Derivation and Geometry of the Catenary Curve

Mathematics SL

Don't use plagiarized sources. Get Your Custom Essay on
Derivation and Geometry of the Catenary Curve
Just from $13/Page
Order Essay

Derivation and Geometry of the Catenary Curve

Table of Contents

Introduction

1

The Catenary Curve

1-2

Geometry and Defining Variables

3-5

Derivation

5-7

Application

8-9

Conclusion

9

Bibliography

9-10

Introduction —————————————————

My biggest interest has always been art and design. Both my brother and my dad work in construction which introduced me to architecture as a possible field of study. Since grade 9 I knew I wanted to be an architect, and so when I researched my IA topic I was looking for something related to that field. The catenary curve caught my attention when I was looking at the St. Louis Gateway Arch, a tourist attraction I have visited many times before. I always assumed it was a parabolic arch but the shape is actually a catenary[1]. Most structures use a catenary arch as opposed to a parabolic arch because it able to withstand both its own weight and additional loads. The shape of a catenary allows for the weight to be directed along the curve to the supports at the base of the arch.[2] In this IA, I will be explaining the geometry of the catenary curve as well as deriving its equation.

[3]

St.Louis Gateway Arch designed by architect Eero Saarinen

The Catenary Curve ——————————————

The catenary curve is naturally formed by a hanging chain or cable with only the force of gravity acting upon it.[4] The uniform gravitational force causes the center of the chain to dip, forming a curve symmetrical on either side of the minimum point.

Galileo Galilei, famous astronomer and mathematician, claimed that the curve of a hanging chain is simply a parabola. Leibniz, Huygens and Johann Bernoulli found the equation of the catenary curve in 1690[5], finding that it is not a parabola but a hyperbolic cosine.[6]

Catenary Curve

Parabola

Superimposed Diagram

Equation of the catenary curve[7]:

or 

where;

          y is the ordinate of any point on the curve

          x is the abscissa of any point on the curve

          e is Euler’s number or,

          a is a constant: horizontal tension divided by the weight per unit length (of the chain)*

          b is the constant of integration, affecting the y-intercept of a graphed catenary curve*

*will be explained further

This equation was derived using simple vector equation, trigonometric identities, and calculus.

Geometry and Defining Variables —————————

The geometry of the Catenary is, at its root, a physics problem. Two common equations are used; the force acting on an object, and the weight of an object.

Force acting on an object[8]:

where;

          F is force

          m is mass of the object

          a is the acceleration of the object

The weight of an object is the force of its mass as it is accelerated due to gravity.Therefore;

Weight of an object:

where;

          W is the weight of the object

          m is mass of the object

          g is the acceleration due to gravity

This is a vector quantity, as gravity pulls downwards on the mass of an object with a magnitude equal to its weight ().

The horizontal vector quantity is the horizontal tension, which is the same for each point on the curve because the only force acting on the chain is gravity (a vertical force). Hence, the magnitude of the horizontal tension vector for every point on the curve will be equal.

Before deriving the equation, it is important to define the variable used; all variables are illustrated in the following diagram[9]:

where;

          A is the lowest point on the curve

          P is an arbitrary point on the curve

          T is the tangent of ‘P’

          s is the length of the curve from point ‘A’ to point ‘P’

          u is the mass per unit length

Further definitions:

The mass of the curve supported by point ‘P’ is given by (mass per unit length multiplied by the length). The weight is therefore which is the vertical force acting on each point of the curve.

To prove the relation between each component;

    

Tangent ‘T’ is also the resultant vector of adding the vertical (W) and horizontal tension (H) vectors.

It is sometimes referred to as tangential tension or tangential force.

By the Pythagorean Theorem, the relation between all three components is:

An equation necessary for the derivation of the catenary curve is the tangent of theta; which is the relation between the two known constants (the weight an the horizontal tension). 

The variable ‘s’ is the only part of this equation that is unknown to the arbitrary (does not matter, as long as it is on the curve) point ‘P’. To simplify the equation, the constant ‘a’ is defined and does not contain ‘s’. Using the equation for the tangent of theta and the new constant, the intrinsic equation (relating intrinsic properties of the curve) of the catenary can be found. The intrinsic equation defines the curve without considering the location of the curve itself.[10]

 

Derivation ————————————————————

Using all of the above information as formulas, the equation of the catenary curve is derived.

The slope of any given point on this curve is given by;

 

 

According to the trigonometric identity;

The tangent at any point on the graph is T, now know as the tangent of angle theta. This allows us to conclude that;

However, we want the equation to be written in rectangular coordinates (x,y) so that there are only 2 variables. The variable ‘s’ prevents the equation from being expressed in terms of x and y (a is a constant). This would mean that someone has to know the length of the chain in order to use this equation. To eliminate the variable ‘s’, both side are differentiated.

The differential of arc length (applicable to length of a curve) is given by the equation[11];

By substitution, it is found that;

This is the simplified equation of the substituted variable ‘s’. Finding the integral is the reverse of finding a derivative, and so integrating both side solves the differential equation that will allow the curve to be expressed in terms of x and y.

where;

          u is a variable

          C is the unknown constant of integration

*An unknown constant subtracted by an unknown constant is an unknown constant.

When x is equal to 0, as the catenary curve is center along the y-axis, then that slope at that point is 0. This results in the unknown constant ‘C’ canceling out.

The constant ‘a’ that was set as can also be its inverse. If then the equation can be rewritten as:

where;

          y is the ordinate of any point on the curve

          x is the abscissa of any point on the curve

          a determines the slope of the catenary (the weight of any point on the chain, when speaking about catenary, divided by the horizontal tension )

          b determines the y-intercept (the unknown constant of integration)

Application————————————————————

The inverted catenary curve forms an arch that can support itself.[12] This is because, as the shape of a hanging chain, there is already a balance between the horizontal tension (from the supports) and the weight of the chain. The curve has equal forces acting vertically and horizontally. A structure built using the catenary arch is therefore structurally stable without the need for beams or columns.

The famous Spanish architect Antoni Gaudí had used catenary arches in many of his projects. His designs were used to construct churches, houses, outdoor structures, and many more famous works of art in Barcelona and Spain.[13]

Park Güell in Barcelona, Spain designed by Antoni Gaudí

 

Gaudí is now my favourite architect and an excellent example of the catenary arch’s versatility, but I would like to bring the discussion back to the St. Louis Gateway Arch. The arch is 190.5 meters tall and spans a distance of 182.3 meters.[14] We can scale that down to 1.905 cm in height and 1.823 cm span. Using desmos and the equation derived in the previous section;

It is found that the equation of an arch proportionate to the the St. Louis Gateway arch is;

This does not not show a direction relation between the height and span of an arch and the equation, but it allows us to see the shape of a catenary arch in mathematical terms. It is clear that the hyperbolic cosine is the true shape of a catenary arch. Using this knowledge the construction of arches can be done more accurately.

Conclusion ———————————————————

The structural properties of the curve are unique and ideal for the construction of an arch. For hundreds of years this poor curve was mistaken for a parabola. In light of Leibniz, Huygens and Johann Bernoulli’s discovery, it is now know to be a hyperbolic cosine. The catenary curve is derived from the shape of a hanging chain using trigonometry, a little bit of vectors, and calculus. What was once a physics problem is now my favourite math problem.

The derivation of the catenary curve allowed me to apply my knowledge of trigonometry and calculus to a topic that I am interested in. The catenary arch, modeled by the hyperbolic cosine, could one day be incorporated into my architectural designs.

Bibliography ———————————————————

(n.d.). Retrieved from http://makingmathvisible.com/catenary/catenary.html

Britannica, T. E. (2017, September 14). Force. Retrieved December 15, 2018, from https://www.britannica.com/science/force-physics

Calter, P. (n.d.). Gateway to Mathematics Equations of the St. Louis Arch. Retrieved January 2, 2019, from https://link.springer.com/content/pdf/10.1007/s00004-006-0017-7.pdf

Carlisle, A. (2013, November 17). Catenary Equation Derivation. Retrieved December 15, 2018, from https://youtu.be/P-2lqcaFvUE

Carlson, S. C. (2017, February 03). Catenary. Retrieved January 2, 2019, from https://www.britannica.com/science/catenary

Catenary. (1997, January 1). Retrieved January 2, 2019, from http://www-history.mcs.st-andrews.ac.uk/Curves/Catenary.html

Huerta, S. (2006, May 20). Structural Design in the Work of Gaudi. Retrieved January 2, 2019, from http://oa.upm.es/703/1/Huerta_Art_002.pdf

Kaplan, G. (n.d.). The Catenary Art, Architecture, History, and Mathematics. Retrieved January 1, 2019, from http://archive.bridgesmathart.org/2008/bridges2008-47.pdf

Kouba, D. (Ed.). (2017, May 3). COMPUTING THE ARC LENGTH OF A DIFFERENTIABLE FUNCTION ON A CLOSED INTERVAL. Retrieved December 21, 2018, from https://www.math.ucdavis.edu/~kouba/CalcTwoDIRECTORY/arclengthdirectory/ArcLength.html

Person. (2016, October 28). Share your story: Happy birthday, Gateway Arch! Retrieved January 1, 2019, from https://www.ksdk.com/article/news/local/share-your-story-happy-birthday-gateway-arch/63-343653644

Porter, N. (Ed.). (n.d.). Intrinsic equation of a curve. Retrieved December 16, 2018, from https://www.webster-dictionary.org/definition/Intrinsic equation of a curve

Revolvy, L. (Ed.). (n.d.). “Catenary arch” on Revolvy.com. Retrieved January 1, 2019, from https://www.revolvy.com/page/Catenary-arch

Weisstein, E. (2019, January 9). Catenary. Retrieved January 11, 2019, from http://mathworld.wolfram.com/Catenary.html

[2] Revolvy, L. (Ed.). (n.d.). “Catenary arch” on Revolvy.com. Retrieved January 1, 2019, from https://www.revolvy.com/page/Catenary-arch

[3] Person. (2016, October 28). Share your story: Happy birthday, Gateway Arch! Retrieved January 1, 2019, from https://www.ksdk.com/article/news/local/share-your-story-happy-birthday-gateway-arch/63-343653644

[4] Weisstein, E. (2019, January 9). Catenary. Retrieved January 11, 2019, from http://mathworld.wolfram.com/Catenary.html

[5] Catenary. (1997, January 1). Retrieved January 2, 2019, from http://www-history.mcs.st-andrews.ac.uk/Curves/Catenary.html

[6] Carlson, S. C. (2017, February 03). Catenary. Retrieved January 2, 2019, from https://www.britannica.com/science/catenary

[7] Carlisle, A. (2013, November 17). Catenary Equation Derivation. Retrieved December 15, 2018, from https://youtu.be/P-2lqcaFvUE

[8] Britannica, T. E. (2017, September 14). Force. Retrieved December 15, 2018, from https://www.britannica.com/science/force-physics

[9] Carlisle, A. (2013, November 17). Catenary Equation Derivation. Retrieved December 15, 2018, from https://youtu.be/P-2lqcaFvUE

[10] Porter, N. (Ed.). (n.d.). Intrinsic equation of a curve. Retrieved December 16, 2018, from https://www.webster-dictionary.org/definition/Intrinsic equation of a curve

[11] Kouba, D. (Ed.). (2017, May 3). COMPUTING THE ARC LENGTH OF A DIFFERENTIABLE FUNCTION ON A CLOSED INTERVAL. Retrieved December 21, 2018, from https://www.math.ucdavis.edu/~kouba/CalcTwoDIRECTORY/arclengthdirectory/ArcLength.html

[12] Kaplan, G. (n.d.). The Catenary Art, Architecture, History, and Mathematics. Retrieved January 1, 2019, from http://archive.bridgesmathart.org/2008/bridges2008-47.pdf

[13] Huerta, S. (2006, May 20). Structural Design in the Work of Gaudi. Retrieved January 2, 2019, from http://oa.upm.es/703/1/Huerta_Art_002.pdf

[14] Calter, P. (n.d.). Gateway to Mathematics Equations of the St. Louis Arch. Retrieved January 2, 2019, from https://link.springer.com/content/pdf/10.1007/s00004-006-0017-7.pdf

 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy