 0.243
27.2
0.559
0.302
0.962
0.569
0.378
36.5
29.8
39.2
0.385
0.499
0.306
0.234
465 38.4 2.137
1.731
0.545
0.225
36.2 0.816
0.528
0.509
48.3
1.021
0.821
0.947
1.268
0.221
22.3 0.205
0.239
0.949
0.444
45.7
415 23.7
22.1 0.463
0.803
275
0.944
0.196
0.241
0.161
0.135
42.1
0.376
1.191
172 579 42.4 0.702
0.674
310 1.076
0.534
474
1.095
0.554
18.2 0.624
26.4 0.219
45.3 0.507
0.561
0.421
0.516
277 0.264
0.

328
0.233
0.108
0.551
0.167
24.5 1.138
0.147
0.727
0.435
32.2 0.497
0.955
59.4 2.42
0.658
0.285
21.2 0.415
0.381
0.832
0.498
0.212
26.7
30.2 0.364
37.6 1.001
0.733
0.416
0.705
1.022
0.269
0.

183
46.1 0.571
41.3 0.607
0.17
38.8
0.126
0.231
0.711
0.466
0.162
0.419
0.344
35.2
250 42.3 0.365
480 40.7 0.536
265 46.5 1.159
0.629
33.5 0.292
0.145
1.144
0.

174
0.547
195 0.163
0.267
0.738
37.3
0.314
0.968
0.409
0.297
0.525
0.154
30.3 0.771
0.189
26.3 0.107
0.493
0.717
0.917
0.501
1.251
21.7 0.735
0.804
36.4
0.661
0.549
0.825
0.159
0.423
1.034
0.341
28.5
0.591
0.218
0.

121
274 0.502
0.401
26.9
0.601
0.748
38.6
31.3 0.338
0.198
330 0.892
0.813
0.693
0.245
0.575
0.371
0.206
600
0.417
0.249
1.154
0.342
0.925
0.175
0.402
1.699
185 0.682
0.194
1.258
19.5 0.482
0.138
0.593
0.878
0.157
20.1
1.282
0.141
0.246
1.698
40.8 1.461
0.347
0.158
0.362
0.393
0.144
0.732
0.115
0.465
0.153
0.649
0.871
0.

149
0.695
0.303
0.178
440 0.134
23.4 0.447
0.455
28.3
0.133
540
0.155
200 38.9 1.162
1.292
0.182
1.394
0.165
0.637
0.217
0.164
0.631
57.3
35.6 0.587
0.328
0.614
0.332
49.6
44.6 0.366
0.181
24.1 0.828
0.

335
0.856
0.886
0.439
0.191
169
0.253
0.598
44.5 0.904
0.483
0.565
0.118
0.177
0.176
387 0.295
41.2 0.441
291 0.352
0.121
392 0.826
0.97
0.595
0.317
0.265
0.326
0.646
0.426
23.3
0.515
0.453
0.293
0.785
0.734
1.174
0.488
49.3 0.358
46.3 1.096
0.408
1.182
510 0.222
1.057
0.278
0.766
0.171

278

75

53

1675

1

7

822

.99595951

1

7

93

1

.65287791

4

1

1

1

12

1

1

1

1

1

1

1

1

33.11134196

1

1

1

6299592

1

31

1

1

1

1

1

1

29

1

1

14

1

46.99999999

1

1

1

1

1

8057555

1

1

1

1

1

1

1

1

1

1

1

1

1

46.99999999

1

1

1

34

1

1

34

1

27.7

1

1

34

1

1

1

1

38

1

35

1

1

1

1

1

1

1

1

56.30993248

1

56.30993248

1

1

1

51.99999999

1

1

1

35.41705528

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3842852

1

1

1

1

55.17551084

1

45

1

1

1

1

1

1

1

1

1

1

47.29061004

1

1

45

1

42.64670314

1

1

1

1

32.5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

55.12467166

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

63.43494882

1

1

55.92280472

1

1

38

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

51.99999999

1

1

1

1

1

1

1

1

1

1

1

1

34.38034472

1

62.99999999

1

1

46.16913933

1

1

1

1

1

0

0

35.41705528

0

0

0

0

0

0

35 35.6553281

0

0

0

52.99999999 49.08561678

0

0

0

0

0

0

0

29.7448813

0

0

0

38.99999999

0

0

0

41.99999999

0

0

63.99999999

0

57.99999999 48.17983012

0

0

0

0

35

0

0

0

0

53.99999999

0

39.99999999

0

28

0

0

37

0

0

0

57.99999999

0

0

0

52.88313932

0

47.99999999 45

0

41.99999999 53.13010235

0

0

0

42.99999999

0

0

0

25.5

0

46.99999999

0

0

0

0

0

24

0

0

41.99999999

0

37

0

0

0

50.99999999

0

0

43.99999999

0

0

51.99999999 30.78414653

0

0

0

0

35.88213725

0

43.19915768

0

0

0

0

58.84069549

0

30.25643716

0

0

0

0

43.31531568

0

37

0

39.80557109

0

0

0

0

0

35

0

0

33.11134196

0

0

0

36

0

33.21525149

0

0

0

0

pelvic_incidence pelvic_tilt lumbar_lordosis sacral_slope pelvic_radius degree_spondylolisthesis class
63.

0 1 22.55258597 39.60911701 40.4752

31 98.67

29 -0.254399986
39.05695098 10.06099

14 25.015

37 28 114.4054254 4.5642586

45
68.83202098 22.21848205 50.09219

35 46.6135

38 105.9851355 -3.530317314
69.29700807 24 44.31123813 44.64413017 101.8684951 11.21152

34
49.71285934 9.652074879 28.317406 40.06078446 108.1687249 7.918500615
40.25019968 13.92190658 25.1249496 26.32829311 130.3278713 2.230651729
53.43292815 15.8643

36 37.16593387 37.56859203 120.5675233 5.988550702
45.36675362 10.75561143 29.03834896 34.61114218 117.2700675 -10.67587083
43.79019026 13.5337531 42.69081398 30.25643716 125.0028927 13.28901817
36.68635286 5.010884121 41.9487509 31.67546874 84.24141517 0.664437117
49.70660953 13.04097405 31.33450009 36.66563548 108.6482654 -7.825985755
31.23238734 17.71581923 15.5 13.51656811 120.0553988 0.499751446
48.91555137 19.96455616 40.26379358 28.95099521 119.321358 8.028894629
53.5721702 20.46082824 33.1 33.11134196 110.9666978 7.044802938
57.30022656 24.1888846 46.99999999 116.8065868 5.766946943
44.31890674 12.53799164 36.098763 31.78091509 124.1158358 5.415825143
63.83498162 20.36250706 54.55243367 43.47247456 112.3094915 -0.622526643
31.27601184 3.14466948 32.5 28.13134236 129.0114183 3.623020073
38.69791243 13.44474904 25.25316339 123.1592507 1.429185758
41.72996308 12.25407408 30.12258646 29.475889 116.5857056 -1.244402488
43.92283983 14.17795853 37.8325467 29.7448813 134.4610156 6.451647637
54.91944259 21.06233245 42.19999999 33.85711014 125.2127163 2.432561437
63.07361096 24.41380271 53.99999999 38.65980825 106.4243295 15.77969683
45.54078988 13.06959759 30.29832059 32.47119229 117.9808303 -4.987129618
36.12568347 22.75875277 13.3669307 115.5771163 -3.237562489
54.12492019 26.65048856 35.32974693 27.47443163 121.447011 1.571204816
26.14792141 10.75945357 15.38846783 125.2032956 -10.09310817
43.58096394 16.5088837 27.07208024 109.271634 8.992815727
44.5510115 21.93114655 26.78591597 22.61986495 111.0729197 2.652320636
66.87921138 24.89199889 49.27859673 41.9872125 113.4770183 -2.005891748
50.81926781 15.40221253 42.52893886 35.41705528 112.192804 10.86956554
46.39026008 11.07904664 32.13655345 35.31121344 98.77454633 6.386831648
44.93667457 17.44383762 27.7 27.49283695 117.9803245 5.569619587
38.66325708 12.98644139 39.99999999 25.67681568 124.914118 2.703008052
59.59554032 31.99824445 46.56025198 27.59729587 119.3303537 1.474285836
31.48421834 7.82622134 24.28481815 23.657997 113.8331446 4.393080498
32.09098679 6.989378081 35.99819848 25.10160871 132.264735 6.413427708
35.70345781 19.44325311 20.7 16.26020471 137.5406125 -0.263489651
55.84328595 28.84744756 47.69054322 26.99583839 123.3118449 2.812426855
52.41938511 19.01156052 35.87265953 33.40782459 116.5597709 1.694705102
35.49244617 11.7016723 15.59036345 23.79077387 106.9388517 -3.460357991
46.44207842 8.39503589 29.0372302 38.04704253 115.4814047 2.045475795
53.85479842 19.23064334 32.77905978 34.62415508 121.6709148 5.329843204
66.28539377 26.32784484 47.49999999 39.95754893 121.2196839 -0.799624469
56.03021778 16.2979149 62.27527456 39.73230287 114.0231172 -2.325683841
50.91244034 23.01516931 27.89727103 117.4222591 -2.526701511
48.332638 22.22778399 36.18199318 26.10485401 117.3846251 6.481709096
41.35250407 16.57736351 30.70619135 24.77514057 113.2666746 -4.497957556
40.55735663 17.97778407 22.57957256 121.0462458 -1.537383074
41.76773173 17.89940172 20.0308863 23.86833001 118.3633889 2.062962549
55.28585178 20.44011836 34.84573342 115.8770174 3.558372358
74.43359316 41.55733141 32.87626175 107.9493045 5.000088788
50.20966979 29.76012218 36.10400731 20.44954761 128.2925148 5.740614083
30.14993632 11.91744524 18.23249108 112.6841408 11.46322327
41.17167989 17.32120599 33.46940277 23.85047391 116.3778894 -9.569249858
47.65772963 13.27738491 36.67998541 34.38034472 98.24978071 6.273012173
43.34960621 7.467468964 28.06548279 35.88213725 112.7761866 5.753277458
46.85578065 15.35151393 31.50426672 116.2509174 1.662705589
43.20318499 19.66314572 23.54003927 124.8461088 -2.919075955
48.10923638 14.93072472 35.56468278 33.17851166 124.0564518 7.947904861
74.37767772 32.05310438 78.77201304 42.32457334 143.5606905 56.12590603
89.68056731 32.70443487 83.13073216 56.97613244 129.9554764 92.02727682
44.529051 9.433234213 51.99999999 35.09581679 134.7117723 29.10657504
77.69057712 21.38064464 64.42944191 56.30993248 114.818751 26.93184095
76.1472121 21.93618556 82.96150249 54.21102654 123.9320096 10.43197194
83.93300857 41.28630543 61.99999999 42.64670314 115.012334 26.58810016
78.49173027 22.1817978 59.99999999 118.5303266 27.38321314
75.64973136 19.33979889 64.14868477 95.9036288 69.55130292
72.07627839 18.94617604 50.99999999 53.13010236 114.2130126 1.01004051
58.59952852 -0.261499046 51.49999999 58.86102756 102.0428116 28.05969711
72.56070163 17.38519079 55.17551084 119.1937238 32.10853735
86.90079431 32.9281677 47.79434664 53.97262661 135.0753635 101.7190919
84.97413208 33.02117462 60.85987263 51.95295747 125.6595336 74.33340864
55.512212 20.09515673 43.99999999 122.648753 34.55294641
72.2223343 23.07771056 90.99999999 49.14462374 137.7366546 56.80409277
70.22145219 39.82272448 68.11840309 30.39872771 148.5255624 145.3781432
86.75360946 36.04301632 69.22104479 50.71059314 139.414504 110.8607824
58.78254775 7.667044186 53.33894082 51.11550357 98.50115697 51.58412476
67.41253785 17.44279712 60.14464036 49.96974073 111.12397 33.15764573
47.74467877 12.08935067 38.99999999 35.6553281 117.5120039 21.68240136
77.10657122 30.46999418 69.48062839 46.63657704 112.1516 70.75908308
74.00554124 21.12240192 57.37950226 52.88313932 120.2059626 74.55516588
88.62390839 29.08945331 47.56426247 59.53445508 121.7647796 51.80589921
81.10410039 24.79416792 77.88702048 56.30993247 151.8398566 65.21461611
76.32600187 42.39620445 57.19999999 33.92979742 124.267007 50.12745689
45.44374959 9.906071798 44.99999999 35.53767779 163.0710405 20.31531532
59.78526526 17.87932332 59.20646143 41.90594194 119.3191109 22.12386874
44.91414916 10.21899563 44.63091389 34.69515353 130.0756599 37.36453993
56.60577127 16.80020017 41.99999999 39.80557109 127.2945222 24.0185747
71.18681115 23.89620111 43.6966651 47.29061004 119.8649383 27.28398451
81.65603206 28.74886935 58.23282055 52.9071627 114.7698556 30.60914842
70.95272771 20.15993121 62.85910914 50.7927965 116.1779325 32.522331
85.35231529 15.84491006 71.66865979 69.50740523 124.4197875 76.0206034
58.10193455 14.83763914 79.64983825 43.26429541 113.5876551 50.23787808
94.17482232 15.38076983 67.70572132 78.79405249 114.8901128 53.25522004
57.52235608 33.64707522 50.90985841 23.87528085 140.9817119 148.7537109
96.65731511 19.46158117 90.21149828 77.19573393 120.6730408 64.08099841
74.72074622 19.75694203 82.73535954 54.96380419 109.3565941 33.30606685
77.65511874 22.4329501 93.89277881 55.22216863 123.0557067 61.2111866
58.52162283 13.92228609 41.46785522 44.59933674 115.514798 30.3879839
84.5856071 30.36168482 65.47948563 54.22392228 108.0102185 25.11847846
79.93857026 18.7740711 63.31183486 61.16449915 114.787107 38.53874133
70.39930842 13.46998624 61.19999999 56.92932218 102.3375244 25.5
49.78212054 6.46680486 52.99999999 43.31531568 110.8647831 25.33564729
77.40933294 29.39654543 63.23230243 48.0127875 118.4507311 93.56373734
65.00796426 27.60260762 50.94751899 37.40535663 116.5811088 7.015977884
65.01377322 9.838262375 57.73583722 94.73852542 49.69695462
78.42595126 33.42595126 76.27743927 138.5541111 77.15517241
63.17298709 6.330910974 62.99999999 56.84207612 110.6440206 42.60807567
68.61300092 15.0822353 63.01469619 53.53076561 123.4311742 39.49798659
63.90063261 13.7062037 62.12433389 50.19442891 114.1292425 41.42282844
84.99895554 29.61009772 83.35219438 55.38885782 126.9129899 71.32117542
42.02138603 -6.554948347 67.89999999 48.57633437 111.5857819 27.33867086
69.75666532 19.27929659 48.49999999 50.47736873 96.49136982 51.1696403
80.98807441 36.84317181 86.96060151 44.1449026 141.0881494 85.87215224
129.8340406 8.404475005 48.38405705 121.4295656 107.690466 418.5430821
70.48410444 12.48948765 62.41714208 57.99461679 114.1900488 56.90244779
86.04127982 38.75066978 47.87140494 122.0929536 61.98827709
65.53600255 24.15748726 45.77516991 41.3785153 136.4403015 16.37808564
60.7538935 15.7538935 43.19915768 113.0533309 31.69354839
54.74177518 12.09507205 40.99999999 117.6432188 40.3823266
83.87994081 23.07742686 87.14151223 60.80251395 124.6460723 80.55560527
80.07491418 48.06953097 52.40343873 32.00538321 110.7099121 67.72731595
65.66534698 10.54067533 56.48913545 55.12467166 109.1627768 53.93202006
74.71722805 14.32167879 60.39554926 107.1822176 37.01708012
48.06062649 5.687032126 57.05716117 42.37359436 95.44375749 32.83587702
70.67689818 21.70440224 59.18116082 48.97249594 103.0083545 27.8101478
80.43342782 16.998479 66.53601753 63.43494882 116.4389807 57.78125
90.51396072 28.27250132 69.8139423 62.2414594 100.8921596 58.82364821
77.23689752 16.73762214 49.77553438 60.49927538 110.6903772 39.7871542
50.06678595 9.120340183 32.16846267 40.94644577 99.71245318 26.76669655
69.78100617 13.77746531 57.99999999 56.00354085 118.9306656 17.91456046
69.62628302 21.12275138 52.76659472 48.50353164 116.8030913 54.81686729
81.75441933 20.12346562 70.56044038 61.63095371 119.4250857 55.50688907
52.20469309 17.21267289 78.09496877 34.9920202 136.9725168 54.93913416
77.12134424 30.3498745 77.48108264 46.77146974 110.6111484 82.09360704
88.0244989 39.84466878 81.77447308 48.17983012 116.6015376 56.76608323
83.39660609 34.31098931 78.42329287 49.08561678 110.4665164 49.67209559
72.05403412 24.70073725 79.87401586 47.35329687 107.1723576 56.42615873
85.09550254 21.06989651 91.73479193 64.02560604 109.062312 38.03283108
69.56348614 15.4011391 74.43849743 54.16234705 105.0673556 29.70121083
89.5049473 48.90365265 72.0034229 40.60129465 134.6342912 118.3533701
85.29017283 18.27888963 100.7442198 67.0112832 110.6607005 58.88494802
60.62621697 20.5959577 64.53526221 40.03025927 117.2255542 104.8592474
60.04417717 14.30965614 58.03886519 45.73452103 105.1316639 30.40913315
85.64378664 42.68919513 78.7506635 42.95459151 105.1440758 42.88742577
85.58171024 30.45703858 78.23137949 114.8660487 68.37612182
55.08076562 -3.759929872 55.99999999 58.84069549 109.9153669 31.77358318
65.75567895 9.832874231 50.82289501 55.92280472 104.3949585 39.30721246
79.24967118 23.94482471 40.79669829 55.30484647 98.62251165 36.7063954
81.11260488 20.69044356 60.68700588 60.42216132 94.01878339 40.51098228
48.0306238 3.969814743 58.34451924 44.06080905 125.3509625 35.00007784
63.40448058 14.11532726 48.13680562 49.28915333 111.9160075 31.78449499
57.28694488 15.1493501 63.99999999 42.13759477 116.7353868 30.34120327
41.18776972 5.792973871 42.86739151 35.39479584 103.3488802 27.66027669
66.80479632 14.55160171 72.08491177 52.25319461 82.45603817 41.6854736
79.4769781 26.73226755 70.65098189 52.74471055 118.5886691 61.70059824
44.21646446 1.507074501 46.11033909 42.70938996 108.6295666 42.81048066
57.03509717 0.34572799 49.19800263 56.68936918 103.0486975 52.16514503
64.27481758 12.50864276 68.70237672 51.76617482 95.25245421 39.40982612
92.02630795 35.39267395 77.41696348 56.633634 115.72353 58.05754155
67.26314926 7.194661096 51.69688681 60.06848816 97.8010854 42.13694325
118.1446548 38.44950127 50.83851954 79.69515353 81.0245406 74.04376736
115.9232606 37.51543601 76.79999999 78.40782459 104.6986033 81.19892712
53.94165809 9.306594428 43.10049819 44.63506366 124.3978211 25.0821266
83.7031774 20.26822858 77.1105979 125.4801739 69.279571
56.99140382 6.87408897 57.00900516 50.11731485 109.978045 36.81011057
72.34359434 16.42078962 59.86901238 70.08257486 12.07264427
95.38259648 24.82263131 95.15763273 70.55996517 89.3075466 57.66084135
44.25347645 1.101086714 43.15238973 98.27410705 23.9106354
64.80954139 15.17407796 58.83999352 49.63546343 111.679961 21.40719845
78.40125389 14.04225971 79.69426258 64.35899418 104.7312342 12.39285327
56.66829282 13.45820343 43.76970978 43.21008939 93.69220863 21.10812135
50.82502875 9.064729049 56.29999999 41.7602997 78.99945411 23.04152435
61.41173702 25.38436364 39.09686927 36.02737339 103.4045971 21.84340688
56.56382381 8.961261611 52.57784639 47.6025622 98.77711506 50.70187326
67.02766447 13.28150221 66.15040334 53.74616226 100.7154129 33.98913551
80.81777144 19.23898066 61.64245116 61.57879078 89.47183446 44.167602
80.65431956 26.34437939 60.89811835 54.30994017 120.1034928 52.46755185
68.72190982 49.4318636 68.0560124 19.29004622 125.0185168 54.69128928
37.90391014 4.47909896 24.71027447 33.42481118 157.848799 33.60702661
64.62400798 15.22530262 67.63216653 49.39870535 90.298468 31.32641123
75.43774787 31.53945399 89.59999999 43.89829388 106.8295898 54.96578902
71.00194076 37.51577195 84.53709256 33.48616882 125.1642324 67.77118983
81.05661087 20.80149217 91.78449512 60.2551187 125.430176 38.18178176
91.46874146 24.50817744 84.62027202 66.96056402 117.3078968 52.62304673
81.08232025 21.25584028 78.76675639 59.82647997 90.07187999 49.159426
60.419932 5.265665422 59.8142356 55.15426658 109.0330745 30.26578534
85.68094951 38.65003527 82.68097744 47.03091424 120.8407069 61.95903428
82.4065243 29.27642195 77.05456489 53.13010235 117.0422439 62.76534831
43.7182623 9.811985315 33.90627699 88.43424213 40.88092253
86.472905 40.30376567 61.14101155 46.16913933 97.4041888 55.75222146
74.46908181 33.28315665 66.94210105 41.18592517 146.4660009 124.9844057
70.25043628 10.34012252 76.37007032 59.91031376 119.2370072 32.66650243
72.64385013 18.92911726 67.99999999 53.71473287 116.9634162 25.38424676
71.24176388 5.268270454 85.99958417 65.97349342 110.703107 38.2598637
63.7723908 12.76338484 65.36052425 51.00900596 89.82274067 55.99545386
58.82837872 37.57787321 125.7423855 21.25050551 135.6294176 117.3146829
74.85448008 13.90908417 62.69325884 60.9453959 115.2087008 33.17225512
75.29847847 16.67148361 61.29620362 58.62699486 118.8833881 31.57582292
63.36433898 20.02462134 67.49870507 43.33971763 130.9992576 37.55670552
67.51305267 33.2755899 96.28306169 34.23746278 145.6010328 88.30148594
76.31402766 41.93368293 93.2848628 132.2672855 101.2187828
73.63596236 9.711317947 63.92464442 98.72792982 26.97578722
56.53505139 14.37718927 44.99154663 42.15786212 101.7233343 25.77317356
80.11157156 33.94243223 85.10160773 125.5936237 100.2921068
95.48022873 46.55005318 58.99999999 48.93017555 96.68390337 77.28307195
74.09473084 18.82372712 76.03215571 55.27100372 128.4057314 73.38821617
87.67908663 20.36561331 93.82241589 67.31347333 120.9448288 76.73062904
48.25991962 16.41746236 36.32913708 31.84245726 94.88233607 28.34379914
38.50527283 16.96429691 35.11281407 21.54097592 127.6328747 7.986683227
54.92085752 18.96842952 51.60145541 35.952428 125.8466462 2.001642472
44.36249017 8.945434892 46.90209626 129.220682 4.994195288
48.3189305 17.45212105 47.99999999 30.86680945 128.9803079 -0.910940567
45.70178875 10.65985935 42.5778464 35.0419294 130.1783144 -3.38890999
30.74193812 13.35496594 35.90352597 17.38697218 142.4101072 -2.005372903
50.91310144 6.6769999 30.89652243 44.23610154 118.151531 -1.057985526
38.12658854 6.557617408 50.44507473 31.56897113 132.114805 6.338199339
51.62467183 15.96934373 129.385308 1.00922834
64.31186727 26.32836901 50.95896417 37.98349826 106.1777511 3.118221289
44.48927476 21.78643263 31.47415392 22.70284212 113.7784936 -0.284129366
54.9509702 5.865353416 126.9703283 -0.631602951
56.10377352 13.10630665 62.63701952 42.99746687 116.2285032 31.17276727
69.3988184 18.89840693 75.96636144 50.50041147 103.5825398 -0.44366081
89.83467631 22.63921678 90.56346144 67.19545953 100.5011917 3.040973261
59.72614016 7.724872599 55.34348527 52.00126756 125.1742214 3.235159224
63.95952166 16.06094486 63.12373633 47.8985768 142.3601245 6.298970934
61.54059876 19.67695713 52.89222856 41.86364163 118.6862678 4.815031084
38.04655072 8.30166942 26.23683004 123.8034132 3.885773488
43.43645061 10.09574326 36.03222439 33.34070735 137.4396942 -3.114450861
65.61180231 23.13791922 62.58217893 42.47388309 124.1280012 -4.083298414
53.91105429 12.93931796 40.97173633 118.1930354 5.074353176
43.11795103 13.81574355 40.34738779 29.30220748 128.5177217 0.970926407
40.6832291 9.148437195 31.02159252 31.53479191 139.1184721 -2.511618596
37.7319919 9.386298276 28.34569362 135.740926 13.68304672
63.92947003 19.97109671 40.17704963 43.95837332 113.0659387 -11.05817866
61.82162717 13.59710457 48.22452261 121.779803 1.296191194
62.14080535 13.96097523 133.2818339 4.955105669
69.00491277 13.29178975 55.5701429 55.71312302 126.6116215 10.83201105
56.44702568 19.44449915 43.5778464 37.00252653 139.1896903 -1.859688529
41.6469159 8.835549101 36.03197484 32.8113668 116.5551679 -6.054537956
51.52935759 13.51784732 38.01151027 126.7185156 13.92833085
39.08726449 5.536602477 26.93203835 33.55066201 131.5844199 -0.75946135
34.64992241 7.514782784 42.99999999 27.13513962 123.9877408 -4.082937601
63.02630005 27.33624023 51.60501665 35.69005983 114.5066078 7.439869802
47.80555887 10.68869819 37.11686068 125.3911378 -0.402523218
46.63786363 15.85371711 30.78414653 119.3776026 9.06458168
49.82813487 16.73643493 33.09169994 121.4355585 1.91330704
47.31964755 8.573680295 35.56025198 38.74596726 120.5769719 1.630663508
50.75329025 20.23505957 30.51823068 122.343516 2.288487746
36.15782981 -0.810514093 33.62731353 36.96834391 135.9369096 -2.092506504
40.74699612 1.835524271 49.99999999 38.91147185 139.2471502 0.668556793
42.91804052 -5.845994341 48.76403486 121.6068586 -3.362044654
63.79242525 21.34532339 65.99999999 42.44710185 119.5503909 12.38260373
72.95564397 19.57697146 61.00707117 53.37867251 111.2340468 0.813491154
67.53818154 14.65504222 58.00142908 123.6322597 25.9702063
54.75251965 9.752519649 123.0379985 8.235294118
50.16007802 -2.970024337 131.8024914 -8.290203373
40.34929637 10.19474845 37.96774659 30.15454792 128.0099272 0.458901373
63.61919213 16.93450781 49.34926218 46.68468432 117.0897469 -0.357811974
54.14240778 11.93511014 42.20729763 122.2090834 0.153549242
74.97602148 14.92170492 53.73007172 60.05431656 105.6453997 1.594747729
42.51727249 14.37567126 25.32356538 28.14160123 128.9056892 0.75702014
33.78884314 3.675109986 30.11373315 128.3253556 -1.776111234
54.5036853 6.819910138 47.68377516 111.7911722 -4.406769011
48.17074627 9.594216702 39.71092029 38.57652956 135.6233101 5.360050572
46.37408781 10.21590237 42.69999999 36.15818544 121.2476572 -0.54202201
52.86221391 9.410371613 46.98805181 43.4518423 123.0912395 1.856659161
57.1458515 16.48909145 42.84214764 40.65676005 113.8061775 5.0151857
37.14014978 16.48123972 20.65891006 125.0143609 7.366425398
51.31177106 8.875541276 56.99999999 42.43622979 126.4722584 -2.144043911
42.51561014 16.54121618 25.97439396 120.631941 7.876730692
39.35870531 7.011261806 32.3474435 117.8187599 1.904048199
35.8775708 1.112373561 43.45725694 34.76519724 126.9239062 -1.632238263
43.1919153 9.976663803 28.93814927 33.21525149 123.4674001 1.741017579
67.28971201 16.7175142 50.5721978 137.5917777 4.960343813
51.32546366 13.63122319 33.25857782 37.69424047 131.3061224 1.78886965
65.7563482 13.20692644 52.54942177 129.3935728 -1.982120038
40.41336566 -1.329412398 30.98276809 41.74277806 119.3356546 -6.173674823
48.80190855 18.01776202 139.1504066 10.44286169
50.08615264 13.43004422 34.45754051 36.65610842 119.1346221 3.089484465
64.26150724 14.49786554 43.90250363 49.76364169 115.3882683 5.951454368
53.68337998 13.44702168 41.58429713 40.23635831 113.9137026 2.737035292
48.99595771 13.11382047 51.87351997 126.3981876 0.535471617
59.16761171 14.56274875 44.60486296 121.0356423 2.830504124
67.80469442 16.55066167 43.25680184 51.25403274 119.6856451 4.867539941
61.73487533 17.11431203 46.89999999 44.6205633 120.9201997 3.087725997
33.04168754 -0.324678459 19.0710746 33.366366 120.3886112 9.354364925
74.56501543 15.72431994 58.61858244 105.417304 0.599247113
44.43070103 14.17426387 32.2434952 131.7176127 -3.604255336
36.42248549 13.87942449 20.24256187 22.543061 126.0768612 0.179717077
51.07983294 14.20993529 35.95122893 36.86989765 115.8037111 6.905089963
34.75673809 2.631739646 29.50438112 32.12499844 127.1398495 -0.460894198
48.90290434 5.587588658 55.49999999 137.1082886 19.85475919
46.23639915 10.0627701 36.17362905 128.0636203 -5.100053328
46.42636614 6.620795049 48.09999999 130.3500956 2.449382401
39.65690201 16.20883944 36.67485694 23.44806258 131.922009 -4.968979881
45.57548229 18.75913544 33.77414297 26.81634684 116.7970069 3.131909921
66.50717865 20.89767207 31.72747138 45.60950658 128.9029049 1.517203356
82.90535054 29.89411893 58.25054221 53.01123161 110.7089577 6.079337831
50.67667667 6.461501271 44.2151754 116.5879699 -0.214710615
89.01487529 26.07598143 69.02125897 62.93889386 111.4810746 6.061508401
54.60031622 21.48897426 29.36021618 118.3433212 -1.471067262
34.38229939 2.062682882 32.39081996 32.31961651 128.3001991 -3.365515555
45.07545026 12.30695118 44.58317718 32.76849908 147.8946372 -8.941709421
47.90356517 13.61668819 34.28687698 117.4490622 -4.245395422
53.93674778 20.72149628 29.22053381 114.365845 -0.421010392
61.44659663 22.6949683 46.17034732 38.75162833 125.6707246 -2.707879517
45.25279209 8.693157364 41.5831264 36.55963472 118.5458418 0.214750167
33.84164075 5.073991409 36.64123294 28.76764934 123.9452436 -0.199249089

DATA 630

Assignment 4: Neural Network

1

. Introduction

Inspired by human neural biology, neural networks (NN) were first envisaged by psychologists and neurologists in the 1940s. NNARE once again experiencing resurgence in data science and machine learning.

In simple terms, an NN is a connected network of nodes or neurons representing input and output, along with appropriate weights associated with connections between neurons. NN are used in many applications such as image and speech recognition, robotics, numerical control, game playing, cancer diagnostics, and more. NN can employ both as supervised and unsupervised learning techniques. There are a number of different NN architectures and algorithms available, one popular algorithm is known as back-propagation.

2.

Steps to Completion

For each study the general procedure is to:

· Review theoretical background based on available resources in the course content

· Select a dataset from the module’s recommended datasets list

· Run an analysis, perform evaluation, and capture the results

· Document your findings and analysis in a data mining analytical report

3. Deliverables

Submit your analysis report by addressing the following critical areas:

· Introduction: give some background and context about the domain of application, provide the rationale for the type of analysis, and state the objective clearly.

· Analysis: describe the data both qualitatively and quantitatively through exploratory analysis, perform necessary preprocessing activities, give some intuition about the algorithm and core parameters, demonstrate the model building steps along with parameter tuning, and explain all your assumptions.

· Result: explain the result and interpret the model output using terms that reflect the application area, perform model evaluation using the appropriate metrics, and leverage visualization.

· Conclusion: summarize your main findings, discuss experimental limitations related to the data and/or implementation of the algorithm, and suggest improvement areas as a potentiation future work.

· Miscellaneous:

· Proof read your report for correct structure, grammar, and spelling

· Follow appropriate APA formatting and provide all references

· Include your R script and extended model outputs in an Appendix section.

The length of the report should be 7-10 pages excluding the title page, appendix and R script.

4. Grading Rubric

Criteria

Weight
(%)

Introduction, objective, rationale.

10

Analysis and Demonstration of Model Development

40

Result Interpretation and Model Evaluation

40

Conclusion, limitations, improvement suggestions

10

Total

100

1

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy