Machine Learning

I have this Assignment using Jupyter by Anaconda and Python

it’s due this Friday 13 please read the pdf file carefully Thanks

Don't use plagiarized sources. Get Your Custom Essay on
Machine Learning
Just from $13/Page
Order Essay

Assignment 5: Multi-Classification

Due date: Mar 13th, 2020 (Friday)

Total Points: 100

Please put your name, student ID, date and time here

Name:

Student ID:

Date:

Time:

In this assignment, you will investigate the handwritten digits dataset.

Sample images:

Please apply the folowing eight methods to classify the handwritten digits dataset.

Split the dataset into training sets and test sets

Fit the training data sets to the following eight algorithms

Print the classification report on the test data sets

Method 1: KNN

Method 2: Linear SVM

Method 3: Gaussian Kernel SVM

Method 4: Naive Bayes

Method 5: Decision Tree

Method 6: Random Forest

Method 7: Voting Classifier

Method 8: Bagging

Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html

1 of 5 3/11/2020, 6:57 PM

In [4]: # Importing the dataset
from sklearn.datasets import load_digits
digits = load_digits()
print(digits)

Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html

2 of 5 3/11/2020, 6:57 PM

{‘data’: array([[ 0., 0., 5., …, 0., 0., 0.],
[ 0., 0., 0., …, 10., 0., 0.],
[ 0., 0., 0., …, 16., 9., 0.],

…,

[ 0., 0., 1., …, 6., 0., 0.],
[ 0., 0., 2., …, 12., 0., 0.],
[ 0., 0., 10., …, 12., 1., 0.]]), ‘target’: array([0, 1, 2, …, 8,
9, 8]), ‘target_names’: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), ‘images’: array
([[[ 0., 0., 5., …, 1., 0., 0.],
[ 0., 0., 13., …, 15., 5., 0.],
[ 0., 3., 15., …, 11., 8., 0.],
…,
[ 0., 4., 11., …, 12., 7., 0.],
[ 0., 2., 14., …, 12., 0., 0.],
[ 0., 0., 6., …, 0., 0., 0.]],

[[ 0., 0., 0., …, 5., 0., 0.],
[ 0., 0., 0., …, 9., 0., 0.],
[ 0., 0., 3., …, 6., 0., 0.],
…,
[ 0., 0., 1., …, 6., 0., 0.],
[ 0., 0., 1., …, 6., 0., 0.],
[ 0., 0., 0., …, 10., 0., 0.]],

[[ 0., 0., 0., …, 12., 0., 0.],
[ 0., 0., 3., …, 14., 0., 0.],
[ 0., 0., 8., …, 16., 0., 0.],
…,
[ 0., 9., 16., …, 0., 0., 0.],
[ 0., 3., 13., …, 11., 5., 0.],
[ 0., 0., 0., …, 16., 9., 0.]],

…,

[[ 0., 0., 1., …, 1., 0., 0.],
[ 0., 0., 13., …, 2., 1., 0.],
[ 0., 0., 16., …, 16., 5., 0.],
…,
[ 0., 0., 16., …, 15., 0., 0.],
[ 0., 0., 15., …, 16., 0., 0.],
[ 0., 0., 2., …, 6., 0., 0.]],

[[ 0., 0., 2., …, 0., 0., 0.],
[ 0., 0., 14., …, 15., 1., 0.],
[ 0., 4., 16., …, 16., 7., 0.],
…,
[ 0., 0., 0., …, 16., 2., 0.],
[ 0., 0., 4., …, 16., 2., 0.],
[ 0., 0., 5., …, 12., 0., 0.]],

[[ 0., 0., 10., …, 1., 0., 0.],
[ 0., 2., 16., …, 1., 0., 0.],
[ 0., 0., 15., …, 15., 0., 0.],
…,
[ 0., 4., 16., …, 16., 6., 0.],
[ 0., 8., 16., …, 16., 8., 0.],
[ 0., 1., 8., …, 12., 1., 0.]]]), ‘DESCR’: “.. _digits_dataset:\n\
nOptical recognition of handwritten digits dataset\n
————————————————–\n\n**Data Set Characteristic
s:**\n\n :Number of Instances: 5620\n :Number of Attributes: 64\n :Attr
ibute Information: 8×8 image of integer pixels in the range 0..16.\n :Missing
Attribute Values: None\n :Creator: E. Alpaydin (alpaydin ‘@’ boun.edu.tr)\n
:Date: July; 1998\n\nThis is a copy of the test set of the UCI ML hand-written d
igits datasets\nhttp://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Ha

Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html

3 of 5 3/11/2020, 6:57 PM

In [27]: import matplotlib.pyplot as plt
digits.images[0].shape
list = [10,100,100,45]
fig = plt.figure()
for i,j in enumerate(list):

plt.subplot(2,2,i+1)
plt.imshow(digits.images[j],cmap=’gray’)

In [2]: X = digits.data
y = digits.target

Step 1. Split the dataset into training data and testing data ( 10
points )

In [ ]:

Step 2. Algorithm Analysis ( 80 points )

Method 1. KNN

In [ ]:

Method 2. Linear SVM

In [ ]:

Method 3. Gaussian Kernal SVM

In [ ]:

Method 4. Naive Bayes

Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html

4 of 5 3/11/2020, 6:57 PM

In [ ]:

Method 5. Decision Tree

In [ ]:

Method 6. Random Forest

In [ ]:

Method 7. Voting Classifier

In [ ]:

Method 8. Bagging

In [ ]:

Step 3: Accuracy Results Table ( 8 points )

KNN L_SVM RBF_SVM NB DT RF Voting Bagging

Accuracy

Weighted Precision

Weighted Recall

Step 4: Conclusion ( 2 Points )

In [ ]:
In [ ]:
In [ ]:
In [ ]:
Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html

5 of 5 3/11/2020, 6:57 PM

{
“cells”: [
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [

\n”,

Assignment 5: Multi-Classification

\n”,


\n”,
“\n”,

Due date: Mar 13th, 2020 (Friday)

\n”,

Total Points: 100

\n”,
“\n”,
“\n”,


]
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“### Please put your name, student ID, date and time here \n”,
“* Name:\n”,
“* Student ID:\n”,
“* Date:\n”,
“* Time:”
]
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“* In this assignment, you will investigate the handwritten digits dataset.\n”,
“* Sample images:\n”,
\n”,
“\n”,
“* Please apply the folowing eight methods to classify the handwritten digits dataset.\n”,
“* Split the dataset into training sets and test sets\n”,
“* Fit the training data sets to the following eight algorithms\n”,
“* Print the classification report on the test data sets\n”,
“\n”,

Method 1: KNN

\n”,

Method 2: Linear SVM

\n”,

Method 3: Gaussian Kernel SVM

\n”,

Method 4: Naive Bayes

\n”,

Method 5: Decision Tree

\n”,

Method 6: Random Forest

\n”,

Method 7: Voting Classifier

\n”,

Method 8: Bagging


]
},
{
“cell_type”: “code”,
“execution_count”: 4,
“metadata”: {
“scrolled”: true
},
“outputs”: [
{
“name”: “stdout”,
“output_type”: “stream”,
“text”: [
“{‘data’: array([[ 0., 0., 5., …, 0., 0., 0.],\n”,
” [ 0., 0., 0., …, 10., 0., 0.],\n”,
” [ 0., 0., 0., …, 16., 9., 0.],\n”,
” …,\n”,
” [ 0., 0., 1., …, 6., 0., 0.],\n”,
” [ 0., 0., 2., …, 12., 0., 0.],\n”,
” [ 0., 0., 10., …, 12., 1., 0.]]), ‘target’: array([0, 1, 2, …, 8, 9, 8]), ‘target_names’: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), ‘images’: array([[[ 0., 0., 5., …, 1., 0., 0.],\n”,
” [ 0., 0., 13., …, 15., 5., 0.],\n”,
” [ 0., 3., 15., …, 11., 8., 0.],\n”,
” …,\n”,
” [ 0., 4., 11., …, 12., 7., 0.],\n”,
” [ 0., 2., 14., …, 12., 0., 0.],\n”,
” [ 0., 0., 6., …, 0., 0., 0.]],\n”,
“\n”,
” [[ 0., 0., 0., …, 5., 0., 0.],\n”,
” [ 0., 0., 0., …, 9., 0., 0.],\n”,
” [ 0., 0., 3., …, 6., 0., 0.],\n”,
” …,\n”,
” [ 0., 0., 1., …, 6., 0., 0.],\n”,
” [ 0., 0., 1., …, 6., 0., 0.],\n”,
” [ 0., 0., 0., …, 10., 0., 0.]],\n”,
“\n”,
” [[ 0., 0., 0., …, 12., 0., 0.],\n”,
” [ 0., 0., 3., …, 14., 0., 0.],\n”,
” [ 0., 0., 8., …, 16., 0., 0.],\n”,
” …,\n”,
” [ 0., 9., 16., …, 0., 0., 0.],\n”,
” [ 0., 3., 13., …, 11., 5., 0.],\n”,
” [ 0., 0., 0., …, 16., 9., 0.]],\n”,
“\n”,
” …,\n”,
“\n”,
” [[ 0., 0., 1., …, 1., 0., 0.],\n”,
” [ 0., 0., 13., …, 2., 1., 0.],\n”,
” [ 0., 0., 16., …, 16., 5., 0.],\n”,
” …,\n”,
” [ 0., 0., 16., …, 15., 0., 0.],\n”,
” [ 0., 0., 15., …, 16., 0., 0.],\n”,
” [ 0., 0., 2., …, 6., 0., 0.]],\n”,
“\n”,
” [[ 0., 0., 2., …, 0., 0., 0.],\n”,
” [ 0., 0., 14., …, 15., 1., 0.],\n”,
” [ 0., 4., 16., …, 16., 7., 0.],\n”,
” …,\n”,
” [ 0., 0., 0., …, 16., 2., 0.],\n”,
” [ 0., 0., 4., …, 16., 2., 0.],\n”,
” [ 0., 0., 5., …, 12., 0., 0.]],\n”,
“\n”,
” [[ 0., 0., 10., …, 1., 0., 0.],\n”,
” [ 0., 2., 16., …, 1., 0., 0.],\n”,
” [ 0., 0., 15., …, 15., 0., 0.],\n”,
” …,\n”,
” [ 0., 4., 16., …, 16., 6., 0.],\n”,
” [ 0., 8., 16., …, 16., 8., 0.],\n”,
” [ 0., 1., 8., …, 12., 1., 0.]]]), ‘DESCR’: \”.. _digits_dataset:\\n\\nOptical recognition of handwritten digits dataset\\n————————————————–\\n\\n**Data Set Characteristics:**\\n\\n :Number of Instances: 5620\\n :Number of Attributes: 64\\n :Attribute Information: 8×8 image of integer pixels in the range 0..16.\\n :Missing Attribute Values: None\\n :Creator: E. Alpaydin (alpaydin ‘@’ boun.edu.tr)\\n :Date: July; 1998\\n\\nThis is a copy of the test set of the UCI ML hand-written digits datasets\\nhttp://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits\\n\\nThe data set contains images of hand-written digits: 10 classes where\\neach class refers to a digit.\\n\\nPreprocessing programs made available by NIST were used to extract\\nnormalized bitmaps of handwritten digits from a preprinted form. From a\\ntotal of 43 people, 30 contributed to the training set and different 13\\nto the test set. 32×32 bitmaps are divided into nonoverlapping blocks of\\n4x4 and the number of on pixels are counted in each block. This generates\\nan input matrix of 8×8 where each element is an integer in the range\\n0..16. This reduces dimensionality and gives invariance to small\\ndistortions.\\n\\nFor info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.\\nT. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.\\nL. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,\\n1994.\\n\\n.. topic:: References\\n\\n – C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their\\n Applications to Handwritten Digit Recognition, MSc Thesis, Institute of\\n Graduate Studies in Science and Engineering, Bogazici University.\\n – E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.\\n – Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.\\n Linear dimensionalityreduction using relevance weighted LDA. School of\\n Electrical and Electronic Engineering Nanyang Technological University.\\n 2005.\\n – Claudio Gentile. A New Approximate Maximal Margin Classification\\n Algorithm. NIPS. 2000.\”}\n”
]
}
],
“source”: [
“# Importing the dataset\n”,
“from sklearn.datasets import load_digits\n”,
“digits = load_digits()\n”,
“print(digits)”
]
},
{
“cell_type”: “code”,
“execution_count”: 27,
“metadata”: {},
“outputs”: [
{
“data”: {
“image/png”: “iVBORw0KGgoAAAANSUhEUgAAATgAAAD8CAYAAADjcbh8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADuxJREFUeJzt3d+LXWfZxvHreqfOgTVmoDZCmpCppAg9SiUUpCCJotQfmBx4kILS8SRHlQQCUo+S/gMyHogQak3AhhxUmxYprQWdiCclSTNFk7SSlgkZov1FUoMUQvB+D2YL806m7vXsdz9rr33v7wdC58e953lW5s7Vtfbez3ocEQKAjP5n1BMAgFoIOABpEXAA0iLgAKRFwAFIi4ADkBYBByAtAg5AWgQcgLTuqvFDbVdfHjE1NVVUv3nz5qL6e+65p6hekm7evFlU//bbbxePUSoiXH2QCdFGX5eanp4uqt++fXvxGBcvXix+TAs+iIh7+xVVCbg2bNiwoaj+0KFDRfVzc3NF9ZK0sLBQVL93797iMYDVSv/HfeLEieIxduzYUfyYFlxpUsQlKoC0GgWc7Udtv2X7su0na08KaAu9nVvfgLM9Jennkr4p6UFJj9l+sPbEgNro7fyanME9LOlyRLwTEbcknZS0p+60gFbQ28k1Cbj7JF1d9fly72vAuKO3k2vyKup6bzO44+Vy2/sl7f9/zwhoT9/epq/HW5OAW5a0ddXnWyRdW1sUEUclHZW6+X4hYB19e5u+Hm9NLlHPSHrA9v22pyXtk/Ri3WkBraC3k+t7BhcRt20/IekVSVOSnomIC9VnBlRGb+fXaCVDRLwk6aXKcwFaR2/nNrZLtY4dO1ZUv2dP2av/Tz31VFG9VL68a5DlYKXHjdxKe2h2drbKPLqKpVoA0iLgAKRFwAFIi4ADkBYBByAtAg5AWgQcgLQIOABpEXAA0iLgAKRFwAFIi4ADkFYnFtsPsgC4dPH88ePHi+qPHDlSVC9JMzMzRfUd3W8SI1Ta14cPHy6qH2Qv3tJ/n0tLS8Vj1MIZHIC0CDgAaTXZF3Wr7T/avmT7gu0DbUwMqI3ezq/Jc3C3JR2KiNdtb5B0zvarEXGx8tyA2ujt5PqewUXE3yPi9d7HNyVdEntHIgF6O7+iV1Ftz0p6SNJr63yP/SMxtj6pt+nr8dY44Gx/RtJvJB2MiH+u/T77R2Jc/bfepq/HW6NXUW1/SisN8GxE/LbulID20Nu5NXkV1ZJ+KelSRPy0/pSAdtDb+TU5g3tE0g8kfdX2Yu/PtyrPC2gDvZ1ck53t/yzJLcwFaBW9nV8n1qLeuHGj+hhtbJjcxnEgt9I106dPn65aL0nXr18vqt+9e3fxGAsLC8WPaYKlWgDSIuAApEXAAUiLgAOQFgEHIC0CDkBaBByAtAg4AGkRcADSIuAApEXAAUirE2tR2R8UGe3atav4MRs3biyqn5ubK6ofZL/fUoMcN2tRAaAQAQcgrcYBZ3vK9nnbv6s5IaBN9HVuJWdwB7SyrRqQCX2dWNNNZ7ZI+rakp+tOB2gPfZ1f0zO4eUk/lvTvinMB2kZfJ9dkV63vSHovIs71qdtv+6zts0ObHVAJfT0Zmu6q9V3bS5JOamUHol+vLYqIoxGxMyJ2DnmOQA309QToG3AR8ZOI2BIRs5L2SfpDRHy/+syAiujrycD74ACkVbRUKyIWJC1UmQkwIvR1XpzBAUirE4vtFxcXq49Ruoh5ZmameIzSmwa0sfAZozPIAvLSjZ9Lx9i2bVtR/SBqLZwfBGdwANIi4ACkRcABSIuAA5AWAQcgLQIOQFoEHIC0CDgAaRFwANIi4ACkRcABSMsRMfwfag//h65Re73b0tJS1Z8vlW/aO4iIcPVBJkQbfV3bIOu+T506VVTf0hrrc01uQsoZHIC0CDgAaTXdNnDG9nO237R9yfaXa08MaAO9nVvT+8H9TNLLEfE929OSPl1xTkCb6O3E+gac7c9K+oqkOUmKiFuSbtWdFlAfvZ1fk0vUL0h6X9KvbJ+3/bTtuyvPC2gDvZ1ck4C7S9KXJP0iIh6S9C9JT64tYoNcjKG+vU1fj7cmAbcsaTkiXut9/pxWmuL/YINcjKG+vU1fj7cmGz//Q9JV21/sfelrki5WnRXQAno7v6avov5I0rO9V5nekfTDelMCWkVvJ9Yo4CJiURKn6EiH3s6NlQwA0urExs+D2Lt3b1H9/Px8UX3pJs5SO4vngba1ceOJWjiDA5AWAQcgLQIOQFoEHIC0CDgAaRFwANIi4ACkRcABSIuAA5AWAQcgLQIOQFq1Nn5+X9KVdb71OUkfDH3A7hvVcW+LiHtHMG5K9PUdRnncjXq7SsB94mD22Um8M+qkHvekmNTf7zgcN5eoANIi4ACk1XbAHW15vK6Y1OOeFJP6++38cbf6HBwAtIlLVABpEXAA0mol4Gw/avst25dtP9n/ETnYXrL9F9uL7IyeE73d7d6u/hyc7SlJf5P0da3sJH5G0mMRkX6DXdtLknZGxCS+CTQ9erv7vd3GGdzDki5HxDsRcUvSSUl7WhgXqI3e7rg2Au4+SVdXfb7c+9okCEm/t33O9v5RTwZDR293vLfb2BfV63xtUt6b8khEXLO9SdKrtt+MiD+NelIYGnq7473dxhncsqStqz7fIulaC+OOXERc6/33PUnPa+WSBnnQ2x3v7TYC7oykB2zfb3ta0j5JL7Yw7kjZvtv2hv98LOkbkv462llhyOjtjvd29UvUiLht+wlJr0iakvRMRFyoPW4HfF7S87allb/nExHx8minhGGit7vf2yzVApAWKxkApEXAAUiLgAOQVpUXGWx37om96enpovrt27cXj3HxYvdW6ETEeu/VwgDa6OutW7f2L1pl06ZNRfUff/xxUb0kvfvuu0X1H374YfEYA/igyZ4MbbzRtxM2b95cVH/ixIniMXbs2FH8GGC1Q4cOFdUfOHCgqP6NN94oqpek+fn5ovpjx44VjzGA9Tb/uUOjS9RJvWMC8qO3c+sbcL07Jvxc0jclPSjpMdsP1p4YUBu9nV+TMzjumICs6O3kmgTcJN8xAbnR28k1eZGh0R0TerdM6extU4B19O1t+nq8NQm4RndMiIij6m0j1sW3iQDr6Nvb9PV4a3KJOpF3TMBEoLeT63sGN8F3TEBy9HZ+jd7oGxEvSXqp8lyA1tHbubEWFUBaVe4H18UnY48cOVJUf/DgweIxZmZmih9TG2tRh6eNvp6bmyuqv379elH9qVOniuoH0bsRZm3nImJnvyLO4ACkRcABSIuAA5AWAQcgLQIOQFoEHIC0CDgAaRFwANIi4ACkRcABSIuAA5AWAQcgrbHdF3XPnrK9QQ4fPlxUv3fv3qJ6SZqdnS2qX1paKh4DuZXuKVp6E4mPPvqoqF6SHn/88eLHdAVncADSarIv6lbbf7R9yfYF22VbaQMdRW/n1+QS9bakQxHxuu0Nks7ZfjUiLlaeG1AbvZ1c3zO4iPh7RLze+/impEti70gkQG/nV/QcnO1ZSQ9Jeq3GZIBRobdzavwqqu3PSPqNpIMR8c91vs8GuRhL/6236evx1ijgbH9KKw3wbET8dr0aNsjFOOrX2/T1eGvyKqol/VLSpYj4af0pAe2gt/Nr8hzcI5J+IOmrthd7f75VeV5AG+jt5JrsbP9nSWw9h3To7fxYyQAgrbFdi3r8+PGi+tOnT1etl8o34d29e3fxGAsLC8WPQV7nz58vqr9x40bxGFeuXCl+TFdwBgcgLQIOQFoEHIC0CDgAaRFwANIi4ACkRcABSIuAA5AWAQcgLQIOQFoEHIC0OrEWddeuXcWP2bhxY1H93NxcUX3pfpODGOS4WYuK1V544YWi+jbWP+/YsaN4jFp7BHMGByAtAg5AWo0DzvaU7fO2f1dzQkCb6OvcSs7gDmhl30ggE/o6sUYBZ3uLpG9LerrudID20Nf5NT2Dm5f0Y0n/rjgXoG30dXJNtg38jqT3IuJcn7r9ts/aPju02QGV0NeToem2gd+1vSTppFa2WPv12qKIOBoROyNi55DnCNRAX0+AvgEXET+JiC0RMStpn6Q/RMT3q88MqIi+ngy8Dw5AWkVLtSJiQdJClZkAI0Jf58UZHIC0HBHD/6H28H/oGseOHSuqL13Yvm3btqL6QbSx8DkiXDwI1tVGX3fRqVOniupnZmaKxxjgxhPnmrzwwxkcgLQIOABpEXAA0iLgAKRFwAFIi4ADkBYBByAtAg5AWgQcgLQIOABpEXAA0urExs+DKN3IudTi4mLxY0rX7LGJM9YqXZNZWj/IpsylYwzyb6cWzuAApEXAAUir6baBM7afs/2m7Uu2v1x7YkAb6O3cmj4H9zNJL0fE92xPS/p0xTkBbaK3E+sbcLY/K+krkuYkKSJuSbpVd1pAffR2fk0uUb8g6X1Jv7J93vbTtu9eW8T+kRhDfXubvh5vTQLuLklfkvSLiHhI0r8kPbm2iP0jMYb69jZ9Pd6aBNyypOWIeK33+XNaaQpg3NHbyTXZ+Pkfkq7a/mLvS1+TdLHqrIAW0Nv5NX0V9UeSnu29yvSOpB/WmxLQKno7sUYBFxGLkngOAunQ27mxkgFAWmO72L6LlpaWRj0FjLmDBw8W1Zcunh+kR+fn54vqjxw5UjxGLZzBAUiLgAOQFgEHIC0CDkBaBByAtAg4AGkRcADSIuAApEXAAUiLgAOQFgEHIC1HxPB/qP2+pCvrfOtzkj4Y+oDdN6rj3hYR945g3JTo6zuM8rgb9XaVgPvEweyzk3jr50k97kkxqb/fcThuLlEBpEXAAUir7YA72vJ4XTGpxz0pJvX32/njbvU5OABoE5eoANJqJeBsP2r7LduXbd+xaXRWtpds/8X2Ijuj50Rvd7u3q1+i2p6S9DdJX9fKRrtnJD0WEen3n7S9JGlnREzie6TSo7e739ttnME9LOlyRLwTEbcknZS0p4Vxgdro7Y5rI+Duk3R11efLva9NgpD0e9vnbO8f9WQwdPR2x3u7jW0Dvc7XJuWl20ci4prtTZJetf1mRPxp1JPC0NDbHe/tNs7gliVtXfX5FknXWhh35CLiWu+/70l6XiuXNMiD3u54b7cRcGckPWD7ftvTkvZJerGFcUfK9t22N/znY0nfkPTX0c4KQ0Zvd7y3q1+iRsRt209IekXSlKRnIuJC7XE74POSnrctrfw9n4iIl0c7JQwTvd393mYlA4C0WMkAIC0CDkBaBByAtAg4AGkRcADSIuAApEXAAUiLgAOQ1v8CRAOUsGhA8ukAAAAASUVORK5CYII=\n”,
“text/plain”: [


]
},
“metadata”: {
“needs_background”: “light”
},
“output_type”: “display_data”
}
],
“source”: [
“import matplotlib.pyplot as plt\n”,
“digits.images[0].shape\n”,
“list = [10,100,100,45]\n”,
“fig = plt.figure()\n”,
“for i,j in enumerate(list):\n”,
” plt.subplot(2,2,i+1)\n”,
” plt.imshow(digits.images[j],cmap=’gray’)”
]
},
{
“cell_type”: “code”,
“execution_count”: 2,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: [
“X = digits.data\n”,
“y = digits.target”
]
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“## Step 1. Split the dataset into training data and testing data (10 points)”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Step 2. Algorithm Analysis (80 points)”
]
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 1. KNN”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 2. Linear SVM”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 3. Gaussian Kernal SVM”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 4. Naive Bayes”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 5. Decision Tree”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 6. Random Forest”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“## Method 7. Voting Classifier”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“## Method 8. Bagging”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“## Step 3: Accuracy Results Table (8 points)”
]
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

\n”,

KNN L_SVM RBF_SVM NB DT RF Voting Bagging
Accuracy
Weighted Precision
Weighted Recall


]
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Step 4: Conclusion (2 Points)”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
}
],
“metadata”: {
“kernelspec”: {
“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”
},
“language_info”: {
“codemirror_mode”: {
“name”: “ipython”,
“version”: 3
},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.7.4”
}
},
“nbformat”: 4,
“nbformat_minor”: 2
}

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy