NO CERTAIN WORD OR PAGE AMOUNT. JUST ANSWERED
CH1000
Fundament
als of
Chemistry
Module 2 – Chapter 9
• Equations must always be balanced before calculation of any mass,
moles, or volume of a reactant or product!
• Stoichiometry is the area of chemistry that deals with quantitative
relationships between products and reactants in chemical equations.
• Solving stoichiometry problems always requires the use of:
• A balanced chemical equation (coefficients must be known!)
• Conversion factors in units of moles (mole ratios)
•Mole ratio is the conversion
factor between any two
species in a chemical reaction
•The mole ratio will come from
the coefficients of a balanced
chemical equation
•The mole ratio can be used as a
conversion factor to convert
between moles of one substance
and another.
•The desired quantity goes in the
numerator and the known
quantity goes into the
denominator of the mole ratio
•Same method as the solution
map from chapter 2.
Problem Solving for Stoichiometry
Problems
Problem Solving for
Stoichiometry
Problems
•Remember that Step 1 is to
always ensure you have a
balanced equation!!!
•You must be in moles to
convert from one substance to
another!
Limiting
Reactants
•In chemical reactions, the
reaction will occur until one of the
reactants runs out
•Think of a burning fire. You need
oxygen, heat and fuel to keep a
fire going. If the fuel (wood) all
burns, the fire goes out. The wood
would be the limiting reactant
because had it not all burned, the
fire would continue to exist.
•In a chemical reaction, the
maximum amount of product
formed depends on the amount of
reactant not in excess, the limiting
reactant
• The amount of products formed calculated by stoichiometry are the
maximum yields possible (100%)
• Yields are often lower in practice due to side reactions, loss of
product while isolating/transferring the material, etc.
• The theoretical yield is the maximum possible yield for a reaction,
calculated based on the balanced chemical equation.
• The actual yield is the yield obtained from the reaction
• The percent yield is the ratio of the actual and theoretical yield
Reading
Review
What is stoichiometry?
What unit must you be in to convert from one
substance to another?
What is the limiting reactant?
What is the difference between theoretical
and actual yields?
How do you calculate the percent yield?
Introduction to Stoichiometry
Mole Ratios
Mole Ratios in Practice
Problem Solving for Stoichiometry Problems
Problem Solving for Stoichiometry Problems
Problem Solving for Stoichiometry Problems
Reaction Yield
CH1000
Fundament
als of
Chemistry
Module 2 – Chapter 7
• In chemistry, a mole (mol) is a standard scientific unit for measuring large
quantities of very small entities such as atoms, molecules, or other
specified particles.
• The number represented by 1 mole above is also called Avogadro’s number.
• 1 mol of any element contains the same number of atoms, but can vary
greatly in the overall mass. (Atoms of different elements have different
masses)
•Molar Mass is the atomic mass
of an element or compound in
grams which contains Avogadro’s
number of particles
• Molar masses are expressed
to 4 significant figures in the
text
•Convert atomic mass units on
the periodic table to grams and
sum the masses of the total
atoms present
** Not found in the textbook,
save for easy access
•Much like an element, molar
mass can be defined for a
compound
•Molar Mass is the mass of one
mole of the formula unit of a
compound
• The molar mass of a
compound is equal to the
sum of the molar masses of
all the atoms in the
molecule
Percent
Composition of
Compounds
Percent composition is the mass percent of each
element in a compound.
• Percent = parts per 100 parts
• Molar mass is the total mass (100%) of the compound
% Composition is independent of sample size
% Composition can be determined by:
• 1. Knowing the compound’s formula
• 2. Using experimental data
Empirical
and
Molecular
Formula
Empirical Formula
Smallest whole number ratio of
atoms in a compound
Molecular Formula
Actual formula of a compound.
Represents the total number of
atoms in one formula unit of the
compound
Calculating
Empirical
Formulas
•Special Case:
• If fractions are
encountered,
multiply by a
common factor to
provide whole
numbers for each
subscript.
•If molar mass is known,
the molecular formula can
be calculated from the
empirical formula
•Molecular formula is a
multiple of the empirical
formula.
Reading
Review
What is Avagadro’s
number?
How would you
convert from grams
to atoms of an
element?
What is a mole?
What is the
difference between
empirical and
molecular formulas?
What is the special
case when
calculating empirical
formulas?
The Mole (or mol)
Molar Mass
Mole Map
Molar Mass of Compounds
Percent Composition from the Compound’s Formula
Percent Composition from Experimental Data
Calculating the Molecular Formula from the Empirical Formula
CH1000
Fundament
als of
Chemistry
Module 2 – Chapter 6
• Chemical nomenclature is the systematic naming of chemical compounds
• Common names are historical names of compounds which are not based
on systematic rules
• Common names are often used because systematic names are too long
and technical for everyday use
• Chemists prefer systematic names that precisely identify the chemical
composition of compounds.
• Example CaO
• Common name: lime
• Systematic name: calcium oxide
Naming
Flowchart
We will focus on nomenclature of inorganic compounds
• The formula for most elements is the symbol of the element off of
the periodic table.
• Diatomic molecules are an exception:
• Two other elements also exist in polyatomic arrangements:
•Remember from Chapter 5
that any neutral atom that
gains an electron is called
an anion
•When naming anions,
change the element ending
to -ide
Symbols
of the
Elements
•Each element has an
abbreviation called a symbol.
•The first letter of a symbol
must always be capitalized.
•If a second letter is needed, it
should be lowercase.
Predicting Ion
Charge from
Periodic Table
•Metals form cations
•The positive charge is equal
to the group number
Predicting Ion
Charge from
Periodic Table
•Nonmetals form anions
•The negative charge is equal
to 8 – the group number
•Ionic compounds contain both a cation and
an anion.
•Ionic compounds must have a net charge of
0
•The sum of charges of the cations and
anions in an ionic compound equal 0
•Rules for writing formulas for ionic
compounds:
• Write the metal ion followed by the
nonmetal ion formula
• Combine the smallest whole numbers
of each ion to provide an overall
charge equal to zero
• Write the compound formula for the
metal and nonmetal, using subscripts
determined from Step 2 for each ion
Naming Ionic
Binary
Compounds
•Binary compounds containing
a metal which forms only one
cation
•By convention, the cation is
written/named first followed
by the anion
•Rules for naming binary ionic
compounds:
• Name the cation
• Write the anion root and
add the –ide suffix
Naming
Compounds
Containing
Metals with
Multiple
Charges
•Rules for Naming Compounds Involving Metals that Could Form
Multiple Charges
• Write the cation name.
• Write the cation charge in Roman numerals in parentheses.
• Write the root of the anion and use the –ide suffix.
•Exception: for metals that only form two cations, a Latin root with
either an –ous or –ic suffix can also be used.
Formula Name Classical Name Formula Name Classical Name
Cu+ Copper(I) cuprous Sn2+ Tin(II) stannous
Cu2+ Copper(II) cupric Sn4+ Tin(IV) stannic
Fe2+ Iron(II) ferrous Pb2+ Lead(II) plumbous
Fe3+ Iron(III) ferric Pb4+ Lead(IV) plumbic
Naming Molecular
Compounds
•Molecular compounds contain two nonmetals
•Rules for naming molecular compounds:
• Write the name for the first element, including the appropriate prefix
(mono is rarely used).
• Write the name for the second element, including the appropriate prefix
and -ide ending (mono is used for the 2nd element).
Prefix Number Prefix Number
mono 1 hexa 6
di 2 hepta 7
tri 3 octa 8
tetra 4 nona 9
penta 5 deca 10
Naming Binary
Acids
Rules for naming Binary Acids:
Write the prefix hydro followed by the root
of the second element and add an –ic suffix Add the word acid
Hydrogen is always written first in an acid formula.
This is the indicator that it is an acid
Certain binary compounds containing hydrogen behave as acids in water and have special names.
HCl(g) is hydrogen chloride HCl(aq) is hydrochloric acid
Naming
Polyatomic Ions
•A polyatomic ion is anion that
contains two or more
elements
•The names, formulas and
charges of common
polyatomic ions should be
learned.
•Rules for naming compounds
containing polyatomic ions
• Name the cation
• Name the anion
Name Formula Charge Name Formula Charge
Acetate C2H3O2- -1 Cyanide CN- -1
Ammonium NH4+ +1 Dichromate Cr2O72- -2
Hydrogen
Carbonate HCO3
– -1 Hydroxide OH- -1
Hydrogen
Sulfate HSO4
– -1 Nitrate NO3- -1
Bromate BrO3- -1 Nitrite NO2- -1
Carbonate CO32- -2 Permanganate MnO4- -1
Chlorate ClO3- -1 Phosphate PO43- -3
Chromate CrO42- -2 Sulfate SO42- -2
Sulfite SO32- -2
Naming
Oxyanions
•Oxyanions are polyatomic ions that contain
oxygen
•Often end in suffix –ate or –ite
•-ate compounds contain more O atoms
than ite compound(s)
•For elements that form multiple ions with
oxygen, prefixes are also needed:
• Per: add one oxygen to the –ate root
• Hypo – subtract one oxygen from the –
ite root
Anion
Formula Anion Name
Anion
Formula Anion Name
ClO- hypochlorite HClO hypochlorous acid
ClO2- chlorite HClO2 chlorous acid
ClO3- chlorate HClO3 chloric acid
ClO4- perchlorate HClO4 perchloric acid
More Complicated
Polyatomics
•Inorganic ions can be formed from more
than 3 elements
•The same method is used as before:
• Identify the ions and name in order
• Cations before anions
Compound Ions Name
NaHCO3 Na+; HCO3-
Sodium hydrogen
carbonate
NaHS Na+; HS- Sodium hydrogen sulfide
MgNH4PO4
Mg2+; NH4+;
PO43-
Magnesium
ammonium
phosphate
NaKSO4 Na+; K+; SO42-
Sodium potassium
sulfate
• Acids generally begin with hydrogen
• To recognize oxyacids, make sure:
• H is the first element in the formula
• The compound contains a polyatomic ion with oxygen
• The following modifications are made to the name of the
acid:
• -ate ions are changed to –ic acids
• -ite ions are changed to –ous acids
• -ic acids contain one more oxygen than –ous acids
Naming Acids
Flowchart
Reading
Review
What type of ions do metals form?
What type of ions do nonmetals
form?
What is the chemical formula for
potassium sulfide?
Name the compound CrCl3.
Acids often begin with what element?
Common and Systematic Names
Elements and Ions
Naming Anions
Predicting Ion Charge from Periodic Table
Writing Formulas from Names of Ionic Compounds
Naming Acids
CH1000
Fundament
als of
Chemistry
Module 2 – Chapter 8
• Chemists use chemical equations to:
• Summarize a chemical reaction by displaying the substances reacting and
forming.
• Indicate specific amounts of materials consumed or produced during the
reaction.
• Reactants: substances consumed during the reaction.
• Products: substances formed during the reaction.
• Atom balance must be maintained in all chemical reactions.
• All atoms from reactants must appear as part of products.
a A + b B c C + d D
The
coefficient
1 is not
written in
a balanced
equation.
Chemical Equations
1. Reactants and products are separated by an arrow.
2. Reactants are on the left side of the arrow, products are on the right.
3. Whole number coefficients are placed in front of substances to
balance the atoms in the equation.
4. The numbers indicate the units of the substance reacted or formed
during the reaction.
5. Information about the reaction (temperature, time) may be placed
above or below the reaction arrow.
6. The physical state is written in brackets after the formula of the
substance. (g) for gas, (l) for liquid, (s) for solid, (aq) for aqueous
a A + b B c C + d D
Reactant
s
Products
Symbol
Summary
Symbol Significance
Produces (points towards products)
(s) Solid (written after substance)
(l) Liquid (written after substance)
(g) Gas (written after substance)
(aq) Substance dissolved in an aqueous
solution
Heat is added (above or below reaction
arrow)
Δ
• The total mass of substances in a chemical reaction must remain
constant.
water hydrogen + oxygen
100.0 g 11.2 g 88.8 g
100.0 g total of productsreactants
In any chemical reaction:
Mass of reactants = Mass of products
Writing and
Balancing
Chemical
Equations
A balanced chemical equations contain the same
number of each kind of atom on both sides of the
equation.
1. Write a word equation for the reaction.
2. Write the correct formula for each substance
(unbalanced):
3. Balance the equation
a) Count the number of each atom on the reactants and
products side and determine what requires
balancing.
b) Balance each element sequentially, using whole
numbers. It is often best to balance metals first.
mercury(II) oxide mercury + oxygenΔ
HgO Hg + O2
Δ
Hg: 1
O: 1
Hg: 1
O: 2
HgO Hg + O2
Δ
Oxygen atoms
need balancing
on the reactants
side.
2 HgO Hg + O2
Δ
Hg: 2
O: 2
Hg: 1
O: 2
Now Hg atoms
need balancing
on the products
side.
Writing and
Balancing
Chemical
Equations
4. Check after adding coefficients that all atoms still
balance. Adjust as needed (a 2 is needed in front of
Hg).
5. Do a final check to make sure all atoms now balance
on both sides of the equation.
2 HgO 2 Hg + O2
Δ
Hg: 2
O: 2
Hg: 2
O: 2
Note: always use the smallest whole
numbers!
4 HgO 4 Hg + 2 O2
Δ
Balanced but incorrect form!
Information in
a Chemical
Equation
© 2014 John Wiley & Sons, Inc. All rights reserved.
Information from a Chemical
Equation
• From the chemical equation below, how many moles of oxygen are
needed to burn 2 molecules of propane (C3H8)?
• a) 5 molecules of oxygen
• b) 6 molecules of oxygen
• c) 10 molecules of oxygen
• d) 15 molecules of oxygen
C3H8 + 5 O2 3 CO2 + 4 H2O
For every 1 molecule of propane,
5 molecules of O2 are needed to fully
react.
Two molecules of propane would then
require
2 x 5 = 10 molecules of oxygen.
Types of
Chemical
Equations
1. Combination reactions
2. Decomposition reactions
3. Single displacement reactions
4. Double displacement reactions
5. Oxidation-reduction (redox) reactions
(Chapter 17)
Reactions are classified into subtypes to aide in
predicting
the products of chemical reactions.
Reactions are classified into five major categories:
Two reactants combine to give a single product.
A + B AB
Decomposition
Reactions
A single reactant breaks down (decomposes) into
two or more products
AB A + B
Single Displacement
Reactions
One element (A) reacts with a compound (BC) to replace
one element in the compound, giving a new element (B)
and a different compound (AC).
General Types of
Double Displacement
Reactions
Two compounds exchange partners with one
another to yield two new compounds.
AB + CD AD + CB
General Types of
Double Displacement
Reactions
Two compounds exchange partners with one
another to yield two new compounds.
AB + CD AD + CB
General Types of Double Displacement Reactions Writing Reaction Equations Practice
1. Write the reaction equation between aqueous
solution of hydroiodic acid and sodium
hydroxide.
2. First convert names to chemical formulas and
determine the type of reaction.
HI (acid)/NaOH(base)
Neutralization Reaction
acid + base salt + water
HI (aq) + NaOH (aq) NaI (aq) + H2O (l)
Salt formula must charge balance (Na+ and I–)
Heat in
Chemical
Reactions
Terminology
Energy transfer and changes accompany any chemical reaction
Heat of reaction: quantity of heat actually produced during a chemical reaction.
Units: kilojoules (kJ) or kilocalories (kcal)
Exothermic reactions: release heat. H2 (g) + Cl2 (g) 2 HCl (g) + 185 kJ
Heat can be treated as a product
Endothermic reactions: absorb heat. N2 (g) + O2 (g) + 181 kJ 2
NO (g)
Heat can be treated as a product
C (s) + O2 (g) CO2 (g) + 393 kJ
1 mol of C reacts with 1 mol of O2 to provide 1 mol of CO2 and 393 kJ
of heat
are released.
Heat in Chemical Reactions
Equations Practice
Heat as an Energy
Transfer
Vehicle in Nature
Graphical
Representations of
Endothermic
Reactions
•Products are at a higher
potential energy than
reactants.
•Activation energy: Amount
of energy needed to initiate a
chemical reaction.
Reaction Coordinate
Diagram
Graphical
Representations of
Exothermic
Reactions
•Products are at a lower
potential energy than
reactants.
•Activation energy: Amount
of energy needed to initiate a
chemical reaction.
Reaction Coordinate
Diagram
Reading
Review
How do you know if a reaction is a
combustion reaction?
What is an endothermic reaction?
What is an exothermic reaction?
What are the four types of chemical
equations?.
How do you know if an equation is
balanced?
Chemical Equations
Chemical Equations
Law of Conservation of Mass
Writing and Balancing Chemical Equations
Combination Reactions
Single Displacement Reactions
Double Displacement Reactions
Double Displacement Reactions
We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.
Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.
Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.
Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.
Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.
Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.
We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.
Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.
You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.
Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.
Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.
You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.
You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.
Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.
We create perfect papers according to the guidelines.
We seamlessly edit out errors from your papers.
We thoroughly read your final draft to identify errors.
Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!
Dedication. Quality. Commitment. Punctuality
Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.
We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.
We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.
We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.
We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.