Fibonacci Sequence

How Does the Fibonacci Sequence Relate to Nature and Other Math Processes?
Nature is all around us, and because I spend a lot of time outside I have been able to enjoy and observe all that nature has to offer. Due to the fact that I love science and discovering how everything around me functions and relates to everything else, I decided to investigate the relation that Fibonacci has with other math processes—as well as with the environment. I wanted to understand how plants know the best way to form their seeds or outer shell, and why some patterns may repeat in nature in different plants and organic materials. Thus, this exploration looks at two seemingly unrelated topics—Fibonacci and the golden ratio—both of which produce the same number, phi. While this could be mere coincidence, that possibility is negated when the fact that the number produced is irrational is introduced. It was this peculiar discovery, as well as the abundant appearances of Fibonacci in nature, that led me to choose this exploration topic.
To begin, I should start by identifying what initially sparked my curiosity in this subject: a pinecone. As with many other plants, as well as fruits and vegetables, pinecones display the golden ratio. In order to better understand what I am talking about I have included a picture of a pinecone similar to the one that I first inspected.
Labeled below is the noticeable spiral pattern on the pinecone. Counting the number of spirals in that direction produces the number eight, and in the other direction it produces the number thirteen while a third and tighter spiral produces twenty-one. These numbers are situational to the pinecone in the pictures, but the Fibonacci numbers as a whole are far more complex than they first appear to be.
To understand the importance of these numbers it is crucial to understand the fundamentals of the Fibonacci sequence itself. The sequence usually begins with the numbers 1, 1, 2, 3, 5, 8, 13 and follows an easily definable pattern.
1, 1, 2, 3, 5, 8, 13
Start with the number 5, or the nth number in the sequence. We’ll call it n. 5 equals the two numbers before it added together: 2 + 3. Or, in broader terms, a number in the sequence is the sum of the two numbers preceding it.
1, 1, 2, 3, 5, 8, 13n = n-1 + n-2
An interesting idea comes up at the mention of this formula though.
=
This ratio just so happens to equal a number often notated as, or phi.
> 1/11Phi is greater than one,
< 2/12but less than two.
> 3/21.5Phi is greater than three halves,
< 5/31.666but less than five thirds.
> 8/51.6Phi is greater than eight fifths,
< 13/81.625but less than thirteen eights.
1.6180339988…
You’ll notice that each fraction listed above is made up of numbers from the original seven number sequence, in other words, each pair of Fibonacci numbers creates a ratio that gets closer and closer to phi as the numbers increase. This is better shown on a graph I created, displayed below.

Don't use plagiarized sources. Get Your Custom Essay on
Fibonacci Sequence
Just from $13/Page
Order Essay

The ratio created by these sequences as they approach phi is called the golden ratio. The golden ratio, however, is not as important to this study as the lesser known concept of the golden angle. Below is a representation of the golden ratio in relation to the golden angle, the smaller portion of the circle notated using alpha, or α.

α = 137.507764° 137.5°
The reason this conversion is necessary is because the golden angle is present in the next discussion topic: sunflowers. Or, more specifically, their seeds. Sunflowers are another great example of the appearance of Fibonacci in nature, and also led me to an interesting discovery.
In order to plot the distribution of a sunflower’s seeds we need an X and a Y coordinate pair. Using the square roots from an index numbered from one to one thousand and multiplying them by the cosine of the radian of the angle alpha gives us a formula to find x, dependent on the index number used. Y can be calculated with a very similar formula, using sine instead of cosine. The equations are listed in their entirety below.

When these formulas are used and input into Microsoft Excel they produce a graph similar to the following.

Wow! That graph bears a striking resemblance to the original Fibonacci spirals that appeared in the pinecones, and as mentioned earlier it is not mere coincidence.
While the use of the golden ratio is apparent, there is another aspect of it that I wish to address, the golden spiral. Its formulae are given by the following equations, and are readily apparent in nature as well (nautilus shells for example).

In these equations is the undetermined scaling factor and is the growth factor of the spiral. In the instance of the golden spiral, is equal to the operation below.

At first, these formulae appeared to be a strange smattering of numbers, and one I didn’t understand at all. However, upon noticing the appearance of a natural log in the formula for I made a connection to the letter , better known as Euler’s number, that is present in both the X and Y formulae. After thorough searches of many sources I discovered another math process that bares resemblance to the above formulae.

This is Euler’s formula. It becomes increasingly apparent that its resemblance is not coincidental when the formula is transformed into the final formula shown below.

While the visual similarities may be obvious when the formula is displayed as it is above, the importance of each variable can be clarified with simple explanations. is the arbitrary scaling factor, responsible for determining the scale of the spiral. dictates the rotation of the spiral, and remains constant. The in dictates the growth of the spiral, and the dictates the speed—together representing the speed of the growth of the spiral. More simply put, any given ordered pair can be found by multiplying the growth of the spiral by its rotation (as shown in the originally given formulae for finding said coordinates.)
What is produced, however, after inputting over two thousand pieces of data, derived from the coordinates calculated using the formulae above, into Microsoft Excel, is shown in the graph below.

After putting in the Fibonacci squares (using the original golden ratio) into the spiral its appearance and relation to Fibonacci become even clearer.

Very simply put, my investigation yielded the result that the Fibonacci sequence, the golden spiral, and Euler’s number are all related to one another in nature. The results are eye opening for me, as I am beginning to realize just how much of the world is made up of math—rather than my previous belief that everything natural occurred randomly. My exploration only stemmed into plants, and while that may only have practical use in fields such as botany, all three have great value in many fields. To begin with, Fibonacci appears in bee populations, proportions of the human body, formation of cells, and possibly more practically in code and the stock market. Any of these fields could present an interesting extension to my exploration, and because they all stem from Fibonacci they all have roots in combinatorics and number theory. The implications of this are staggering! Simply the thought that all of these vastly different fields are related to one another by one sequence of numbers discovered by Leonardo of Pisa, better known as Fibonacci himself, is baffling considering that he discovered them while looking at the breeding patterns of rabbits. There are so many other areas in nature that Fibonacci appears in, and I’m so excited that I have the opportunity to discover and study them now that I know more about them.
Works Cited
Azad, Kalid. “Intuitive Understanding Of Euler’s Formula.” Better Explained. N.p., n.d. Web. 23 Feb. 2015. <http://betterexplained.com/articles/intuitive-understanding-of-eulers-formula/>.
“Nature by Numbers.” Eterea. N.p., n.d. Web. 3 Feb. 2015. <http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm>.
“Spirals.” < http://faculty.smcm.edu/sgoldstine/pinecone/spirals2.gif>
Wolverson, Tim. “Plot a Fibonacci Spiral in Excel.” Reviews and Guides. WordPress, 08 Feb. 2014. Web. Jan.-Feb. 2015. <https://timwolverson.wordpress.com/2014/02/08/plot-a-fibonacci-spiral-in-excel/>.
McDonald 1
 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy