Forces in Skeletal Structure of the Arm

2); hence if it is far away then it is smaller (d2> d1). Therefore the mechanical advantage may increase or decrease depending on the distances from the fulcrum.
We can also measure torque (any point of the fulcrum), which refers to the force applied over a distance (lever arm) that causes rotations of the fulcrum. The torque is dependent on three variables: amount of force, angle of application of force and the length of the moment arm/ R. As mentioned above in figure 1, the total torque is equal to zero;. The following formula is used to calculate Torque τ:

Where F is the force (0.71Nm),
R is the distance from the location force is applied to the joint (moment arm) (35cm)
Ï´ is the angle between the force and the radial line
I will now find out the torque for the same question, if the angle is 20°;

Don't use plagiarized sources. Get Your Custom Essay on
Forces in Skeletal Structure of the Arm
Just from $13/Page
Order Essay

This links in with the above statement of the total torque being equal to zero.
I am now going to discuss about the elbow and the forces applied to it. There are many properties which can be used to calculate the forces of the biceps: the angle of the elbow; the length of the upper and lower arm bone; and the distance from the bone to the location the muscle is attached to.
I will now use this formula to find out the force exerted by the biceps (equilibrium) in holding the object, which is the sum of the clockwise moments about any points, equals the sum of the anticlockwise moments about the same point:

Taking 5cm from bone to the biceps attachment;

The force exerted by the biceps holding the object is 891.8N.
Similarly, we can also measure the tension of the bicep/arm holding the object. The image below shows an arm being held out and elevated from the shoulder by the deltoid muscle. The forces can be measured the taking the sum of the torques (of the shoulder joint, the tension (T) can be calculated:
 

Where W1 is the weight of the arm,
W 2 is the weight of the object
Using the above question; if = 20; the weight of the arm (W1) is 68.6N and the weight of the object (W2) is 49N, then calculate T:

= 113.96N
Therefore the force needed to hold up the bicep/arm at 20, is 113.96N.
Task 2. A) You must complete the energy changes/momentum worksheet. Assessment criteria 2.3,2.4
See attachments
b) You must produce a report that describes the equations of motion needed to calculate the range and maximum height that a projectile thrown by a human can achieve. This report must include examples of both the range equation and maximum height equation. You could use a sports person throwing a ball as an example.
A projectile is any object that has been thrown or shot by a human (measures projectile motion). Projectiles are affected by two factors: gravity (Horizontal motion) and air resistance (vertical motion which is the force of gravity pulling down the object).
As part of this task I am going to carry out various calculations to find out the range and maximum height that a golf ball can achieve when a golf player hits the ball.

A golfer hits a ball so that it moves off with a speed of 37m/s at an angle of 45. I am going to calculate how far the ball goes; the maximum height it will reach; and how long it takes for the ball to get there.
Firstly, I am going to use the following formula to calculate how far the ball travels;

Where R is the range/resultant (how far the ball goes),
V0 is the initial velocity of the ball speed (37m/s)
g is the gravity (9.8m/s) also can be used as (a) since it is constant
Ï´ is angle of the ball (45°)
Therefore;

Hence, when a ball is hit with a speed of 37m/s at 45°, the ball will go far as 139.7m.
Secondly, I will calculate the maximum projectile height (how high a ball will go) by using the following method;

Where Ymax is the maximum projectile height that the ball will go

The maximum projectile height that a ball will reach is 34.9m.
The final calculation that I am going to carry out is the flight time so that I can find out how long it takes for the ball to get there. I will use the following method;

Where Tflight is the time flight of how long it takes for the ball to reach there.

The flight time for the ball to get there is 5.3s.
Using the same question, I now want to find out how far the ball travels horizontally from A to C and the time that the ball is in the air, ignoring any air resistance and taking g = 10ms-2.

Firstly, I will calculate the time that the ball is in the air for, by using the following formula;
I need to find out the vertical motion from A to B first = 90° – 45° = 45°
Formula;
Where v is the final velocity (0 since it is moving horizontally),
u is the initial velocity (37m/s x cos 45) is 26.16m/s
a is the acceleration (10m/s)
t is the time
Therefore;

, so the time it takes from A to C is twice this
I will now look at the horizontal motion from A to C.
Horizontal component of velocity. This is constant during motion.
Horizontal distance = horizontal velocity X time of flight

Therefore the horizontal distance the ball travels from A to C is 136.8m.
Task 3. You must produce a report showing how the variation of blood pressure affects the human body. Your report must include calculations to determine pressure based on area or density values. Assessment criteria 3.1,3.2
Bernoulli’s Principles explains that flowing blood has different speeds and therefore different kinetic energies (KE) at different parts of the arteries. It determines the relationships between the pressure, density and velocity at every point in a fluid. Bernoulli’s Principle was discovered by a Swiss physicist called Daniel Bernoulli in 1738. He has demonstrated that as the velocity of fluid flow increases, its pressure decreases.

Flowing blood has mass and velocity. The mean velocity squared (V2) is equal to the kinetic energy. The image below demonstrates the variance of kinetic energy at different parts of the vessels and also shows the theory of Bernoulli’s Principle:
Therefore KE = ½ mV2. As we know from above that blood flows inside arteries, were pressure is applied laterally against the walls of the vessel which is known as the potential or pressure energy (PE). The total energy (E) of the blood pressure within the artery is the sum of the kinetic and potential energies (presuming there are no gravitational effects):
E = KE + PE(where KE ∝ V2)  Therefore,E ∝ V2 + PE
Similarly, Bernoulli’s Principle states that the sum of the Pressure (P), the kinetic energy per unit volume (1/2 pv2), and the gravitational potential energy per unit volume (pgy) has the same value at all points along a streamline. The equation below shows this:

There are two vital theories that follow from this relationship, which includes:

Blood flow driven by the variation in total energy between two points. Normally, pressure is considered as the driving force for blood flow but in fact it is the total energy that moves flow between two areas (i.e. longitudinally along a blood vessel or across a heart valve). KE is relatively low in most of the cardiovascular system; hence PE difference is the energy that drives flow. Similarly, is KE is high then the total energy increases which explains the flow across the aortic valve during cardiac ejection. This is because, as KE drives blood across the valve at a very high velocity, it ensures that the total energy (E) in the blood crossing the valve is higher than the total energy of the blood more distal in the aorta.

KE and PE can be converted to maintain the total energy unchanged, which is the basis of Bernoulli’s Principle. This principle is basically about the blood vessel that is suddenly narrowed then returned to its normal diameter. The velocity increases as the diameter decreases in narrowed region (stenosis). Blood flow (F) is the mean velocity (V) and the vessel cross-sectional area (A) is directly related to diameter (D) (or radius, r2); hence V ∝ 1/D2. If the diameter is reduced by half in the region of the stenosis, the velocity increases 4-fold, due to KE ∝ V2, hence KE increases 16-fold. The image below demonstrates this:

The image above shows the total energy being conserved within the stenosis (E actually decreases because of resistance), then the 16-fold increase in KE will decrease in PE. Once past the narrowed segment, KE will go back to its pre-stenosis value as the post-stenosis diameter is the equal to the pre-stenosis diameter, hence flow is conserved. Due to the resistance of the stenosis and turbulence, the port stenosis PE and E will both fall. Therefore, blood flowing at greater velocities has greater ratio of KE to PE.

Find Out How UKEssays.com Can Help You!
Our academic experts are ready and waiting to assist with any writing project you may have. From simple essay plans, through to full dissertations, you can guarantee we have a service perfectly matched to your needs.
View our services

As we know, blood pressure is the force of fluid against the walls of the arteries, similar to how water exerts the pressure inside aplastic pipe. It is made up of systolic and diastolic pressure. Systolic pressure is the top figure and relates to when the heart is contracting (beating) and forcing blood through the arteries and transporting it to the rest of the body i.e. brain, kidneys etc. The normal values for systolic pressure is from 120-139mmHg. Diastolic pressure is the bottom figure and is linked to when the heart is relaxing. The normal value for diastolic pressure is between 80-89mmHg. Hence, if the values exceed these numbers, then it is considered to be hypertension.
Hypertension is high blood pressure which is caused by the increased force of blood flowing through the arteries. Healthy arteries are flexible, strong and elastic. Inner lining of the arteries are smooth allowing the blood to flow freely, supplying important organs and tissues with adequate nutrients andoxygen. Hypertension can gradually lead to wide range of problems such as damaging the cell’s inner lining of the arteries; hence releasing a cascade of events that causes the artery wallsthick and stiff (called arteriosclerosis), or hardening of the arteries. Similarly, the fats from the diet enter the bloodstream and passes through the damaged cells. However, plaques are prone to building up in the arteries leading to atherosclerosis. These changes lead to blocking blood flow to the heart, kidneys, brain, arms and leg.

Heart: it causes coronary artery disease, which is narrowing of the arteries that doesn’t allow blood to flow freely through the arteries. Leading to chest pain, heart attack (myocardial infarction)or irregular heart rhythms (arrhythmias). Hypertension can also cause enlarged left heart as the pressure forces the heart to work harder than necessary. Similarly, overtime the strain on the heart leads to the heart muscles to weaken and work less effectively causing the heart to wear out and fail.
Brain: – hypertension can cause mini-strokes (Transient ischemic attack (TIA)), which a temporary disruption of blood supply to the brain caused by blood clot or atherosclerosis. Similarly, it can lead to the full-blown stroke which happens when part of the brain is deprived of oxygen and nutrients leading brain cells to die. Uncontrolled hypertension damages and weakens the brain’s blood vessels, causing to narrow, rupture or leak. Narrowing and blockage of the brain’s blood vessels can also lead to Dementia and mild cognitive impairment.
Kidneys: – filters excess fluid and waste from the blood via a process that depends on healthy blood vessels. Hypertension can damage both the blood vessels and leading to the kidneys. This leads to various kidney diseases, failure and scarring of the kidney.
Eyes:- Blood vessels supplies blood to the eyes; hence high blood pressure can damage the blood vessel (retinopathy)

 
Reference http://www.bhf.org.uk/heart-health/conditions/high-blood-pressure/blood-pressure-research.aspx 22nd October 2013
http://www.bhf.org.uk/heart-health/conditions/high-blood-pressure.aspx 22nd October 2013
http://www.webmd.boots.com/hypertension-high-blood-pressure/guide/diastolic-systolic 24th October 2013
http://edition.cnn.com/HEALTH/library/high-blood-pressure/HI00062.html 24th October 2013
http://amazinghumanbody-prakash.blogspot.co.uk/2009/10/skeletal-system.html 25th October 2013
http://www.bbc.co.uk/science/humanbody/body/factfiles/armandshoulder/arm_and_hand.shtml 26th October 2013
http://www.cvphysiology.com/Hemodynamics/H012.htm 26th October 2013
http://www.bu.edu/gk12/kai/Lesson%206/BP_Back.pdf 27th October 2013
http://mysite.verizon.net/fvozzo/genphys/lecture.html 27th October 2013
http://muscle.ucsd.edu/musintro/ma.shtml 29th October 2013
http://www.as.wvu.edu/~rbrundage/chapter8b/sld015.htm 29th October 2013
http://www.answers.com/topic/projectile-motion 30th October 2013
http://www.wired.com/wiredscience/2011/10/optimizing-a-basketball-shot/ 1st November 2013
http://demoweb.physics.ucla.edu/node/28 25th November 2013
http://www.medicalphysics.org/apps/medicalphysicsedit/WebPOTB.pdf 25th November 2013
http://physics.eou.edu/opensource/physics/projectile.pdf 27th November 2013
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=14&ved=0CG8QFjAN&url=http%3A%2F%2Fwww.wooster.edu%2F~%2Fmedia%2Ffiles%2Facademics%2Fresearch%2Fhhmi%2Fresources%2Flectures%2Fhuman-arm-goniometer.ashx&ei=bnakUuzDC6yg7AbX5oGYCQ&usg=AFQjCNFMTH1EmPzRvKvptZu4R7_XUpFKPw&bvm=bv.57752919,d.ZGU 28TH November 2013
Dobson et al. (2002). ‘ Collin advanced – Physics’. Collins eduction : London
Rounce, J.F and Lowe, T.L. (1992). ‘Calculations for A level Physic’. Second edition. Stanley Thornes: Britain
Boutal et al. (2008). ‘AS-Level physics – exam board’. Coordination group publications CGP: Newcastle
Tsokos, KA. (2008). ‘Physics for the IB Diploma’. Fifth edition. Cambridge university press: united kingdom
Johnson et al. (2000). ‘Advanced physics for you’. Nelson Thornes: united kingdom
 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy