Computer Programming.

 

The instructions and starting templates for the assignment are attached to this module.  Please download them and follow the instructions.  You should submit your completed .cpp source files to this MyLeoOnline folder by the due date once you are done with the assignment.

Don't use plagiarized sources. Get Your Custom Essay on
Computer Programming.
Just from $13/Page
Order Essay

There are actually 3 source files/starting templates for this assignment: assg-05.cpp, QuickSort.hpp and QuickSort.cpp.  You need to download and use all 3.  assg-05.cpp contains the main function and has tests of your code.  You should not need to add anything to this file, simply uncomment the tests as you are working on your assignment.  You should add your name and information to the file header at the top of all 3 files.  The files QuickSort.hpp and QuickSort.cpp are the header file and implementation file respectively.  You will need to add the function prototypes to the .hpp header file class definitions for the  functions you are to write for this assignment.  And likewise, you will need to write and  implement your functions for this assignment in the .cpp file.

/**
* @author Jane Programmer
* @cwid 123 45 678
* @class COSC 2336, Spring 2019
* @ide Visual Studio Community 2017
* @date January 23, 2019
* @assg Assignment 05
*
* @description Assignment 05 Quick Sort
*/
#ifndef _QUICKSORT_H_
#define _QUICKSORT_H_
// function prototypes go here

#endif // _QUICKSORT_H_

/**
* @author Jane Programmer
* @cwid 123 45 678
* @class COSC 2336, Spring 2019
* @ide Visual Studio Community 2017
* @date January 23, 2019
* @assg Assignment 05
*
* @description Assignment 05 Quick Sort
*/
#include “QuickSort.hpp”
// function implementations go here

/**
* @author Jane Programmer
* @cwid 123 45 678
* @class COSC 2336, Spring 2019
* @ide Visual Studio Community 2017
* @date January 23, 2019
* @assg Assignment 05
*
* @description Assignment 05 Quick Sort
*/
#include
#include
#include
#include
#include “QuickSort.hpp”
using namespace std;

/** list to string
* Represent array as a string time, useful for output.
*
* @param list[] The list, an array of integers, to be converted to
* a string.
* @param length The length of the list.
*
* @returns string Returns a string with a representation of the list
* state and it contents.
*/
string tostring(int list[], int length)
{
ostringstream out;
out << "List length: " << length << " ["; // output first value, so we can remove , at end if (length >= 1)
{
out << list[0]; } // output each follow with a preceeding comma, // which allows us to end list without trailing , for (int index = 1; index < length; index++) { out << ", " << list[index]; } out << "]"; return out.str(); } /** compare lists equal * This function compares if the two lists (arrays of integers) * given as parameters are equal or not. Result is boolean true * if lists all have the same values, false otherwise. * * @param a[], b[] The lists, both of int and both the same size, * that are to be compared. * @param length The length of both of the lists. * * @returns bool Returns true if the lists are equal (have all the * same values at all the same positions) and false otherwise. */ bool listsAreEqual(int a[], int b[], int length) { // compare each item in a and b for (int index = 0; index < length; index++) { // as soon as we find 1 value that differs, the answer is false, // the lists are not equal if (a[index] != b[index]) { return false; } } // at this point we compared every value and they were all the // same, thus the lists must be equal return true; } /** main * The main entry point for this program. Execution of this program * will begin with this main function. * * @param argc The command line argument count which is the number of * command line arguments provided by user when they started * the program. * @param argv The command line arguments, an array of character * arrays. * * @returns An int value indicating program exit status. Usually 0 * is returned to indicate normal exit and a non-zero value * is returned to indicate an error condition. */ int main(int argc, char** argv) { // variables used for the function/unit tests int length; // test of swap function ------------------------------------------------ cout << "Test swapListValues() ------------------------------------------" << endl; // basic test length = 2; int testvals1[] = {5, 10}; int expected1[] = {10, 5}; // swapListValues(testval1, 0, 1); // cout << "swapListValues() test 1, swap 2 values" << endl // << " expected: " << tostring(expected1, length) << endl // << " actual : " << tostring(testvals1, length) << endl // << endl; // assert(listsAreEqual(testvals1, expected1, length)); // test if indexes are equal, important, should not cause any change length= 2; int testvals2[] = {8, 6}; int expected2[] = {8, 6}; // swapListValues(testvals2, 1, 1); // cout << "swapListValues() test 2, same index" << endl // << " expected: " << tostring(expected2, length) << endl // << " actual : " << tostring(testvals2, length) << endl // << endl; // assert(listsAreEqual(testvals2, expected2, length)); // more general tests, swap values in middle of list length = 12; int testvals3[] = {2, 7, 9, 3, 8, 4, 2, 9, 5, 8, 6, 1}; int expected3[] = {2, 7, 6, 3, 8, 4, 2, 9, 5, 8, 9, 1}; // swapListValues(testvals3, 2, 10); // cout << "swapListValues() test 3, swap 2 values from inside of list" << endl // << " expected: " << tostring(expected3, length) << endl // << " actual : " << tostring(testvals3, length) << endl // << endl; // assert(listsAreEqual(testvals3, expected3, length)); // swap back, reverse indexes in function call // continuing to use testvals after previous test here length = 12; int expected4[] = {2, 7, 9, 3, 8, 4, 2, 9, 5, 8, 6, 1}; // swapListValues(testvals3, 10, 2); // cout << "swapListValues() test 4, reverse the previous swap" << endl // << " expected: " << tostring(expected4, length) << endl // << " actual : " << tostring(testvals3, length) << endl // << endl; // assert(listsAreEqual(testvals3, expected4, length)); // swap with index 0 on a bigger list // still using previous testvals length = 12; int expected5[] = {4, 7, 9, 3, 8, 2, 2, 9, 5, 8, 6, 1}; // swapListValues(testvals3, 5, 0); // cout << "swapListValues() test 5, swap with index 0" << endl // << " expected: " << tostring(expected5, length) << endl // << " actual : " << tostring(testvals3, length) << endl // << endl; // assert(listsAreEqual(testvals3, expected5, length)); // swap with last index on a bigger list // still using previous testvals length = 12; int expected6[] = {4, 7, 9, 3, 8, 2, 1, 9, 5, 8, 6, 2}; // swapListValues(testvals3, 6, 11); // cout << "swapListValues() test 6, swap with last index" << endl // << " expected: " << tostring(expected6, length) << endl // << " actual : " << tostring(testvals3, length) << endl // << endl; // assert(listsAreEqual(testvals3, expected6, length)); // test of findAndSwapPivot function ------------------------------------ cout << endl; cout << "Test findAndSwapPivot() ----------------------------------------" << endl; int expectedPivotValue; int actualPivotValue; // basic test on a small list length = 3; int testvals7[] = {5, 3, 8}; int expected7[] = {5, 8, 3}; expectedPivotValue = 3; // actualPivotValue = findAndSwapPivot(testvals7, 0, length-1); // cout << "findAndSwapPivot() test 1, basic test" << endl // << " expected: " << tostring(expected7, length) << endl // << " expected pivot: " << expectedPivotValue << endl // << " actual: " << tostring(testvals7, length) << endl // << " actual pivot: " << actualPivotValue << endl // << endl; // assert(listsAreEqual(testvals7, expected7, length)); // assert(actualPivotValue == expectedPivotValue); // test on list of length 1, should work nothing will be done length = 1; int testvals8[] = {5}; int expected8[] = {5}; expectedPivotValue = 5; // actualPivotValue = findAndSwapPivot(testvals8, 0, length-1); // cout << "findAndSwapPivot() test 2, test list size 1" << endl // << " expected: " << tostring(expected8, length) << endl // << " expected pivot: " << expectedPivotValue << endl // << " actual: " << tostring(testvals8, length) << endl // << " actual pivot: " << actualPivotValue << endl // << endl; // assert(listsAreEqual(testvals8, expected8, length)); // assert(actualPivotValue == expectedPivotValue); // general test on a bigger list, even number of values length = 10; int testvals9[] = {5, 2, 8, 7, 3, 9, 1, 4, 5, 8}; int expected9[] = {5, 2, 8, 7, 8, 9, 1, 4, 5, 3}; expectedPivotValue = 3; // actualPivotValue = findAndSwapPivot(testvals9, 0, length-1); // cout << "findAndSwapPivot() test 3, bigger list with even number of values" << endl // << " expected: " << tostring(expected9, length) << endl // << " expected pivot: " << expectedPivotValue << endl // << " actual: " << tostring(testvals9, length) << endl // << " actual pivot: " << actualPivotValue << endl // << endl; // assert(listsAreEqual(testvals9, expected9, length)); // assert(actualPivotValue == expectedPivotValue); // general test on a bigger list, odd number of values length = 15; int testvals10[] = {5, 2, 8, 7, 3, 9, 1, 42, 5, 8, 10, 11, 15, 22, 18}; int expected10[] = {5, 2, 8, 7, 3, 9, 1, 18, 5, 8, 10, 11, 15, 22, 42}; expectedPivotValue = 42; // actualPivotValue = findAndSwapPivot(testvals10, 0, length-1); // cout << "findAndSwapPivot() test 4, bigger list with odd number of values" << endl // << " expected: " << tostring(expected10, length) << endl // << " expected pivot: " << expectedPivotValue << endl // << " actual: " << tostring(testvals10, length) << endl // << " actual pivot: " << actualPivotValue << endl // << endl; // assert(listsAreEqual(testvals10, expected10, length)); // assert(actualPivotValue == expectedPivotValue); // test of partitionList function --------------------------------------- cout << endl; cout << "Test partitionList() -------------------------------------------" << endl; int expectedPivotIndex; int actualPivotIndex; // work from general to more specific stress tests. // most general test, partition list approximately in middle. // note that pivot needs to be on the end of list, and for a list of size n // the valid indexes are from 0 to n-1, but the partition values is at index // n-1, so we call partitionList from indexes 0 to n-2 length = 10; int testvals11[] = {8, 3, 7, 6, 9, 2, 4, 8, 1, 5}; int expected11[] = {1, 3, 4, 2, 9, 6, 7, 8, 8, 5}; expectedPivotIndex = 4; // actualPivotIndex = partitionList(testvals11, 0, length-2, testvals11[length-1]); // cout << "partitionList() test 1, basic test" << endl // << " expected: " << tostring(expected11, length) << endl // << " expected pivot: " << expectedPivotIndex <

Assg 0

5

: Quicksort

COSC

2

3

3

6

Data Structures

Objectives

• Practice writing functions

• Practice writing recursive functions.

• Learn about Analysis of algorithms and O(n log n) sorts

Description

In this assignment we will be implementing one of the most popular sorting
algorithms used in libraries (like the C++ STL library, and the UNIX qsort
function) to provide basic sorting abilities, the Quicksort algorithm. I would
recommend that you at least read section

7

.5 from our supplemental Shaffer
textbook on Quicksort, if not sections 7.

1

-7.5 talking about three well known
O(n log n) sorting algorithms, and the 3 O(n2) algorithms we discussed last
week.

Quicksort, when properly implemented, is very attractive because it pro-
vides a way to do a fast sort completely in-place (without having to allocate
additional memory to do the sort, beyond a single value needed when swap-
ping two values in the list being sorted). In the worst case, Quicksort is
actually O(n2), no better than bubble sort. But this worse case only occurs
when every pivot selected is the wort possible, and does not divide the list
at all. This is very unlikely to happen, unless you know how the pivot is
selected, and specifically design the input list to always choose the worst
possible pivot. On average the cost of Quicksort is O(n log n), and it is
usually very likely that average case performance will result when lists to be
sorted are relatively random.

The most direct implementation of Quicksort is as a recursive algorithm.
Quicksort is an example of a divide and conquer approach to solving the
problem of sorting the list. We are given a list of items, A and indexes left

1

and right that indicate a sub-portion of the list to be sorted. left and right
indicate the actual indexes, so if the list is a regular C array of integers, and
the array is of size 10

int left;
int right;
const inst SIZE = 10;
int A[size];

Then to sort the whole list we set left = 0 and right =

9

to initially
call the Quicksort function:

left = 0;
right = size-1;
quicksort(A, left, right);

Conceptually the steps of the Quicksort algorithm are as follows:

1. if list size is 0 or 1 (left <= right) return (lists of this size are sorted by definition).

2. Choose a pivot value and swap the pivot value to the end of the list
swap(pivotIndex, right)

3. Partition the list. Partitioning means all values less than the pivot
value should end up on the left of the list, and all values greater will
be on the right. The first index k where a value >= to the pivot value
is at indicates the new left and right side sub-lists.

4

. Swap the pivot value to its correct position k swap(k, right)

5. Recursively call Quicksort on the new left and right sub-lists

• quicksort(A, left, k-1)

• quicksort(A, k+1, right)

Most of the real work happens in the function/code to partition the list.
The partitioning of the list, for Quicksort to be an in-place sort, must work
by swapping values in-place in the list of items. All values smaller than the
pivot value must end up on the left side, and all values greater on the right.
The algorithm to partition the list is traditionally done with these steps:

2

1. do a linear search from the left of list, stop at first value on left that is
>= pivot

2. do a linear search from the right of list, stop at first value that is < than the pivot.

3. swap(left, right) assuming you were incrementing left and decre-
menting right to point to indexes of values that are on wrong sides

4. if left < right goto 1

Conceptually we search from both ends of the list, and when we find
values that are on wrong sides with respect to the pivot value, we swap
them. Eventually the search from both ends will meet somewhere. The
location where they meet should be the index of the first value that is >=
to the pivot (going from the left side of the list). This is the index where the
pivot value should actually go in the list, because all values before this are
smaller than the pivot, and all values at or after are greater than the pivot.
Thus at the end of partitioning the list on some pivot value, we are able to
swap 1 value each time to its correct final position in the list. But the values
to the left and right will not be sorted, thus we call Quicksort recursively on
these sub-lists to get them sorted.

In order to help you implement your own version of Quicksort, we have
broken the problem down into useful sub-functions. If you implement the
sub-functions as specified, in the order given, the final implementation of the
Quicksort function is relatively straight forward, using these smaller func-
tions.

For this assignment you need to perform the following tasks.

1. Write a function called swapListValues(). This functions takes an
array of integers as its first parameter, and two indexes (the left and
right indexes). This function does not return a value explicitly. Recall
arrays are passed by reference. As the name implies, the two values
in the array at the indicated left and right indexes are to be swapped,
and since the array is passed by reference, after returning they will be
swapped for the caller of this function.

2. Write a function called findAndSwapPivot(). This function takes the
same 3 parameters, an array of integers, and two indexes indicating the
left and right sides of a sub-portion of the list. The function should find
the value in the middle of the left and right ends, which will be chosen
as the pivot. The function should use the previous swapListValues()

3

function to swap the chosen pivot value to the end of the list of integers.
This function returns a value. This is different from how the textbook
implements the find pivot function. Our function should return the
actual pivot value that was chosen (not the pivotIndex, which we know
should be the last index of the sub-list after calling this function).

3. Write a function called partitionList(). This will implement the al-
gorithm described preciously. This functions takes the 3 same param-
eters for the previous functions, an integer array, and left and right
indexes for the sub-portion of the list we are currently partitioning.
In addition, this function takes a fourth parameter, the pivot value).
This function should make use of the swapListValues() function de-
fined previously when swapping values in-place in the list of integers.
When this function is called, the pivot has been swapped to the end
of the sub-portion of the list, so the right index will be one less than
this. This function needs to correctly return the index, described as
k above, where the pivot value should actually go. At the end, the
location where the left search and right search meet will be this index,
the final location found for the pivot value.

4. Finally write a function called quickSort() using the described algo-
rithm above. This function will use all of the 3 previous functions to do
its work. If implemented correctly, there is almost nothing to be done
in this function besides calling the other 3 functions, and recursively
calling itself (except to check for the base case of your recursion).

You will again be given 3 starting template files like before, an assg-
05.cpp file of tests of your code, and a QuickSort.hpp and QuickSort.cpp
header and implementation file. As before, you should practice incremental
development, and uncomment the tests in the assg-05.cpp file one at a time,
and implement the functions in the order specified. If you implement your
code correctly and uncomment all of the tests, you should get the following
correct output:

Test swapListValues() ——————————————
swapListValues() test 1, swap 2 values

expected: List length: 2 [10, 5]
actual : List length: 2 [10, 5]

swapListValues() test 2, same index
expected: List length: 2 [

8

, 6]

4

actual : List length: 2 [8, 6]

swapListValues() test 3, swap 2 values from inside of list
expected: List length: 12 [2, 7, 6, 3, 8, 4, 2, 9, 5, 8, 9, 1]
actual : List length: 12 [2, 7, 6, 3, 8, 4, 2, 9, 5, 8, 9, 1]

swapListValues() test 4, reverse the previous swap
expected: List length: 12 [2, 7, 9, 3, 8, 4, 2, 9, 5, 8, 6, 1]
actual : List length: 12 [2, 7, 9, 3, 8, 4, 2, 9, 5, 8, 6, 1]

swapListValues() test 5, swap with index 0
expected: List length: 12 [4, 7, 9, 3, 8, 2, 2, 9, 5, 8, 6, 1]
actual : List length: 12 [4, 7, 9, 3, 8, 2, 2, 9, 5, 8, 6, 1]

swapListValues() test 6, swap with last index
expected: List length: 12 [4, 7, 9, 3, 8, 2, 1, 9, 5, 8, 6, 2]
actual : List length: 12 [4, 7, 9, 3, 8, 2, 1, 9, 5, 8, 6, 2]

Test findAndSwapPivot() —————————————-
findAndSwapPivot() test 1, basic test

expected: List length: 3 [5, 8, 3]
expected pivot: 3

actual: List length: 3 [5, 8, 3]

actual pivot: 3

findAndSwapPivot() test 2, test list size 1
expected: List length: 1 [5]

expected pivot: 5
actual: List length: 1 [5]

actual pivot: 5

findAndSwapPivot() test 3, bigger list with even number of values
expected: List length: 10 [5, 2, 8, 7, 8, 9, 1, 4, 5, 3]

expected pivot: 3
actual: List length: 10 [5, 2, 8, 7, 8, 9, 1, 4, 5, 3]

actual pivot: 3

findAndSwapPivot() test 4, bigger list with odd number of values
expected: List length: 15 [5, 2, 8, 7, 3, 9, 1, 18, 5, 8, 10, 11, 15, 22, 42]

5

expected pivot: 42
actual: List length: 15 [5, 2, 8, 7, 3, 9, 1, 18, 5, 8, 10, 11, 15, 22, 42]

actual pivot: 42

Test partitionList() ——————————————-
partitionList() test 1, basic test

expected: List length: 10 [1, 3, 4, 2, 9, 6, 7, 8, 8, 5]
expected pivot: 4

actual: List length: 10 [1, 3, 4, 2, 9, 6, 7, 8, 8, 5]

actual pivot: 4

partitionList() test 2, bigger test and some duplicates of the pivot
expected: List length: 15 [4, 7, 6, 6, 19, 18, 12, 15, 10, 10, 12, 13, 11, 17, 10]

expected pivot: 4
actual: List length: 15 [4, 7, 6, 6, 19, 18, 12, 15, 10, 10, 12, 13, 11, 17, 10]

actual pivot: 4

partitionList() test 3, everything is smaller than pivot value
expected: List length: 6 [4, 3, 7, 6, 5, 10]

expected pivot: 5
actual: List length: 6 [4, 3, 7, 6, 5, 10]

actual pivot: 5

partitionList() test 4, everything is bigger than pivot value
expected: List length: 6 [4, 3, 7, 6, 5, 2]

expected pivot: 0
actual: List length: 6 [4, 3, 7, 6, 5, 2]

actual pivot: 0

partitionList() test 5, small list that needs a swap
expected: List length: 3 [2, 8, 4]

expected pivot: 1
actual: List length: 3 [2, 8, 4]

actual pivot: 1

partitionList() test 6, list of size 1 (and pivot value)
expected: List length: 2 [8, 4]

expected pivot: 0
actual: List length: 2 [8, 4]

6

actual pivot: 0

partitionList() test 7, list of size 1, pivot value is larger
expected: List length: 2 [8, 12]

expected pivot: 1
actual: List length: 2 [8, 12]

actual pivot: 1

partitionList() test 8 (sort by hand)
after first partition: List length: 5 [5, 3, 6, 7, 8]
after second partition (left): List length: 5 [3, 5, 6, 7, 8]
after third partition (right): List length: 5 [3, 5, 6, 7, 8]

expected: List length: 5 [3, 5, 6, 7, 8]
actual: List length: 5 [3, 5, 6, 7, 8]

Test quickSort() ———————————————–
quickSort() test 1, sort list of size 1

expected: List length: 1 [8]
actual: List length: 1 [8]

quickSort() test 2, sort list of size 2 already ordered
expected: List length: 2 [3, 9]

actual: List length: 2 [3, 9]

quickSort() test 3, sort list of size 2 out of order
expected: List length: 2 [3, 9]

actual: List length: 2 [3, 9]

quickSort() test 4, sort odd sized list
expected: List length: 9 [2, 3, 4, 5, 5, 6, 7, 8, 9]

actual: List length: 9 [2, 3, 4, 5, 5, 6, 7, 8, 9]

quickSort() test 5, sort even sized list
expected: List length: 14 [2, 2, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 10, 11]

actual: List length: 14 [2, 2, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 10, 11]

quickSort() test 6, sort already sorted list
expected: List length: 17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

actual: List length: 17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

7

quickSort() test 7, sort a reversed list
expected: List length: 17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

actual: List length: 17 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

quickSort() test 7, sort a reversed list
expected: List length: 14 [4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8]

actual: List length: 14 [4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8]

Assignment Submission

A MyLeoOnline submission folder has been created for this assignment. You
should attach and upload your completed .cpp source files to the submission
folder to complete this assignment. You really do not need to give me the
assg-05.cpp file again, as I will have my own file with additional tests of
your functions. However, please leave the names of the other two files as
QuickSort.hpp and QuickSort.cpp when you submit them.

Requirements and Grading Rubrics

Program Execution, Output and Functional Requirements

1. Your program must compile, run and produce some sort of output to
be graded. 0 if not satisfied.

2. (15 pts.) swapListValues() function implemented as specified and
working.

3. (15 pts.) findAndSwapPivot() function implemented as specified and
working.

4. (30 pts.) partitionList() function implemented as specified and
working.

5. (30 pts.) quickSort() function implemented as specified and working.

6. (5 pts.) All output is correct and matches the correct example output.

7. (5 pts.) Followed class style guidelines, especially those mentioned
below.

8

Program Style

Your programs must conform to the style and formatting guidelines given
for this class. The following is a list of the guidelines that are required for
the assignment to be submitted this week.

1. Most importantly, make sure you figure out how to set your indentation
settings correctly. All programs must use 2 spaces for all indentation
levels, and all indentation levels must be correctly indented. Also all
tabs must be removed from files, and only 2 spaces used for indentation.

2. A function header must be present for member functions you define.
You must give a short description of the function, and document all of
the input parameters to the function, as well as the return value and
data type of the function if it returns a value for the member functions,
just like for regular functions. However, setter and getter methods do
not require function headers.

3. You should have a document header for your class. The class header
document should give a description of the class. Also you should doc-
ument all private member variables that the class manages in the class
document header.

4. Do not include any statements (such as system(“pause”) or inputting
a key from the user to continue) that are meant to keep the terminal
from going away. Do not include any code that is specific to a single
operating system, such as the system(“pause”) which is Microsoft
Windows specific.

9

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy