please view photos for what is required
E q u i l i b r i u m :
D e t e r m i n a t i o n o f a n E q u i l i b r i u m C o n s t a n t
P u r p o s e
To determine the equilibrium constant of a reaction.
L e a r n i n g O b j e c t i v e s
Take a reaction to equilibrium by setting up and monitoring a reaction in a reflux apparatus.
Measure the amount of acid at equilibrium by carrying out an acid-base titration.
Apply the information from a balanced chemical equation and data obtained in the laboratory to de-
termine the concentrations of reactants and products at
equilibrium.
Calculate the value of the equilibrium constant using data obtained in the laboratory.
L a b o r a t o r y S k i l l s
To set up and monitor a reflux apparatus.
To carry out an acid-base titration.
E q u i p m e n t
Two
5
0-mL
graduated cylinders
Two
1
2
5-mL
Erlenmeyer flasks
25-mL buret
Equipment necessary
to assemble the
reflux apparatus
shown in Figure 1.
C h e m i c a l s
Anhydrous ethanol
(ethyl alcohol)
Anhydrous acetic
acid
Concentrated sulfuric
acid
I n t r o d u c t i o n
From the beginning of this course, we have generally assumed that chemical reactions go to completion, that is,
the reaction proceeds in the forward direction until one of the reactants is completely used up. However, many
reactions do not go to completion and are able to move both in the forward and reverse directions simultaneously.
Such a reaction is called a reversible reaction. A double arrow in the chemical equation designates a reversible
reaction, as shown in Reaction 1:
aA + bB −−−⇀↽−−− cC + dD (Reaction 1)
1
D e t e r m i n a t i o n o f a n E q u i l i b r i u m C o n s t a n t
A reversible reaction has two reaction rates: a forward reaction rate, where the reactants A and B are consumed
andtheproductsCandDareproduced,andareversereactionrate,wheretheproductsCandDareconsumedand
thereactantsAandBareproduced. Allreversiblereactionseventuallyreachapointatwhichtheforwardreaction
rate equals the reverse reaction rate. This point is called equilibrium. At equilibrium, the concentration of
reactants and products do not change with time. It is important to remember that even though the concentration
of reactants and products do not change with time, the reaction has not stopped. Equilibrium is a dynamic state.
The state will persist as long as the reaction conditions remain constant.
A reaction at equilibrium follows the law of mass action which gives the relationship between concentrations
of the reactants and products at equilibrium. According to the law of mass action, the relationship between
concentrations of reactants and products at equilibrium for the above reaction is given in Equation 1:
?eq =
[C]?[D]?
[A]?[B]?
(Equation 1)
Thisrelationshipiscalledtheequilibrium-constantexpression. Theconstant, ?eq, isapositivenumberwhose
value depends on the reaction and temperature.
In today’s experiment, students will be determining the equilibrium constant for the reaction of ethyl alcohol
(C2H5OH) with acetic acid (HC2H
3
O2) to produce ethyl acetate (CH3COOC2H5) and water according to Reac-
tion 2:
C2H5OH(aq) + HC2H3O2(aq) −−−⇀↽−−− CH3COOC2H5 + H2O (Reaction 2)
The equilibrium expression for this reaction is given in Equation 2:
?eq =
[CH3COOC2H5][H2O]
[C2H5OH][HC2H3O2]
(Equation 2)
This reaction is a bit unusual for general chemistry students because it does not occur in dilute aqueous solution.
The reaction begins by mixing anhydrous ethyl alcohol with anhydrous acetic acid (called glacial acetic acid).
Note that this means the there is no (or very little) water present in the reactants but, because water is a product,
the concentration of water changes during the reaction. Some sulfuric acid is added to act as a catalyst to allow
the reaction reach equilibrium faster. The reaction mixture is heated to boiling and then maintained at boiling for
1-1.5 hours. This gives the reaction sufficient time to reach equilibrium. The reaction mixture is then analyzed
to determine the equilibrium concentrations from which the equilibrium constant may be determined.
Studentswill determinetheconcentrationof aceticacid by titrationagainst0.25 MNaOHsolution. The acid-base
2
D e t e r m i n a t i o n o f a n E q u i l i b r i u m C o n s t a n t
neutralization reaction is shown in Reaction 3:
HC2H3O2(aq) + NaOH(aq) −−−→ NaC2H3O2(aq + H2O(l) (Reaction 3)
At the endpoint, the number of moles of NaOH added will be equal to the number of moles of acetic acid con-
tained in your sample. The number of moles of NaOH added can be calculated from the the volume of NaOH
solution and the molarity of NaOH solution. The number of moles of acetic acid contained in your sample is
equal to the volume of your solution used in the titration times the molarity of acetic acid. Because this neutral-
ization reaction has a 1:1 stoichiometric relationship between the acid and the base, you can use Equation 3 to
determine the molarity of the acetic acid in your sample:
Vacid×Macid = VNaOH×MNaOH (Equation 3)
Figure 1: R e fl u x a p p a r a t u s
It is important to remember that this formula only works for acid-
base titrations in which one mole of acid neutralizes one mole of
base. Forexample, itwouldnotworkfortitrationsof sulfuricacid
(H2SO
4
) with sodium hydroxide.
When setting up the reflux apparatus (Figure 1), be sure to place
the clamps in the positions shown to stabilize the assembly. Suf-
ficient distance should be allowed between the wire gauze and
the Bunsen burner to allow for adjustment of flame height. The
water inlet on the condenser should be connected to a water sup-
ply using a rubber hose. The water outlet should have a rubber
hose leading to a sink or trough. Be certain that the rubber hoses
are firmly attached so that no water leaks into the reaction flask.
The water supply should then be adjusted so that there is a steady
flow through the cooling jacket of the condenser in the indicated
direction.
3
D e t e r m i n a t i o n o f a n E q u i l i b r i u m C o n s t a n t
P r o c e d u r e
You will be working in pairs on this experiment. Each student should hand in a separate data sheet.
A . D e t e r m i n a t i o n o f i n i t i a l c o n c e n t r a t i o n s
1. Measure 31.5 mL (0.5 mol) of glacial acetic acid and 29.1 mL (0.5 mol) of ethyl alcohol in separate clean, dry
50-mL graduated cylinders.
2. Pour the two reactants simultaneously into the round-bottom flask. Mix thoroughly.
3. Immediately remove 1 mL of the reaction mixture using a 1-mL pipet.
4. Place the 1 mL sample in a 125-mL Erlenmeyer flask containing 30 mL of deionized water.
5. Add three drops of phenolphthalein indicator and titrate the sample with the standard 0.25 M NaOH fur-
nished.
6
. Record the volume of NaOH required.
7. Calculate the initial concentration of acetic acid using Equation 3.
Showyourcalculationsonthereportsheet. Rememberthattheendpointof thetitrationisthefirst pinkcolor
that persists for more than 30 seconds. Do not continue the titration until the solution becomes darker pink
or purple. Since equal number of moles of acetic acid and ethyl alcohol were used to prepare the reaction
mixture, the initial concentration of ethyl alcohol will be equal to the initial concentration of acetic acid that
is calculated.
8. Place two or three boiling chips in the reaction mixture in the round bottom flask to ensure smooth boiling.
9. Carefully add 20 drops of concentrated sulfuric
acid.
10. Reconnect the condenser to the flask and begin heating the mixture. Be certain that the condenser is snugly
4
D e t e r m i n a t i o n o f a n E q u i l i b r i u m C o n s t a n t
fitted to the flask and that water is flowing through the condenser. Done correctly, no fumes can escape
from either the top or the bottom of the condenser. As the mixture boils, you should note fumes rising
a few inches into the condenser and liquid condensing at that point and dropping back into the reaction
flask. This condition is known as reflux and will insure a constant temperature of the mixture. The reaction
mixture should boil gently for one to one and one-half hours to allow the reaction sufficient time to reach
equilibrium.
B . D e t e r m i n a t i o n o f t h e b l a n k
While the reflux process is taking place, perform the following titration to determine the amount of NaOH
solution required to neutralize the sulfuric acid added to the reaction mixture.
11. Prepare a blank solution by adding the same amount of H2SO4 (20 drops) that was added to the reaction
mixture to 60.6 mL of RO water (the same volume as the reaction mixture) in a 125-mL Erlenmeyer flask
12. Mix thoroughly.
13. Pipet 1 mL of this blank solution into a second 125-mL Erlenmeyer flask.
14. Add 30 mL of RO water, three drops of phenolphthalein, and titrate as before with 0.25 M NaOH solution.
15. Record the volume of NaOH required to reach the endpoint.
C . D e t e r m i n a t i o n o f fi n a l c o n c e n t r a t i o n s
When the reaction has reached equilibrium, turn off the heat and allow the mixture to cool to room temper-
ature. Then disconnect the condenser.
16. Pipet 1 mL of the reaction mixture into a 125-mL Erlenmeyer flask.
17. Add 30 mL of RO water, three drops of phenolphthalein, and titrate as before with 0.25 M NaOH.
18. Record the volume of NaOH required to reach the endpoint. This volume represents the amount of NaOH
solutionneededtoneutralizetheaceticacidandthesulfuricacidcontainedinthereactionmixture. Subtract
the volume required to neutralize the sulfuric acid, determined by the blank, from this volume to obtain the
5
D e t e r m i n a t i o n o f a n E q u i l i b r i u m C o n s t a n t
volumeof NaOHsolutionrequiredtoneutralizetheaceticacid. Usethecorrectedvolumeand?? tocalculate
the equilibrium concentration of the acetic acid.
D . C a l c u l a t i o n o f t h e e q u i l i b r i u m c o n s t a n t
The reaction started with the initial concentrations of acetic acid and ethyl alcohol begin equal and the two
reactants react in a 1:1 ratio.
• Thus, the equilibrium concentration of ethyl alcohol is equal to the equilibrium concentration of acetic
acid.
• One mole of ethyl acetate is formed for every mole of acetic acid reacted, so the equilibrium concentra-
tionof ethylacetatewillbeequaltothechangeinconcentrationof aceticacid. Thechangeinconcentra-
tionof aceticacidisequaltotheinitialconcentrationof aceticacidminustheequilibriumconcentration
of acetic acid.
• Onemoleof waterisformedforeverymoleof ethylacetateformedandtheinitialconcentrationof water
is very small. Thus, the equilibrium concentration of water is equal to the equilibrium concentration of
ethyl acetate.
From these equilibrium concentrations, use Equation 2 to calculate the value of Keq for this reaction. Show your
calculations on the data sheet.
6
Introduction
Procedure
A. Determination of initial concentrations
B. Determination of the blank
C. Determination of final concentrations
D. Calculation of the equilibrium constant
A. Determination of initial concentrations
B. Determination of the blank
C. Determination of final concentrations
D. Calculation of the equilibrium constant
Post-Laboratory Questions
We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.
Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.
Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.
Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.
Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.
Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.
We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.
Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.
You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.
Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.
Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.
You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.
You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.
Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.
We create perfect papers according to the guidelines.
We seamlessly edit out errors from your papers.
We thoroughly read your final draft to identify errors.
Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!
Dedication. Quality. Commitment. Punctuality
Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.
We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.
We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.
We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.
We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.