Classification Trees and k-NN

Please see attached. Do not bid if you cannot solve this, I am fed of up random bids and refunds from experts who cannot solve this, yet lie that they can. 

t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>t

d>

Don't use plagiarized sources. Get Your Custom Essay on
Classification Trees and k-NN
Just from $13/Page
Order Essay
2

>Data

1

2 6

4 4 2 1 0 4 0 0 1 1 0 1 4

2

2

2 1 1

2 1 1 2 1 1 3 0 0 0 0 0 0 1

5

3

v

3

0 1 3 9 4 4 2 2 1 0 4 0 0 1 1 0 0 1

4

8

t

4

2 4 1

2 3 1 2 1 0 3 0 1 1 1 0 1 6

3

6

t

5

0 3 1 30 2 2 4 3 1 0 4 0 1 1 0 0 0 4

3

5

t

6 29 2 0 1 24 3 2 1 1 1 0 4 0 1 1 0 0 0 3 2,

6

0

v

7

2 1 1 9 2 1 2 2 1 0 2 0 1 1 1 0 1 6

1

5

8

t

8 30 0 1 1 36 2 2 2 2 1 0 1 0 1 1 0 0 0 2

6

7

v

9

0 0 2 24 2 1 1 2 1 0 1 0 0 1 1 0 0 4

5,

3

6

v

0 1 1 12 4 4 4 2 1 0 4 0 0 1 0 0 1 4

8

6

v

11 41 0 2 1 24 2 4 4 1 1 1 4 0 0 0 0 0 1 1

9

6

t

12

2 2 2 6 3 2 4 2 2 0 1 0 1 1 0 0 0 6

t

13 25 1 1 2 21 2 2 2 2 1 0 3 0 0 1 1 0 1 4

t

24 2 0 1 48 2 2 3 2 1 0 1 0 0 1 0 0 0 1

t

27 3 4 1 6 2 2 1 0 1 0 2 0 0 1 0 1 1 1

9

t

16

0 2 1 6 2 4 4 2 2 0 2 0 1 0 1 0 0 4

6

t

17 36 0 2 1 24 4 4 4 2 2 0 3 0 0 1 1 0 1 4

4

4

t

18 33 1 1 2 15 0 3 4 2 2 1 4 0 0 0 0 0 0 1

0

t

0 1 2 36 3 1 1 2 1 0 1 0 0 1 0 0 0 6

6

t

20

0 4 3 24 2 3 2 3 1 0 2 0 0 1 1 0 0 6

1

t

21 52 0 3 2 9 4 2 4 2 1 0 4 0 0 1 1 0 0 5

2

t

22 33 0 0 2 9 4 2 2 2 2 0 1 0 0 1 0 0 1 4

t

23 26 2 1 1 12 2 1 1 1 1 0 4 1 1 1 0 0 1 4

t

24 26 3 1 1 36 2 2 2 2 1 0 4 0 0 1 0 0 0 4

6

v

25 29 1 0 1 24 2 2 4 2 1 0 4 0 1 1 0 0 0 1

915

t

26 39 1 4 2 6 4 4 3 1 1 0 3 0 0 1 1 0 1 1

t

27 27 1 1 1 12 2 2 2 2 1 0 2 0 0 1 0 0 1 3

v

28

0 0 1 18 2 3 3 2 1 0 4 0 0 1 0 1 0 1

t

29 23 0 4 2 15 4 4 4 2 1 1 3 0 0 0 1 0 0 2

t

30 26 0 1 1 12 2 2 2 2 1 0 2 0 0 1 1 1 1 6 1,076

t

31 54 0 1 1 6 2 4 0 0 1 0 1 0 0 1 1 0 1 1

t

32 40 2 0 1 48 2 4 0 0 1 0 3 0 1 0 1 0 0 0

5,381

t

33 28 2 1 2 30 4 2 0 3 1 0 4 0 0 1 0 0 0 1

t

34 75 1 1 2 24 4 4 0 3 1 0 2 0 0 0 1 0 0 2

t

35 24 2 1 2 24 4 4 1 2 1 0 2 0 0 0 1 0 0 5

t

36 23 0 1 1 9 2 4 1 2 1 1 1 0 0 0 1 0 1 0

t

37 61 2 0 1 18 2 4 2 2 1 0 4 0 0 0 0 0 0 5

t

38 36 0 0 1 36 2 4 2 2 1 0 4 0 0 1 0 0 1 1

t

39 39 1 0 1 20 2 4 3 2 1 0 4 0 0 1 1 0 0 3

t

40 30 0 1 1 18 2 2 2 3 1 0 2 0 0 1 1 0 0 1

1,820

v

41 39 0 1 1 18 2 4 1 2 1 0 3 0 0 1 1 0 1 4

1,

t

42 20 2 1 1 24 2 4 4 2 1 0 4 0 0 1 1 0 0 4

t

43 20 0 4 1 15 2 3 3 2 1 1 2 0 0 0 0 0 0 1

3,186

v

44 74 0 1 1 5 2 4 3 1 1 0 1 0 0 1 0 0 1 6

t

45 39 0 1 1 12 2 4 4 3 1 0 4 0 0 1 1 0 0 1

t

46 30 0 0 1 36 4 2 2 3 1 0 4 0 0 1 1 0 0 2

0

v

47 37 1 1 1 36 2 2 2 2 2 0 1 1 0 1 0 0 0 3

t

48 22 2 2 1 24 2 2 1 2 1 1 3 0 0 0 1 0 0 4

t

49 23 2 1 1 12 4 1 2 1 1 0 1 0 0 1 0 0 1 4

v

50 26 0 1 2 12 4 2 4 2 1 0 2 0 0 1 0 0 0 4

t

51 27 1 1 1 24 2 1 1 2 1 0 4 0 0 1 0 0 0 1

v

52 26 1 1 1 12 2 2 3 2 1 0 4 0 0 1 0 0 1 1

1

t

53 44 0 1 2 24 4 4 4 2 1 0 3 0 0 0 0 0 0 0

v

54 32 2 1 2 36 2 1 3 2 2 0 3 0 0 1 0 0 0 5

t

55 23 2 1 1 12 2 1 1 2 1 1 1 0 0 0 0 0 1 4

t

56 23 0 0 2 12 4 4 3 2 1 0 4 0 0 1 0 0 1 0

6

498 68 t

57 49 1 0 1 24 2 4 4 2 2 0 4 0 1 0 1 0 0 2

2,964

t

58 23 1 1 1 24 2 4 1 1 1 1 4 0 0 0 1 0 1 3

3,234

t

59 30 2 1 2 18 4 3 4 2 1 0 3 1 1 1 0 0 1 1

950

t

58 1 1 4 12 4 3 3 1 1 0 4 0 0 1 1 0 1 4

19 t

61 45 2 1 1 7 2 1 1 2 1 0 1 1 0 1 0 0 1 4

t

62 22 1 2 1 12 2 3 0 2 1 0 4 0 0 1 0 0 0 0 741

t

63 27 2 1 2 21 4 3 3 2 1 0 2 0 0 1 0 0 0 6

337 t

64 28 1 1 1 24 2 4 2 2 1 0 2 0 0 1 0 0 0 4

5

t

65 27 1 1 1 18 2 1 0 0 1 0 4 0 0 1 0 0 1 5

t

66 50 1 1 1 48 2 1 3 3 1 0 4 0 0 0 1 0 0 5

t

67 23 3 1 1 12 2 4 2 2 1 1 3 0 0 0 0 0 1 4

t

68 27 0 2 2 24 4 3 2 1 1 0 3 0 0 1 1 0 0 6

t

69 56 0 1 1 6 2 2 1 2 1 0 1 0 0 1 0 0 0 5

v

70 25 1 1 2 15 4 3 2 2 1 0 2 0 0 1 0 0 0 3

585 88 t

71 29 0 3 1 12 2 4 2 1 1 1 4 0 0 0 0 0 0 3

v

72 32 0 3 2 18 4 3 4 3 1 0 4 0 1 1 1 0 0 4

56 t

73 34 3 1 2 9 0 2 1 3 1 0 4 0 0 1 1 0 0 4

t

74 33 2 1 1 24 3 2 1 2 1 0 1 0 0 1 0 0 0 4

t

75 32 1 2 1 24 1 3 3 2 1 0 2 0 1 1 0 0 0 1

t

76 49 1 1 1 6 2 1 4 2 1 0 2 0 1 1 1 0 0 3

99 v

77 59 0 0 1 15 4 4 4 2 1 0 1 0 0 1 1 0 0 1

507 t

26 1 0 1 24 2 4 4 2 1 1 2 0 0 0 0 0 1 2

t

79 25 2 1 2 39 4 2 3 2 1 0 2 1 0 1 0 0 1 4

t

80 39 2 1 1 21 2 4 4 2 2 0 2 0 0 1 0 0 0 6

v

81 54 0 1 2 24 4 4 4 2 2 0 4 0 0 0 0 0 0 5

1,597

t

82 26 2 1 1 8 2 2 1 2 1 0 3 0 0 1 1 0 1 6

t

27 0 1 2 12 2 2 2 2 1 0 3 0 0 1 1 0 1 1

198 v

84 44 0 3 2 24 3 2 2 2 2 0 4 0 0 1 1 0 0 6

t

85 29 1 1 1 36 2 2 3 2 1 0 4 0 0 1 0 0 0 3

t

86 33 1 1 2 20 4 2 2 2 1 1 4 1 1 0 0 1 0 1

t

87 27 0 4 2 24 4 2 2 2 1 0 4 0 0 1 0 0 1 2

956 v

88 40 0 3 2 36 3 4 3 2 1 0 2 0 0 1 1 0 0 3

t

38 0 1 1 24 2 3 3 3 1 0 3 0 0 1 1 0 0 2

t

90 43 1 1 4 27 4 4 4 3 2 0 4 0 1 1 1 0 0 6

t

91 43 1 1 1 16 4 4 4 2 1 1 2 1 1 0 1 0 0 1

2,625

v

92 34 0 1 2 36 3 4 2 2 1 0 4 0 0 1 0 0 1 4

t

93 28 0 1 2 18 4 2 2 2 1 0 4 0 0 1 0 0 0 3

t

94 24 1 1 1 24 2 1 1 1 1 0 4 0 0 1 0 1 0 3

v

95 45 0 0 1 12 2 3 1 3 2 0 2 0 0 1 1 0 0 1

v

96 40 2 1 3 18 4 3 0 0 2 0 3 0 0 1 1 0 0 6

t

97 30 0 1 2 6 4 2 4 2 1 1 2 0 0 0 0 0 1 4

t

98 22 2 2 1 15 2 2 2 2 1 0 4 1 0 1 0 0 1 0

v

99 49 2 1 1 30 4 2 3 2 1 0 2 0 0 1 0 0 0 3

8,386

t

37 0 0 2 12 4 1 1 1 2 0 2 0 0 1 0 0 0 5

v

101 22 2 1 1 48 2 2 2 2 1 0 2 0 0 1 0 0 1 4

v

24 1 1 1 48 2 4 1 2 1 1 3 0 0 0 0 0 0 6

4,308

t

103 44 1 3 1 6 2 3 2 2 2 1 2 0 0 0 0 0 1 4

2,647

v

27 1 1 1 24 2 2 2 2 1 0 2 0 1 1 0 0 0 3 4,020

t

26 2 3 1 12 2 1 2 2 1 0 3 0 0 1 1 0 0 4

v

30 2 1 2 27 3 2 4 3 1 0 1 0 0 1 1 0 0 2

5,965

t

50 2 0 2 15 4 4 4 2 1 0 4 1 0 1 1 0 1 4

t

46 0 0 2 7 4 2 4 1 1 1 4 0 0 0 1 0 0 4

85 v

47 0 3 1 15 2 3 4 2 1 0 4 0 1 1 1 0 0 4

t

54 1 1 1 12 4 3 4 2 1 0 4 0 0 1 0 0 1 2

t

24 2 1 1 36 2 4 3 2 1 1 4 0 0 0 0 0 0 4

296 t

23 3 1 1 15 2 4 1 2 1 1 4 0 0 0 1 0 0 5

91 t

41 0 1 2 24 4 2 4 3 1 1 4 0 0 0 1 0 0 2

v

114 29 1 1 1 36 3 3 2 2 1 0 4 0 1 1 1 0 0 5

t

30 2 1 1 36 2 1 1 3 1 0 4 0 0 1 1 0 0 4

t

116 38 0 1 1 10 2 4 2 2 1 0 1 0 0 1 1 1 0 4

381 v

117 30 0 1 2 18 4 1 1 2 1 0 4 0 0 1 0 0 0 1

t

26 0 1 1 12 2 1 2 2 1 0 4 0 0 1 1 0 1 3

t

30 2 1 2 36 3 2 2 3 1 0 2 0 1 1 1 0 1 6

4,455

t

34 2 2 1 48 0 4 3 1 2 0 4 0 0 0 0 0 0 6

t

27 1 1 1 12 2 3 2 1 1 0 4 0 0 1 0 0 1 1

934

t

45 0 0 1 36 2 4 4 1 1 0 2 0 0 1 1 0 1 4

t

123 23 1 0 1 12 2 4 2 2 1 1 4 0 1 0 1 0 0 5

t

51 0 3 1 9 2 4 4 1 1 0 2 0 0 0 0 0 0 1

t

51 0 1 1 6 2 2 3 2 2 0 3 0 0 1 0 0 0 4

1,595 534 v

46 3 1 1 12 2 2 2 1 1 0 1 0 0 1 0 0 0 3

t

55 1 1 1 24 2 4 4 2 1 0 4 0 0 1 0 0 0 4

v

37 0 3 1 12 4 4 3 2 1 1 3 0 0 0 1 0 0 3

397 t

50 0 1 1 12 2 2 2 2 1 0 4 0 0 1 0 0 1 3

446 t

28 2 1 1 36 2 4 1 3 1 1 1 0 0 0 1 0 0 2

v

131 42 2 1 1 36 0 1 2 2 1 0 4 0 0 1 1 0 0 4

v

25 0 2 1 24 2 1 2 2 1 0 4 0 1 1 0 0 0 3

t

133 32 1 1 1 24 2 3 1 2 1 0 4 0 0 1 0 0 0 4

v

30 0 2 2 18 4 2 2 2 1 0 4 0 0 1 0 0 1 5

1,491

t

26 1 1 1 21 2 4 3 1 1 1 1 0 0 0 0 0 0 3

t

29 2 1 1 9 2 2 2 2 1 0 1 0 0 1 0 1 0 3

479

v

137 37 3 0 1 12 2 3 4 3 1 0 2 0 0 1 0 0 0 4

t

33 0 1 2 18 4 4 4 2 1 0 3 0 0 1 1 0 0 4

4,249

t

139 38 2 1 1 18 2 4 0 3 1 0 3 0 0 0 1 0 0 2

v

140 19 2 4 1 12 2 4 1 1 1 1 1 0 0 0 0 0 1 3

t

141 28 2 0 2 18 4 4 2 2 1 0 4 0 1 1 0 0 1 6

v

35 0 1 2 33 4 2 3 3 1 0 3 0 0 1 1 0 0 2

730 t

143 30 2 0 1 12 2 2 2 2 1 0 4 0 0 1 0 0 0 2

518 v

29 2 1 2 24 2 3 2 3 1 0 2 0 1 1 1 0 0 0

v

30 1 1 1 12 2 3 2 2 1 0 2 0 0 1 0 0 0 3

200 t

29 0 1 1 6 2 1 2 2 1 0 3 0 0 1 0 0 1 4 518 466 135 t

36 1 1 1 15 2 3 1 2 1 0 2 0 0 1 0 0 1 1

t

148 23 1 1 1 6 2 4 1 2 1 0 4 0 0 1 0 0 0 5 448 268

t

26 2 1 1 24 2 1 1 2 1 0 4 0 0 1 0 0 0 1

v

42 2 1 2 27 0 4 4 3 1 0 2 0 0 0 1 0 0 6

v

151 42 1 1 1 36 2 4 4 2 2 0 2 0 0 0 0 0 0 2

t

32 0 1 1 36 2 2 2 3 1 0 2 0 0 0 1 0 0 2

v

24 1 1 1 18 2 2 2 2 1 0 2 0 0 1 0 0 1 4

t

28 2 2 2 15 2 4 2 2 1 1 2 0 0 0 1 0 0 1

t

60 0 1 2 24 3 4 4 2 1 0 4 0 0 0 1 0 0 1

125 t

45 0 3 1 6 1 4 4 1 2 0 2 0 1 1 0 0 0 4

v

157 24 1 1 1 24 1 4 3 1 1 1 4 1 1 0 0 0 0 4

1,546

t

158 38 0 1 1 30 4 2 3 2 1 0 3 0 0 1 0 0 0 4

835 t

159 49 2 1 2 12 4 3 1 1 2 0 1 0 1 1 0 0 1 1

3,124

t

42 2 0 2 24 3 4 2 2 1 1 4 0 0 0 1 0 0 1

1,572 307 v

30 2 1 1 9 2 1 2 2 1 0 4 0 0 1 0 0 0 3

v

48 3 2 1 10 2 4 4 1 2 0 1 0 0 0 0 0 0 1

t

163 32 0 1 2 18 4 2 2 2 1 0 3 0 1 1 0 0 0 1

t

164 44 1 1 1 18 1 3 2 2 1 0 4 0 1 1 0 0 0 3

t

165 38 2 1 2 15 2 4 4 1 1 0 4 0 0 1 0 0 0 0

78 t

37 2 1 1 12 2 2 2 1 1 0 4 0 0 1 0 0 0 3

t

167 23 1 0 1 12 2 2 2 2 1 0 4 0 0 1 0 0 0 1

900

t

168 31 0 2 2 36 2 2 3 2 1 0 2 0 0 1 1 0 0 6

5,742

t

37 0 0 1 12 2 4 2 2 1 0 4 0 0 0 1 0 0 4

1,595 426 v

25 2 2 1 15 2 2 2 1 1 0 3 0 0 1 0 0 1 0 2,631

457 t

46 1 1 2 48 4 4 4 2 1 0 4 0 0 0 1 0 0 2

t

35 1 1 1 6 1 4 4 2 1 0 4 0 0 0 0 0 0 5 1,198

t

24 2 4 1 6 1 2 1 2 2 1 4 0 1 0 0 0 0 5

t

21 1 1 1 24 2 4 2 1 2 1 2 0 0 0 0 0 1 4

t

175 23 2 1 1 10 1 4 2 1 1 0 4 0 1 1 0 0 1 4

838 186 t

23 1 1 1 18 2 2 1 1 1 0 1 0 0 1 0 0 0 1 976

t

24 1 1 2 18 4 4 2 2 1 1 4 0 0 0 0 0 1 3

v

25 1 1 2 36 4 2 2 3 1 0 3 0 0 1 1 0 0 5

t

179 60 0 4 1 24 4 4 4 2 1 0 4 0 0 1 1 0 1 1

466 t

41 0 0 1 24 2 4 4 3 2 0 3 0 0 1 1 0 0 2

6,313

v

48 2 1 2 18 4 4 4 1 1 1 3 1 1 0 1 0 1 4

282 v

28 2 1 1 6 2 3 3 1 1 0 3 1 1 1 0 0 1 4

71 v

183 24 3 1 1 12 2 1 2 2 1 0 3 0 0 1 0 0 0 4

t

23 1 1 1 18 2 3 1 2 1 1 4 0 0 0 1 0 0 1

v

28 0 1 2 21 3 2 2 1 1 0 3 0 1 1 0 0 1 2

t

186 43 0 0 2 24 4 4 3 2 1 0 3 0 0 1 1 0 0 2

301 t

28 0 1 1 18 3 2 2 2 1 0 4 0 0 1 1 0 0 6

t

188 46 3 1 2 6 4 4 4 2 2 0 1 0 0 1 0 1 1 1

805 84 t

48 0 0 1 24 2 4 2 2 1 0 2 0 0 0 1 0 0 2

t

190 46 0 1 2 15 4 4 4 2 1 0 4 0 0 1 1 0 0 4

1,829

t

191 44 0 0 2 20 4 4 1 2 1 0 2 0 0 1 1 0 1 1

t

192 25 2 1 1 24 4 4 1 1 1 0 2 0 1 1 0 0 0 3

v

37 0 3 1 48 3 1 3 3 1 0 4 0 0 1 1 0 0 4

12,749

t

194 22 2 1 1 9 2 2 1 2 1 0 4 0 0 1 1 0 0 4

v

195 31 0 1 1 10 2 2 2 1 2 0 3 0 0 1 0 1 1 1 1,546

v

196 24 1 1 2 36 3 1 3 2 1 0 2 0 0 1 1 0 0 6

v

47 2 1 2 21 3 4 2 2 1 0 1 0 0 1 0 0 0 1

t

198 43 0 1 1 24 2 4 2 1 2 0 1 0 0 1 0 0 0 1

t

33 0 1 1 48 2 2 0 3 1 1 3 0 1 0 1 0 0 6

t

200 34 0 2 1 15 1 4 4 1 2 0 4 0 1 1 0 0 0 4

158 t

201 49 0 1 1 12 4 3 3 1 2 0 2 0 0 1 0 0 1 5

383 t

22 2 1 1 12 2 1 2 2 1 0 1 0 0 1 1 0 0 4

v

203 48 1 1 2 10 4 3 1 1 2 1 1 0 0 0 0 1 1 1

t

30 2 2 2 18 2 2 2 2 1 0 2 0 0 1 1 0 0 1

v

44 2 1 1 18 3 4 2 1 2 0 2 0 0 1 1 0 1 0

t

25 0 1 1 12 2 2 2 2 1 0 3 0 0 1 0 0 0 4

t

207 61 2 1 1 36 0 4 4 3 1 0 4 0 0 0 1 0 0 6

t

51 1 1 2 8 4 4 4 3 2 0 3 0 1 0 1 0 0 0

698 87 v

24 0 2 1 18 2 4 2 1 1 1 3 0 0 0 0 0 0 6 1,568 1,254

t

210 33 0 0 1 12 4 3 4 1 2 0 4 0 1 1 0 0 0 4

t

211 24 0 1 1 6 3 2 2 2 1 0 3 0 0 1 0 0 1 4

652 167 t

212 28 2 1 1 18 2 3 3 1 1 1 3 0 0 0 0 0 1 1

t

213 24 0 1 1 12 2 2 2 1 1 1 3 0 0 0 0 0 1 3 1,768

300 v

27 0 1 2 15 2 3 1 1 1 0 2 0 1 1 0 0 0 3

151 t

27 1 1 1 27 2 2 2 3 1 0 3 0 0 1 0 0 0 4

3,074 922 t

216 24 3 1 1 36 2 1 2 2 1 0 4 0 0 1 0 0 0 4

t

36 0 3 2 15 2 3 3 2 1 0 4 0 0 1 1 0 0 0 1,262

72 t

218 34 2 1 1 24 3 2 0 3 1 0 3 0 0 1 1 0 0 3

t

219 40 1 0 2 21 1 2 2 1 2 0 4 0 0 1 0 0 0 1

v

220 36 2 1 1 27 2 2 2 2 2 0 4 0 0 1 1 0 0 6

t

26 0 1 2 27 3 4 3 2 1 0 3 0 0 1 0 0 0 6

647 t

50 1 1 2 27 0 4 0 2 1 0 2 0 1 1 1 0 0 6

v

30 0 1 2 12 2 2 2 2 1 0 4 0 1 1 0 0 1 4 707 565 90 v

35 0 2 1 12 2 1 3 2 1 0 3 0 0 1 0 0 0 4

t

225 24 1 1 2 48 0 4 4 2 2 0 3 0 0 0 0 0 0 2

t

24 2 1 1 30 2 2 2 2 1 0 4 1 1 1 0 0 0 1

t

36 1 1 3 18 4 4 4 3 1 0 2 0 0 0 1 0 0 1

v

36 2 0 1 48 1 4 0 3 1 0 4 0 0 0 1 0 0 1

t

229 49 3 0 1 18 1 4 3 1 1 0 4 0 1 1 0 0 0 4

235 t

230 44 1 1 2 24 4 4 4 3 2 0 2 0 0 0 1 0 0 2

763 t

37 3 0 2 24 4 2 3 1 2 0 4 0 1 1 0 0 1 1

v

232 26 3 1 1 24 2 4 1 2 1 0 2 0 0 1 0 0 0 3

v

34 1 1 1 24 2 1 3 3 1 0 2 0 0 0 1 0 0 2

306 t

234 24 2 2 1 60 2 2 1 3 1 0 4 0 0 1 0 0 0 1

v

235 25 2 3 1 18 2 3 1 2 1 1 1 0 0 0 0 0 1 4

t

236 38 0 0 1 18 4 4 0 3 1 0 2 0 0 1 1 0 0 2

3,229

t

237 36 3 1 2 12 3 2 2 2 1 0 2 0 1 1 1 0 0 1

338 t

23 0 1 2 10 4 3 1 2 1 1 1 0 0 0 0 0 1 3

v

239 25 0 0 1 22 2 4 3 2 1 1 4 0 0 0 0 0 0 1

215 t

240 39 1 1 1 36 2 4 3 3 2 0 2 0 1 0 1 0 0 1

564 t

241 27 0 1 2 24 3 2 1 2 1 0 2 0 1 1 1 0 0 6

t

42 0 1 2 12 4 2 0 3 1 0 4 0 1 1 1 0 0 6

2,292

t

47 2 1 2 12 4 3 3 1 2 0 2 0 0 1 0 0 1 1

670 105 t

36 1 1 3 6 4 4 0 3 1 0 4 0 0 0 1 0 0 3

155 t

29 2 1 2 20 3 3 2 2 1 0 2 0 1 1 1 0 0 0

258 v

34 0 1 2 12 0 4 4 2 1 0 2 0 0 1 0 0 0 3

t

247 34 2 1 1 12 2 1 1 3 1 1 3 0 0 0 0 0 1 3

t

248 28 1 1 1 9 2 3 2 1 1 0 4 0 0 1 0 0 0 1

457

t

249 57 1 4 2 30 2 4 4 2 1 1 4 0 0 0 1 0 0 3

302 v

27 0 2 2 6 4 1 2 2 1 0 1 0 0 1 0 0 0 4 1,237

195 v

251 49 3 2 1 9 2 4 4 2 1 0 2 0 0 1 0 0 1 4

92 v

26 3 1 1 15 2 4 3 2 1 1 2 0 0 0 1 0 0 6

2,687

t

253 53 1 1 2 48 0 4 2 2 2 0 3 0 0 0 0 0 0 3

t

254 41 0 1 1 12 3 4 2 2 1 1 4 0 0 0 0 0 1 2

1,503

t

31 1 0 1 30 2 4 4 2 1 0 4 0 0 1 0 0 0 3

t

34 1 1 2 48 2 1 3 2 1 0 1 1 0 1 1 0 1 4

t

29 3 1 1 6 3 1 1 2 1 0 2 0 1 1 0 0 0 4 683 341 49 t

258 26 0 0 1 24 2 4 0 3 1 1 2 0 0 0 1 0 0 2

v

26 0 1 1 9 2 2 2 2 1 1 4 0 0 0 0 0 1 3

366 t

260 36 0 4 1 21 2 4 4 1 1 0 4 0 1 1 0 0 1 6 1,572

t

261 34 2 1 1 24 1 4 3 1 1 0 4 0 1 0 0 0 0 5 1,837

t

262 29 1 4 1 21 2 2 1 2 1 0 4 0 1 1 0 0 0 4

v

38 0 0 1 48 2 2 2 2 1 0 4 0 1 1 0 0 1 6

t

23 2 0 1 15 2 1 1 2 1 0 4 0 0 1 0 0 0 4

1,010 194 t

265 40 0 2 1 15 2 2 2 3 1 0 3 0 0 1 1 0 0 5

t

266 45 1 1 1 24 2 1 4 2 1 0 4 0 0 1 0 0 1 1

t

50 0 1 2 21 2 2 4 2 1 0 4 0 0 1 0 0 1 3 2,241

343 t

268 42 0 1 1 60 2 4 4 3 1 0 2 0 0 1 1 0 0 1

1,522 v

33 0 1 2 15 3 3 2 2 1 0 4 0 1 1 0 0 1 4

255 t

29 2 2 1 24 2 1 1 2 1 0 2 0 0 1 0 0 0 4

390 v

47 3 2 1 24 2 2 4 2 1 0 4 0 0 0 1 0 0 4

143 v

46 0 0 1 21 2 4 4 3 1 0 4 0 0 1 1 0 1 2

453 t

273 24 1 1 1 12 2 2 2 1 1 0 4 0 0 1 0 0 1 1

736

v

44 2 1 1 8 2 2 3 1 1 0 4 1 0 1 0 0 1 4

135 t

275 41 0 0 1 21 2 3 4 2 1 0 4 0 0 1 1 0 0 4

2,212 429 t

23 2 2 1 12 2 4 3 1 1 1 2 0 0 0 0 0 1 6 841 841 249 t

277 24 1 1 1 12 2 3 2 1 1 0 4 0 0 1 0 0 0 4

266 t

36 0 1 1 21 4 4 4 3 1 0 1 0 0 1 1 0 0 2

3,275

v

279 31 2 1 1 12 0 2 2 1 1 0 2 0 0 1 1 0 1 0

161 t

27 0 0 2 6 4 2 2 2 1 0 1 0 0 1 0 0 0 3

148 t

24 1 1 2 20 4 4 4 2 1 0 1 0 0 1 0 0 0 3

4,272

t

282 24 1 1 2 36 4 4 3 2 1 0 4 0 0 1 1 0 0 2

v

283 41 1 1 1 36 2 2 4 2 2 0 2 0 1 1 0 0 0 3

1,627 -603 t

284 29 1 1 2 45 0 4 4 2 1 1 2 0 0 0 0 0 0 6

t

23 0 1 1 18 2 4 1 2 1 0 4 0 0 1 0 0 1 0

t

286 35 0 1 2 15 4 4 2 2 1 0 4 0 0 0 1 0 0 4

882 85 v

35 1 1 1 24 2 4 1 2 1 0 4 0 0 1 1 0 1 4

t

26 1 2 2 24 4 1 3 2 1 0 4 0 0 1 1 0 1 6

967 141 t

36 2 0 2 30 4 4 4 2 1 0 4 0 0 1 0 0 1 1

v

38 1 1 2 12 4 4 2 1 1 0 4 0 1 1 0 1 0 1

261 t

291 42 0 0 2 36 4 4 4 2 1 0 2 0 0 0 0 0 0 2

v

292 25 2 0 1 30 2 4 4 2 1 0 2 0 0 1 0 0 0 4

v

293 22 1 1 1 9 2 4 1 2 1 1 3 0 0 0 0 0 0 4

v

30 0 1 2 9 4 1 2 2 1 0 3 0 0 1 0 0 1 1

221 t

31 0 0 1 24 2 2 3 2 1 0 4 0 1 1 1 0 0 3 929

123 v

296 28 2 3 1 24 2 4 1 2 1 1 3 0 0 0 0 0 0 2

v

297 29 0 0 1 15 2 2 2 2 1 0 3 0 0 1 0 0 0 1

v

29 1 1 2 24 1 4 0 0 1 1 1 0 0 0 0 0 0 1

954

t

299 28 3 2 1 21 2 1 2 3 1 0 1 0 1 1 1 0 0 1

357 t

300 23 1 0 2 18 2 4 3 1 1 1 2 0 0 0 0 0 0 4

1,936 504 t

301 45 1 1 1 42 2 4 3 2 2 0 2 1 0 0 0 0 0 3

792 v

302 60 1 1 2 24 4 4 4 1 1 0 4 0 0 1 0 0 0 1

959

v

303 44 2 2 1 12 4 4 1 2 1 0 3 0 0 1 0 0 0 2

t

304 57 0 0 1 12 4 4 4 1 1 1 4 0 0 0 0 0 0 6

275 v

305 24 1 2 2 30 4 4 3 2 1 1 1 0 0 0 0 0 0 2

t

306 31 0 0 1 18 2 1 2 2 1 0 2 0 0 1 1 0 0 2

389 v

307 25 2 1 1 48 0 2 2 2 1 0 2 0 0 1 1 0 0 6

t

308 41 2 1 2 42 4 1 3 1 1 0 2 0 1 1 0 0 1 6

4,763 1,000 t

58 1 1 1 24 2 4 4 1 1 0 4 1 0 1 1 0 1 0

211 t

20 3 0 2 24 4 4 4 2 1 1 4 0 0 0 0 0 0 3

265 v

311 35 2 1 1 9 4 3 3 2 1 1 4 0 0 0 1 0 0 3

328 v

312 25 0 1 2 36 4 2 2 2 1 0 4 0 1 1 1 0 1 1

t

313 63 3 1 2 10 4 4 4 2 1 0 4 0 0 0 1 0 0 1

390 31 v

47 0 1 2 18 2 4 2 2 1 0 4 0 1 0 0 0 0 3

405 v

315 22 1 1 1 18 2 2 2 2 1 0 2 0 0 1 0 0 0 3

v

29 2 4 1 24 4 4 4 2 1 1 2 0 0 0 0 0 0 2

900 v

70 2 1 1 10 2 4 0 3 1 0 2 0 1 0 1 0 0 1

t

318 33 2 1 1 8 2 2 2 2 1 0 4 1 0 1 0 1 1 4

848 194 v

319 50 0 4 1 24 4 4 2 2 1 0 4 0 0 1 1 0 1 3

v

320 29 0 1 1 6 2 2 3 2 1 1 2 0 0 0 0 0 1 4

606 t

21 1 1 1 12 2 4 3 2 1 1 4 0 0 0 0 0 0 0

902

t

66 3 1 1 30 3 4 4 3 1 0 4 0 0 1 1 0 1 6

v

323 32 0 0 2 24 3 4 2 2 2 0 4 0 0 1 1 0 1 6

2,978 797 v

25 2 1 1 18 2 2 2 1 1 0 4 1 0 1 0 0 1 4 866

199 t

325 27 0 1 2 12 4 2 2 2 1 0 3 0 0 1 0 0 1 6

73 t

35 0 2 2 24 3 3 2 2 1 0 2 0 0 1 0 0 0 3

v

57 0 1 3 12 4 4 4 1 1 0 2 0 1 0 0 0 0 5

115 v

328 28 2 1 2 48 2 4 3 2 1 0 4 0 0 1 0 0 1 4

v

329 63 0 0 1 15 4 4 4 2 1 0 4 0 0 1 0 0 0 3

225 t

330 56 3 1 1 42 4 4 4 2 1 0 4 0 0 0 0 0 0 2

t

331 49 1 1 2 10 4 3 3 2 1 0 4 0 0 1 1 0 0 1

126 v

25 2 1 1 12 2 3 3 1 1 0 2 0 1 1 0 0 0 1 685 685

t

333 28 1 4 1 18 2 2 2 2 1 0 4 0 0 1 0 0 0 3

238 t

334 24 0 2 2 48 4 4 2 1 1 1 2 0 1 0 0 0 0 2

11,590

t

33 2 1 1 18 2 1 4 3 1 0 1 0 1 1 1 0 1 6

950 t

28 1 1 2 12 0 2 2 2 1 1 4 0 0 0 1 0 0 4

t

337 21 0 1 1 6 2 2 2 2 1 1 1 0 0 0 0 0 0 3

1,766 567 t

338 63 0 0 1 60 4 4 4 3 1 0 2 0 1 0 1 0 0 1

v

26 3 1 1 12 2 1 1 2 1 0 4 0 0 1 0 0 1 1 1,330

181 t

31 1 1 1 6 4 4 3 2 1 0 1 0 0 1 0 0 0 4 1,957

292 t

341 27 0 1 2 14 3 2 2 1 1 0 4 0 0 1 0 0 0 1 802 802 165 t
342 40 0 3 1 10 2 2 2 1 2 1 3 0 0 0 0 1 0 1 1,597

343 v

343 34 0 2 2 21 3 3 3 3 1 0 4 0 0 1 0 0 1 3

249 v

344 33 0 1 2 24 4 2 2 2 1 0 4 0 0 1 1 0 1 0

253 t

345 41 0 1 1 12 2 4 4 1 2 0 4 0 1 1 0 0 0 5 719 431

t

35 0 1 1 24 2 4 4 3 1 0 4 0 0 1 1 0 0 2

424 v

38 2 0 2 12 2 4 4 2 1 0 4 0 0 1 0 0 0 0

75 v

348 36 0 0 1 6 2 4 0 3 2 0 4 0 0 1 1 0 0 0

742 137 t

349 30 0 4 2 15 3 2 3 2 1 0 3 0 0 1 0 0 0 3

960 195 t

350 38 2 0 1 6 2 4 4 2 1 0 4 0 0 1 0 0 0 4

257 63 v

38 2 2 2 24 4 4 1 2 2 0 4 0 1 1 0 0 0 4

972

t

352 20 2 1 2 12 3 4 2 2 1 1 4 0 0 0 0 0 1 4 585 526 91 t
353 23 0 2 1 24 2 4 3 2 1 0 3 0 0 1 0 0 0 2

359 t

354 26 0 2 1 24 2 3 3 2 1 0 4 0 0 1 1 0 0 4

1,048 306 t

355 34 3 1 1 18 2 1 2 1 2 0 2 0 0 1 0 0 1 3

1,718

t

356 27 2 2 1 12 4 1 1 2 1 0 4 0 0 1 0 0 0 1

1,795

v

357 37 2 0 1 36 2 4 2 2 1 0 1 0 0 0 1 0 0 1

t

22 1 1 1 15 2 4 2 1 1 0 4 0 0 1 0 0 0 6 806

226 t

359 33 2 1 1 36 2 1 1 1 1 1 4 0 0 0 0 0 0 0

v

360 20 2 1 1 24 2 4 2 1 1 1 3 0 0 0 1 0 0 1

t

28 0 1 1 36 2 2 2 3 1 0 4 0 0 1 1 0 0 3

t

22 1 1 1 24 1 4 2 2 1 1 1 1 1 0 0 1 0 2

392 t

363 22 1 1 1 12 2 1 1 2 1 1 4 0 0 0 0 0 0 3

1,486 409 v

364 19 0 1 2 9 2 2 1 2 1 1 2 0 0 0 0 0 0 3

v

365 33 0 1 2 24 4 2 3 2 1 0 4 1 0 1 1 0 0 4

365 t

366 42 2 2 4 36 3 4 4 3 1 0 2 0 0 1 1 0 0 1

t

35 2 1 2 6 3 1 0 3 1 0 4 0 1 1 1 0 0 3 1,050

88 t

368 24 0 3 1 6 4 2 2 2 1 0 1 0 0 1 0 0 0 1

1,872 568 t

369 47 0 1 3 24 4 3 1 2 1 0 3 0 0 0 1 0 0 4

439 t

44 1 0 2 6 4 3 1 1 2 0 1 0 0 1 0 0 1 1

747 v

41 2 2 2 30 3 2 4 2 1 0 4 0 1 1 0 0 0 6

313 t

372 25 1 1 2 9 4 4 2 1 1 0 4 0 0 1 0 0 1 4

682 103 t

66 2 3 1 9 2 3 2 1 1 0 4 0 0 1 0 0 1 4 790 553 143 t

28 0 4 1 24 2 4 2 2 1 1 2 0 0 0 1 0 0 2

365 t

375 22 1 3 1 24 1 4 2 2 1 0 4 0 1 1 1 0 1 3

565 v

376 25 0 1 2 30 4 2 3 2 1 0 4 0 0 1 0 0 0 4

v

377 30 0 0 1 21 4 4 4 3 1 0 4 0 0 0 1 0 0 1

t

378 52 0 2 2 24 4 4 4 2 1 0 4 0 1 1 0 0 0 4

188 t

23 2 2 1 12 2 2 1 1 1 0 4 0 1 1 0 0 0 1 836 501

v

51 3 1 1 24 2 4 4 2 1 0 3 0 0 0 0 0 0 3

589 t

381 35 0 0 2 12 4 4 4 2 1 0 4 0 0 1 0 0 0 4 976 488 52 t
382 54 1 1 1 48 2 4 2 2 1 0 3 0 0 1 0 0 0 0

v

383 47 1 1 2 8 4 4 4 1 1 0 4 0 0 1 0 0 1 1

42 t

384 42 2 0 1 24 2 4 4 2 1 0 2 0 0 1 1 0 0 4

936 t

385 50 0 1 1 24 1 4 3 2 1 0 4 0 1 1 1 0 0 6

1,091 237 v

386 32 1 1 2 18 1 4 3 1 2 0 4 0 0 0 0 0 0 1

1,009

t

32 0 4 2 27 4 2 1 1 2 0 4 0 1 1 1 0 1 3

784 v

388 24 0 0 1 15 2 1 1 2 1 0 4 0 0 1 0 0 1 0

611 125 t

389 65 0 1 2 18 4 4 0 0 1 0 4 0 0 1 0 0 0 4

90 t

390 34 2 1 2 36 4 4 2 2 1 0 3 0 0 1 1 0 0 2

651 t

40 0 0 1 15 2 2 2 2 1 1 4 0 0 0 1 0 1 4

693 150 t

392 28 0 4 1 11 2 2 4 2 1 0 1 0 0 1 1 0 1 6

344 v

393 30 2 1 1 12 2 4 3 2 2 1 3 0 0 0 1 0 0 1 2,002

v

394 42 0 3 2 12 4 4 4 2 2 0 4 0 0 1 1 0 0 4 522 261 36 t

42 0 1 3 4 4 1 3 1 2 0 2 0 0 1 0 0 1 1 1,455 1,455 176 t

26 0 1 2 36 2 2 0 3 1 0 4 0 0 1 1 0 0 3

t

397 35 0 3 2 24 2 2 4 2 1 0 3 0 1 1 1 0 0 4

t

398 36 1 1 1 60 2 4 4 2 1 1 4 0 0 0 0 0 0 6

t

399 26 1 1 1 36 2 2 2 2 2 0 2 0 0 1 0 0 0 2

t

30 1 1 1 36 2 3 0 3 1 0 4 0 0 1 1 0 0 3

t

401 53 1 1 2 24 3 4 2 2 2 0 3 0 0 0 0 0 0 1

v

402 28 1 1 1 15 2 4 2 2 1 1 2 0 0 0 0 0 0 1

1,122 257 t

403 26 0 0 2 10 4 1 2 2 1 0 2 0 0 1 0 1 0 3

428 v

33 3 1 1 12 2 1 1 3 1 0 4 0 1 1 1 0 0 3

454 v

405 58 1 1 2 48 4 4 4 1 1 0 4 0 1 0 0 0 0 2

t

406 57 2 1 2 36 3 4 4 2 1 0 4 0 1 0 1 0 0 1

t

407 26 0 1 1 24 2 4 1 2 1 0 4 0 0 1 1 0 0 4

v

408 40 1 0 1 36 2 4 4 3 1 0 4 0 0 1 1 0 0 5

t

409 52 1 1 1 10 2 4 4 1 1 0 3 0 0 1 0 0 1 4

648 t

410 54 2 4 1 12 2 4 4 2 1 0 4 0 0 1 1 0 1 1

348 t

26 0 0 1 12 2 4 1 2 1 1 2 0 0 0 1 0 0 2

2,445 654 v

412 35 1 3 1 12 2 1 4 2 1 0 3 0 0 1 0 0 1 4

349 t

413 27 2 0 1 18 2 3 1 2 1 1 4 0 0 0 0 0 1 3

1,924

t

414 21 0 2 1 60 2 4 3 2 1 0 2 0 0 1 1 0 1 4

v

415 23 0 1 1 21 4 4 1 2 1 0 4 0 0 1 1 0 0 3

1,830 389 t

416 36 2 2 1 24 3 4 3 3 1 1 4 0 0 0 1 0 0 6

v

36 0 3 1 36 2 4 4 2 1 0 4 0 0 1 0 0 0 1

192 t

26 1 1 2 21 3 1 1 2 1 0 2 0 0 1 0 0 0 5

t

419 36 2 1 1 18 4 4 4 2 2 0 4 0 1 1 1 0 0 1 884 442

v

21 2 2 1 45 2 4 2 2 1 1 4 1 0 0 0 0 0 4

t

421 38 0 1 2 12 4 1 4 1 2 0 4 0 0 1 0 0 1 1

181 t

51 0 0 1 36 4 2 4 2 1 0 4 0 0 1 1 0 0 4

725 v

30 0 1 1 15 2 2 2 2 1 0 3 0 0 1 1 0 0 2

t

424 42 0 1 3 4 4 1 3 1 2 0 2 0 0 1 0 0 1 4

94 t

425 35 0 3 1 12 1 3 2 1 2 0 4 0 0 1 0 0 1 0

t

426 24 2 0 1 9 2 1 3 2 1 0 2 0 0 1 1 0 0 3

499 t

427 32 0 1 2 10 4 4 4 1 2 0 3 0 0 1 0 1 1 1 1,231 984 151 v
428 34 1 1 1 30 2 1 1 1 1 0 1 0 0 1 1 0 0 0

v

429 37 2 2 1 24 4 2 1 2 1 0 4 0 0 1 1 0 0 1

563 t

430 46 0 0 2 48 4 2 4 3 2 0 4 0 1 1 0 0 0 6

863 t

431 44 0 3 1 48 4 2 2 2 1 0 2 0 1 0 0 0 0 1

t

29 3 0 1 4 2 2 1 1 2 0 1 0 0 1 0 1 1 1

1,344 411 t

433 36 0 1 2 18 4 3 2 2 1 0 4 0 0 1 0 0 1 1

153 t

434 23 1 1 2 24 0 4 4 2 2 1 3 0 1 0 0 0 0 3

v

435 37 3 1 1 10 2 1 1 1 2 0 1 1 0 1 0 0 0 1

925 v

46 0 3 1 10 2 4 4 2 1 0 4 0 0 0 1 0 0 5 727 508 136 v

437 25 1 1 1 18 2 1 0 0 1 0 4 0 0 1 0 0 0 3

t

438 60 2 2 2 60 1 4 4 3 1 0 3 0 1 0 1 0 0 0

v

439 26 0 2 2 30 3 2 2 1 1 0 2 0 0 1 0 0 0 6 4,272

249 t

440 31 0 1 1 9 4 3 0 3 1 0 2 0 0 1 0 0 0 3

1,924 437 t

43 2 0 1 18 3 4 4 2 2 0 4 0 0 1 0 0 0 1

v

442 35 1 0 1 24 2 2 2 2 1 0 4 0 0 1 0 0 0 1

t

443 25 2 0 1 12 2 2 4 2 1 0 1 0 1 1 1 0 0 3

1,657

t

444 25 1 1 1 9 2 2 2 2 1 0 3 0 0 1 0 0 1 3

481 t

445 30 2 1 1 48 4 3 2 3 1 0 2 0 0 1 1 0 0 3

t

446 31 1 1 1 24 2 3 3 2 1 0 2 0 0 1 1 0 0 1

v

447 34 0 1 2 18 2 1 3 2 1 0 4 0 1 1 1 0 0 6

160 v

448 33 2 1 1 18 4 2 2 2 1 0 4 0 0 1 0 0 0 4

t

44 0 3 1 12 4 4 2 2 1 0 4 0 0 1 1 0 1 1

814 193 t

39 1 1 2 12 4 2 2 1 2 1 3 0 0 0 0 1 1 1

133 v

24 1 1 1 24 2 4 1 2 1 1 4 0 0 0 0 0 0 1

844

t

452 54 0 0 1 24 2 1 1 2 1 0 4 0 0 1 0 0 0 1

1,804 423 v

453 26 2 1 1 18 2 4 2 1 2 0 4 1 0 1 0 0 1 4 1,113 1,113 371 t
454 25 0 0 2 24 2 2 1 2 1 0 4 0 0 1 0 0 0 4

3,105 708 t

455 61 0 1 2 12 4 4 4 1 1 0 4 0 0 1 0 0 1 1

627 87 t

456 67 2 1 2 9 2 4 3 3 1 0 4 0 0 1 1 0 0 5 1,199

215 v

457 37 2 0 2 24 3 2 2 3 1 0 4 0 1 1 1 0 0 6

437 t

458 27 2 1 2 9 2 4 4 1 1 0 4 0 0 1 0 0 0 4

215 t

459 52 0 0 1 12 2 4 4 3 1 0 4 0 0 0 1 0 0 1

1,919

t

40 1 0 1 24 1 3 4 3 1 0 4 0 1 1 1 0 0 0

950 -376 v

23 3 1 1 10 2 2 1 2 1 0 4 0 0 1 0 0 0 3

156 t

462 22 0 1 1 18 3 1 3 2 1 0 4 0 0 1 0 0 1 3

v

65 1 1 2 18 2 4 2 2 1 0 4 0 0 0 0 0 0 4

t

464 25 2 1 1 24 2 4 1 1 1 0 3 0 0 1 1 0 0 1 1,355

t

465 32 1 1 2 18 4 1 3 3 1 0 4 0 0 1 1 0 0 4

219 v

466 35 0 1 2 24 4 3 3 2 1 0 4 0 0 1 1 0 0 2

222 t

467 50 3 1 1 6 4 4 2 1 1 0 2 0 0 1 0 0 0 5

73 t

468 41 0 3 1 21 3 2 1 1 2 0 4 0 1 1 0 0 1 6

t

31 2 2 2 36 3 3 3 1 2 0 1 0 0 1 1 0 0 6

1,312 t

470 28 0 1 1 24 2 2 3 2 1 0 4 0 0 1 1 0 0 4

1,827 525 t

471 32 2 1 1 27 2 1 1 2 2 0 4 0 0 1 1 0 0 6

424 t

27 2 1 1 60 2 2 3 3 1 0 4 0 0 1 1 0 0 1

v

473 21 0 1 1 27 2 3 2 2 1 1 3 0 0 0 0 0 1 1

v

474 37 0 1 1 4 4 1 3 2 2 0 1 0 0 1 0 0 1 1

589 v

30 1 0 2 39 4 4 3 3 1 0 4 0 0 1 1 0 0 3

7,089 662 v

476 55 0 4 2 12 3 4 4 2 2 0 4 0 0 0 0 0 0 0

933

t

477 27 0 2 2 24 4 3 3 2 1 0 4 0 0 1 1 0 0 1 2,463 2,463 658 v
478 66 3 3 3 12 4 4 0 0 1 0 2 0 1 0 0 0 0 1

62 t

479 60 2 0 1 20 2 4 0 3 1 0 1 0 0 1 1 0 1 2

6,468

t

480 32 0 3 1 24 2 3 4 2 1 1 4 0 0 0 1 0 0 3

317 v

481 24 2 0 1 12 2 2 0 0 1 1 1 0 0 0 0 0 1 1

t

46 1 1 1 48 2 4 3 2 2 0 4 0 0 0 0 0 0 1

v

483 35 0 1 2 18 4 2 1 3 1 0 3 0 0 1 1 0 0 3

231 t

484 25 3 1 1 15 2 3 1 1 1 0 2 0 0 1 0 0 1 4

2,327

v

485 47 0 1 3 18 2 4 4 2 2 0 4 0 1 1 1 0 0 3

3,079 322 t

486 45 0 1 2 36 3 2 4 2 2 0 2 0 0 1 1 0 0 1

t

25 0 1 1 10 2 2 2 1 1 1 2 0 1 0 0 0 1 3

v

488 29 1 1 1 12 2 2 2 1 2 0 2 0 0 1 0 0 0 3 3,590

881 v

43 2 1 1 24 2 3 3 2 1 0 3 0 0 1 1 0 0 3

t

490 29 0 0 2 18 4 3 2 2 1 0 4 0 0 1 1 0 0 4

70 v

491 36 0 1 1 24 2 1 4 3 1 0 4 0 0 1 1 0 1 4 1,278

247 t

492 31 1 1 1 24 1 2 2 2 1 1 4 0 0 0 1 0 0 6

3,161

t

493 55 1 1 1 24 1 1 1 2 1 0 2 0 1 1 1 0 0 3

v

494 23 1 1 1 12 2 1 2 2 1 0 4 0 1 1 0 0 0 4

1,498 439 v

495 46 1 1 1 15 2 1 1 2 1 1 4 1 0 0 0 0 0 3

426 t

29 1 1 1 12 2 4 2 2 1 0 4 1 0 1 1 0 0 1

1,514 363 t

497 22 2 1 1 6 2 1 1 1 1 0 3 0 0 1 0 0 0 0 454 363 81 t
498 33 0 1 1 30 4 2 2 2 1 0 4 0 0 1 1 0 0 4

535 t

499 30 0 1 2 24 4 2 3 1 1 0 2 0 0 1 0 0 0 3 2,028

217 t

50 0 0 1 12 2 3 4 2 1 0 4 0 0 1 1 0 0 1

652 v

501 35 0 0 1 36 2 4 2 1 2 0 2 0 0 0 1 0 0 5

5,433 1,032 t

502 32 1 2 1 24 2 2 2 1 1 0 4 0 0 1 0 0 0 4

769

t

503 36 1 1 1 6 2 2 2 1 1 0 1 0 1 1 1 0 1 3

961 251 t

504 25 2 1 2 45 4 2 1 1 1 0 4 0 0 1 0 0 0 4

t

35 0 1 2 11 4 4 1 3 1 0 4 0 0 1 0 0 0 1

835 93 v

26 0 0 1 6 1 2 2 1 2 0 1 1 1 1 0 0 1 1

163 t

507 48 0 0 4 27 2 4 4 2 2 0 4 0 0 1 1 0 0 0

5,190 424 t

508 66 1 1 2 12 4 4 4 3 1 0 4 0 0 0 0 0 0 2 1,526 1,526 318 t
509 29 0 1 2 12 4 2 2 3 1 0 4 1 0 1 1 0 1 6

181 v

58 2 1 1 54 0 4 1 2 1 1 3 0 0 0 1 0 0 6

t

511 39 2 1 2 24 4 3 2 3 2 0 2 0 0 1 1 0 0 0

v

47 0 0 1 48 4 1 4 2 1 0 4 0 0 1 1 0 1 4

720 t

30 1 1 2 12 4 2 2 2 1 0 4 0 0 1 0 0 0 1

1,908 349 v

514 38 0 0 2 12 4 2 4 2 1 0 4 0 0 1 1 0 1 4

868 130 t

30 2 2 1 48 1 2 3 2 1 0 4 0 0 1 0 0 0 6

481 v

20 1 1 1 12 2 4 2 2 1 1 2 0 0 0 0 0 0 3 1,282 769

v

32 0 3 1 6 2 2 2 2 1 0 1 0 0 1 1 0 0 3 2,978 2,978 996 t

518 53 0 0 1 30 1 1 0 3 1 0 4 0 1 1 1 0 1 2

v

519 31 0 1 2 15 4 2 2 2 1 0 4 0 0 1 0 0 0 4

217 t

520 34 2 1 2 9 4 3 4 3 1 0 2 0 0 1 1 0 0 5

t

38 1 1 3 30 4 4 4 3 2 0 3 0 0 0 1 0 0 2

373 t

522 39 2 0 2 6 4 3 3 1 1 0 1 0 0 1 0 0 0 0 932 652 78 t
523 27 0 1 2 36 0 2 2 2 1 0 4 0 0 1 0 0 0 0

2,613 673 t

30 1 1 1 24 2 2 0 3 2 0 4 0 1 1 0 0 0 4

v

525 25 0 1 1 24 2 1 3 2 1 0 4 0 0 1 1 0 1 6

754 178 t

526 27 2 0 1 60 3 1 2 1 1 0 1 0 0 1 0 0 1 4

t

527 37 2 1 1 15 2 3 4 2 2 0 4 0 0 1 0 0 0 4 802

v

528 32 0 1 1 9 2 2 2 2 2 0 1 0 0 1 0 0 1 4

1,887 390 t

35 1 1 1 47 2 1 1 1 1 0 1 0 0 1 1 0 1 1

t

530 26 2 1 1 48 2 2 1 2 1 0 1 0 0 1 1 0 0 3

t

531 33 0 4 1 6 2 2 2 2 1 0 4 0 0 1 0 0 1 3

341 v

31 1 1 1 36 1 4 4 2 1 0 4 0 1 1 0 0 0 3 2,746

v

39 1 1 2 8 4 4 3 1 1 0 1 0 0 1 0 1 1 1

3,398

v

534 44 1 1 1 6 4 4 2 3 1 1 1 0 0 0 1 0 1 3

3,384

t

535 43 0 1 1 15 4 2 2 1 1 0 4 0 0 1 0 0 0 4

258 t

23 2 1 1 24 2 2 1 1 1 0 4 0 1 1 0 0 1 1

v

537 36 0 1 1 12 2 4 3 2 1 0 2 0 0 1 1 0 0 6

925 163 v

538 37 1 1 1 48 1 4 3 2 1 1 2 1 0 0 0 0 0 6

v

539 25 0 1 2 18 4 1 2 2 1 0 2 0 0 1 0 0 0 4

149 v

32 2 2 1 39 3 3 3 2 1 1 2 0 0 0 1 0 0 5

v

22 2 1 1 24 2 1 1 2 1 0 1 0 0 1 1 0 0 4 2,039

v

542 35 0 1 2 36 4 2 4 2 2 0 2 0 0 1 1 0 0 2

666 t

543 21 2 1 1 18 2 3 2 2 1 1 1 0 0 0 1 0 0 2

394 t

544 25 2 0 1 12 2 1 2 2 1 0 2 0 0 1 1 0 1 4

890

t

545 41 0 0 2 9 4 4 4 1 1 1 4 0 0 0 0 0 0 5

995 138 v

546 29 0 1 1 24 2 1 1 3 1 0 4 0 0 1 1 0 0 2

1,339 281 v

547 63 1 1 1 24 2 4 2 2 2 0 3 1 1 1 1 0 0 2

488 t

26 1 1 1 18 0 4 1 2 1 1 1 0 0 0 0 0 0 3

v

549 47 2 1 1 6 3 4 0 3 1 0 4 0 0 1 1 0 0 1

967

t

550 20 1 0 1 24 2 4 2 2 1 0 2 0 0 1 0 0 0 3

t

551 27 0 0 1 10 2 4 2 1 1 0 4 1 0 1 0 0 0 1

785

v

37 1 1 2 6 4 3 3 2 1 0 4 0 0 1 0 1 0 1 609 609 119 t

553 30 2 1 2 26 2 3 1 2 1 0 2 0 0 1 0 0 0 2

456 v

33 3 1 1 21 4 1 1 2 1 1 2 0 0 0 0 0 0 5

v

555 43 1 1 2 24 3 2 0 2 2 0 4 0 0 0 0 0 1 1 1,333 799

t

556 22 2 1 1 12 2 1 1 2 1 0 2 0 1 1 0 0 0 4

798

t

557 23 2 2 2 24 3 2 3 2 1 1 3 0 0 0 1 0 0 4 1,553 1,242 193 v
558 24 0 1 2 15 4 3 3 2 1 0 2 0 1 1 0 0 0 3 2,788

401 v

559 20 1 1 1 18 2 4 2 2 1 1 1 0 1 0 0 0 1 3 2,039

t

560 32 2 2 1 6 1 1 1 1 1 0 1 0 1 1 0 0 0 1 931 744

t

561 22 1 3 1 24 1 4 2 2 1 0 4 0 1 1 1 0 1 3

334 t

562 48 2 0 1 48 0 2 2 3 1 0 2 0 1 1 1 0 0 6

12,204 3,488 t

563 35 0 0 1 15 2 2 4 2 1 0 4 0 0 1 0 0 0 4

445 t

564 47 0 1 3 12 2 4 4 2 2 0 4 0 1 1 1 0 0 5 1,393 1,393 210 v
565 27 0 0 2 36 3 4 1 2 1 1 4 0 0 0 1 0 0 6

t

566 22 1 1 1 14 2 4 0 2 1 0 1 0 0 0 0 0 0 1

536 t

567 27 0 1 2 24 4 2 0 3 1 0 4 0 1 1 1 0 0 0

1,096 t

568 26 0 1 1 30 4 4 3 3 1 1 4 0 0 0 1 0 0 4

2,718

t

569 34 0 0 1 60 2 4 2 2 2 0 4 0 0 0 1 0 0 1

6,527

t

570 50 0 3 1 6 2 4 2 2 1 1 2 0 0 0 0 0 0 2 1,236 988 243 t

35 0 3 1 15 2 4 4 2 1 0 1 0 0 0 0 0 0 1

629 v

572 63 0 0 2 30 4 4 4 2 1 0 1 0 0 1 0 0 0 2

658 t

573 41 0 4 2 6 4 2 2 1 1 0 2 0 1 1 0 0 1 1 250 150 22 t
574 29 2 0 1 36 1 2 1 0 1 0 3 0 1 1 0 0 0 0

3,990

v

575 28 1 1 2 13 4 1 1 1 1 0 3 0 1 1 0 0 0 6 1,797 898 115 v

32 1 0 1 24 2 4 3 2 1 1 4 0 0 0 0 0 0 1

t

577 40 2 1 2 12 2 3 4 1 1 0 3 1 1 1 0 0 1 4

1,039 187 v

578 25 1 0 1 24 2 4 2 2 1 1 4 0 0 0 0 0 1 1

1,096

t

579 35 2 4 1 18 2 2 2 1 1 0 4 0 0 1 1 0 0 6

1,358 359 v

580 22 0 2 1 9 2 4 1 2 1 1 2 0 0 0 0 0 0 3 2,301 2,301 722 t
581 24 1 1 1 36 2 1 3 2 1 0 2 0 0 1 1 0 0 1

t

54 2 1 1 36 3 2 2 2 1 1 2 0 0 0 0 0 0 1

801 t

583 30 1 1 2 21 4 3 4 2 1 0 4 0 0 1 1 0 0 1

961 124 v

584 48 1 1 2 12 0 4 2 2 1 0 4 0 1 1 0 0 0 1 1,082 757

t

585 35 2 0 1 21 2 3 3 2 1 0 2 0 0 1 1 0 0 3

3,976 1,113 v

586 33 0 2 1 24 2 3 1 2 1 0 4 0 0 1 1 0 1 1 1,474 737 154 t
587 20 0 3 1 15 2 4 2 2 1 1 2 0 0 0 0 0 0 3

400 t

40 2 4 2 11 4 4 2 2 1 0 4 0 0 1 0 0 0 1

1,322 345 t

589 53 1 1 1 12 2 4 1 2 1 0 4 0 0 1 0 0 0 5 795 477

v

590 31 0 0 1 36 3 2 3 3 2 0 3 0 1 1 1 0 0 2

1,377 t

591 20 1 1 1 12 2 2 2 3 2 1 2 0 0 0 1 0 1 4

208 t

592 32 2 1 1 48 0 2 2 3 1 0 1 0 1 1 1 1 0 0

v

593 46 1 1 2 12 1 2 1 2 1 0 4 0 1 1 1 0 0 1 697 348

t

594 30 2 2 2 30 3 3 1 3 1 0 4 0 1 1 0 0 0 4 1,919 1,535

t

595 30 2 3 2 48 0 1 1 2 1 0 1 0 0 1 0 0 0 1

1,804 t

596 57 1 4 2 24 4 4 4 3 1 1 4 0 0 0 1 0 0 4 1,231

76 t

597 26 2 0 1 30 2 1 2 2 1 0 4 0 0 1 0 0 0 4

240 t

598 57 3 3 1 24 2 3 2 1 1 0 3 0 0 1 0 0 0 4 1,258

250 v

599 25 1 1 2 15 4 3 2 2 1 1 4 0 0 0 0 0 0 3

128 t

600 31 0 1 1 12 2 4 3 1 1 0 3 0 0 1 0 0 1 3

1,388 339 t

53 0 3 1 24 2 4 4 2 1 0 3 0 0 1 0 0 0 3

411 t

602 53 0 0 2 24 4 4 4 2 1 0 4 0 0 1 0 0 0 4 2,424

151 t

603 39 0 1 1 6 0 4 4 1 1 0 4 0 0 1 0 0 0 4 426 383 117 v
604 31 0 1 1 48 4 3 2 2 1 0 1 0 1 0 1 0 0 5

t

605 39 0 3 1 36 2 4 4 2 1 0 4 0 0 1 0 0 0 4

2,069 597 t

606 52 2 0 1 12 2 1 0 3 1 0 2 0 0 1 1 0 0 4 6,468

t

29 0 1 1 12 2 2 1 2 1 0 2 0 1 1 0 0 0 4 2,171 1,953 592 t

608 34 1 1 1 42 2 3 1 2 1 0 4 0 0 1 0 0 0 4

v

609 27 2 1 2 18 4 1 1 2 1 0 4 0 0 1 0 0 0 3

777 82 v

610 61 0 0 1 12 4 2 3 2 1 0 4 0 0 1 0 0 0 5

1,207 215 v

611 39 0 1 2 18 1 4 4 3 2 0 2 0 1 1 1 0 0 1

6,458

v

612 30 1 0 1 42 2 3 3 3 1 0 4 0 0 1 1 0 0 4

t

613 40 1 1 1 12 2 2 2 1 1 0 4 0 0 1 0 0 1 4 701 420 93 t

27 0 4 2 27 3 2 2 2 1 0 2 0 0 1 0 0 0 2

1,442 t

615 39 1 1 2 6 4 4 4 2 1 0 1 0 0 1 1 0 0 1 860 688 111 t
616 48 1 2 2 9 4 4 4 2 2 0 3 1 0 1 0 1 1 0

1,159 252 v

617 33 1 1 1 18 2 2 0 2 1 0 4 0 0 1 0 0 0 3

678

t

618 42 1 1 1 12 2 1 2 2 1 0 2 0 0 1 0 0 0 3

502 v

74 2 1 1 9 1 4 4 3 2 0 2 0 1 0 1 0 0 2

v

620 28 0 1 2 6 4 1 2 2 1 0 1 0 0 1 1 0 0 4

237 t

43 0 1 3 12 4 4 4 2 1 0 4 0 0 1 1 0 1 3

124 t

622 31 1 1 1 18 0 1 3 2 1 0 3 0 1 1 1 0 0 6

v

623 27 2 4 2 48 2 2 3 2 1 0 1 0 1 1 1 0 0 4

t

624 23 2 0 1 6 2 2 0 0 1 0 1 0 0 1 1 0 0 1

t

625 52 0 1 3 12 4 4 4 2 1 0 4 0 0 1 0 0 1 4 717 573 79 t
626 35 0 1 2 24 4 2 2 1 1 0 4 0 0 1 0 0 1 4

1,342 106 t

627 36 0 0 2 36 4 4 4 2 1 0 4 0 0 1 0 0 1 6

t

26 0 1 2 18 4 2 2 2 1 0 2 0 0 1 0 0 0 4

380 t

629 26 1 1 1 48 2 3 3 2 2 0 4 0 0 1 0 0 0 2

472 t

630 20 0 0 1 12 2 4 1 2 1 1 1 0 0 0 0 0 0 2

673 t

631 24 0 0 1 30 2 4 3 1 1 1 2 0 1 0 0 0 0 2

1,076 t

632 38 1 1 1 12 2 3 2 1 2 0 2 1 0 1 0 0 0 3 708 708 242 t

49 0 0 1 12 4 4 4 2 1 1 2 0 0 0 1 0 0 3

747 t

23 2 1 1 13 2 4 1 1 1 0 2 1 0 1 0 0 0 4

2,101 688 v

23 2 1 2 13 4 4 1 2 1 0 4 1 0 1 0 0 1 4 882 441 60 v

49 0 0 1 12 4 4 4 2 1 0 1 0 0 1 1 0 1 4

228 v

27 0 1 2 18 4 1 3 2 1 0 3 0 0 1 0 0 0 2

324 t

638 34 0 1 2 18 3 3 0 2 1 0 2 0 0 1 0 0 1 4

348 t

21 0 0 1 18 2 2 1 2 1 1 4 0 0 0 1 0 1 4 1,126 675 120 t

640 55 1 1 1 12 2 4 0 3 1 0 3 0 0 0 0 0 0 3

1,546 318 t

43 0 0 2 24 4 4 3 2 2 0 4 0 0 1 1 0 0 2

1,098 139 t

33 1 1 1 12 2 1 1 1 2 0 4 0 0 1 0 0 1 1

t

643 29 0 1 2 28 4 2 4 2 1 0 4 0 0 1 0 0 0 4

392 t

644 23 0 3 1 6 2 4 3 1 1 1 2 0 0 0 0 0 1 0 660 660 200 v
645 34 1 1 1 36 2 4 1 2 1 0 4 0 0 1 1 0 0 1

v

646 36 1 1 2 11 4 2 2 2 2 1 2 0 0 0 0 0 1 1

636 t

647 29 1 1 1 24 3 2 1 1 1 1 4 0 0 0 1 0 0 4 1,659

v

648 24 0 3 1 39 2 4 2 2 1 0 4 0 0 1 0 0 0 2 2,569

557 v

649 52 0 1 1 12 2 4 2 2 1 0 2 0 0 1 1 0 0 4 3,077

674 v

29 2 2 1 36 2 1 1 3 1 1 4 0 0 0 1 0 0 3

t

651 36 3 3 1 15 4 2 2 2 1 0 2 0 0 1 1 0 0 2

329 t

652 40 1 1 1 6 4 4 1 1 2 0 2 0 0 1 0 1 1 1

1,224 291 v

653 31 0 2 1 15 4 3 2 2 1 0 4 0 0 1 0 0 0 5

766 126 t

654 75 1 0 1 6 2 3 0 3 1 0 4 0 0 1 1 0 0 1 1,374 1,374 440 t

37 0 1 1 24 4 4 2 2 1 0 4 0 0 1 1 0 0 1

446 v

656 28 2 2 2 18 0 3 1 2 1 0 3 0 0 1 0 0 0 1

1,822

t

657 36 1 1 1 12 2 3 3 2 1 0 2 0 0 1 0 0 0 1

1,234

v

658 27 2 1 1 12 2 1 3 2 1 0 2 0 0 1 0 0 1 4

492 v

659 36 1 1 2 9 4 2 2 2 2 1 2 0 0 0 0 0 1 1

150 t

660 23 1 1 2 24 2 4 3 2 1 1 4 0 0 0 0 0 0 1 1,442 1,009

t

74 0 1 1 24 4 2 2 3 1 0 3 0 0 1 1 0 1 6 4,526

336 v

662 27 2 0 1 60 3 2 2 3 1 0 2 0 0 0 0 0 0 4

9,157

t

41 3 1 1 6 2 2 2 2 1 0 2 0 0 1 1 0 1 3

476 t

28 0 3 1 24 2 1 3 2 1 0 4 0 0 1 0 0 0 4

963 239 t

665 32 1 1 2 30 0 2 2 2 1 0 2 1 0 1 0 0 1 3

534 t

666 41 2 1 1 12 2 4 4 1 2 0 4 0 1 1 0 0 0 1 888 799

t

667 34 2 4 1 30 1 2 2 2 2 0 4 0 1 1 1 0 0 3

692 t

33 0 1 1 24 4 4 4 2 1 0 4 0 0 1 1 0 0 3

876 t

27 3 0 2 10 4 2 3 2 1 0 4 0 0 1 1 0 0 4

173 v

670 29 2 1 2 12 2 3 3 2 1 0 4 1 0 1 0 1 1 4

882 123 t

24 2 2 1 48 2 2 3 2 1 0 3 0 0 1 0 0 0 1

v

672 40 0 0 2 30 4 2 4 2 2 0 3 0 0 1 1 0 0 4 3,077

112 t

673 47 0 3 2 15 4 2 2 1 1 0 2 0 0 1 0 0 0 4 1,316

135 t

674 23 2 1 2 24 2 4 2 3 1 1 1 0 0 0 0 0 0 2

t

675 23 1 1 1 15 2 4 0 2 1 1 1 0 0 0 0 0 0 1

350 v

74 3 1 3 6 4 1 2 0 2 0 1 0 0 1 0 1 1 1

909 109 v

677 31 1 1 1 30 2 4 1 1 1 0 2 0 0 1 0 0 0 3

t

678 37 0 1 2 36 4 4 3 2 1 0 4 0 0 1 1 0 0 1

3,181

v

679 40 0 3 1 22 2 4 4 2 1 0 3 0 0 1 0 0 0 4

289 t

680 51 1 0 1 18 2 4 4 2 2 0 1 0 0 0 1 0 0 2

t

681 26 2 1 1 6 2 3 1 1 1 0 3 0 0 1 0 1 1 4 590 413 111 t
682 62 0 3 1 6 2 4 2 2 1 0 1 0 0 1 0 0 1 0

936 181 t

683 33 1 1 3 18 4 4 4 2 1 1 1 0 1 0 1 0 1 1

v

684 21 0 0 1 12 2 2 2 2 1 0 4 0 0 1 0 0 0 4

797 197 t

685 68 0 0 2 18 2 4 2 2 1 1 2 0 0 0 0 0 0 1

v

686 40 0 0 1 10 2 3 3 2 1 0 4 0 0 1 1 0 0 0

715 162 t

687 27 1 1 1 18 2 1 1 2 1 0 4 0 1 1 0 0 0 4 2,389 2,150 676 t
688 36 1 1 1 18 1 4 1 3 1 0 3 0 1 0 1 0 0 4 1,940

141 v

34 2 0 2 24 4 3 3 2 2 0 4 0 0 1 1 0 0 6

405 t

28 1 1 1 21 2 4 1 3 1 1 4 0 0 0 1 0 0 4

507 v

691 24 1 0 1 21 2 2 3 1 1 0 2 0 0 1 0 1 1 1

3,763

t

692 32 0 2 1 10 2 2 2 2 2 0 1 0 0 1 0 0 1 2

396 v

693 21 1 1 1 18 4 4 1 2 1 1 4 0 0 0 0 0 0 3

944 286 t

694 28 3 1 1 9 2 2 2 1 1 0 3 0 0 1 0 0 1 4

447

v

695 30 1 3 1 24 1 4 1 2 2 0 4 0 0 0 1 0 0 3 3,349

t

696 49 3 0 2 30 4 4 4 1 1 0 4 0 1 1 0 0 0 4

651 t

697 23 2 3 2 27 4 2 2 1 1 0 4 0 0 1 0 0 0 4

t

698 64 2 1 1 6 2 3 2 2 1 0 2 1 0 1 0 0 1 4 753 376 69 t
699 33 3 1 2 42 0 1 1 2 1 0 2 0 0 1 0 0 0 6

258 v

700 40 1 1 1 30 2 4 2 3 1 0 4 0 0 1 1 0 0 2

v

701 35 2 1 1 36 2 2 2 3 1 1 2 0 0 0 1 0 0 2

1,231 v

25 1 0 3 30 0 3 1 2 1 0 2 0 1 1 0 0 0 6

351 v

703 42 3 4 2 12 1 3 2 2 1 1 3 0 0 0 0 0 1 4 409 327 60 t
704 37 3 1 1 18 2 2 2 2 1 0 4 0 1 1 0 0 1 4

1,890

t

23 1 3 1 6 2 2 0 0 1 1 1 0 0 0 1 0 0 2

811 141 t

31 0 1 2 36 4 2 2 2 1 0 2 0 1 1 0 0 0 4

1,185 t

707 22 2 4 1 12 2 1 2 2 1 0 4 0 0 1 0 0 1 1

805 174 t

708 51 2 1 1 11 3 4 3 2 1 0 2 0 0 1 0 0 0 4 4,771

864 t

709 47 2 2 1 36 2 4 2 2 2 0 1 0 0 0 1 0 0 5

t

710 34 2 2 1 18 2 4 2 2 1 0 4 0 0 1 0 0 0 6

580 t

32 2 1 1 12 2 2 3 2 1 0 2 0 0 1 0 0 0 1

t

712 27 1 0 2 10 4 3 1 2 1 1 2 0 0 0 0 1 1 3

229 t

713 30 2 1 1 12 2 2 2 2 1 0 4 0 0 1 0 0 0 0 639 639

t

66 2 3 1 12 2 3 2 1 1 0 4 0 0 1 0 0 1 4 766 689

v

715 51 0 2 2 12 4 3 3 2 1 0 4 0 0 1 1 0 0 1 682 682 172 t
716 45 1 1 1 12 1 1 4 1 1 0 4 0 1 1 0 0 0 0 339 271 59 v
717 20 2 4 1 11 2 1 1 2 1 0 4 0 0 1 0 0 1 3

946 170 v

718 52 1 3 2 6 4 4 4 2 1 0 4 0 0 1 0 0 0 4 338 202 22 v
719 68 2 1 3 16 4 3 0 0 1 0 2 0 0 0 1 0 0 1

705 34 t

720 27 2 2 4 12 2 4 1 2 1 1 4 0 1 0 0 0 0 3 951 570 -263 t
721 26 2 1 1 12 4 3 3 2 1 0 4 0 0 1 0 0 0 0

1,424 390 t

722 23 3 1 1 36 2 2 2 2 1 0 2 0 0 1 1 0 1 4

899 t

723 53 1 1 1 12 2 4 4 3 1 0 4 0 0 0 1 0 0 3

t

724 61 2 2 2 21 2 2 4 1 1 1 4 0 1 0 0 0 0 6

v

725 35 0 2 1 6 0 1 2 2 1 1 4 0 1 0 0 1 0 1

722 147 v

29 1 1 1 12 1 1 2 2 1 0 4 0 0 0 0 0 0 4

2,149

t

727 38 0 1 1 24 2 3 1 2 1 0 4 0 1 1 1 0 0 4

389 t

49 1 0 1 12 2 4 4 1 1 0 2 0 0 1 1 0 0 3 1,262 1,262 436 v

729 31 2 2 1 48 3 4 0 3 1 0 2 0 0 0 1 0 0 0

1,366 v

730 45 0 0 1 10 2 2 4 1 1 0 4 0 0 1 0 1 0 1 1,287

306 t

731 33 1 2 1 12 2 3 1 1 1 0 4 0 0 1 1 0 0 4 727 654

t

48 2 0 1 24 2 4 2 1 1 0 1 0 0 1 1 0 0 3

663 t

733 34 0 4 1 24 2 3 3 2 2 0 4 0 0 1 1 0 0 1

1,372 347 t

734 24 1 0 1 15 2 2 2 2 1 1 4 0 0 0 0 0 0 0 1,275 637

v

735 23 2 3 1 24 2 4 0 0 1 1 1 0 0 0 0 0 0 4

384 v

736 26 0 1 2 36 3 2 2 3 1 0 4 0 0 1 1 0 0 4

3,124

t

737 22 1 1 1 18 2 4 1 2 1 1 1 0 0 0 0 0 0 3

799 t

738 36 0 0 1 7 3 4 4 2 1 0 3 0 0 0 0 0 0 4 846 423 77 v
739 40 2 1 2 18 4 4 0 3 1 0 4 0 1 1 1 0 0 3

1,159 t

740 46 1 1 2 36 4 2 2 2 1 0 3 0 0 1 1 0 0 3 2,348

201 t

741 27 1 1 1 15 2 2 1 2 1 0 4 0 0 1 0 1 1 4 1,053 631 119 v
742 23 1 0 2 18 3 2 2 2 1 1 1 0 0 0 1 0 0 5

463 t

743 46 0 4 2 18 4 3 2 2 1 0 4 0 0 1 0 0 1 4

804 98 t

744 37 0 4 2 24 4 4 4 2 1 0 4 0 0 1 1 0 1 1 1,287 1,158 280 t
745 35 2 1 1 7 2 2 2 2 1 0 2 1 0 1 0 0 1 4

692 t

746 35 1 1 1 12 2 4 4 2 1 0 3 0 0 0 1 0 0 2

t

747 32 0 0 2 48 3 3 4 2 2 0 3 0 1 1 0 0 0 4

907 t

748 25 3 1 1 24 2 2 3 2 1 0 4 0 1 1 0 0 0 4

2,576 377 v

749 62 0 1 1 24 2 4 4 2 1 0 4 0 0 0 1 0 0 1

2,629 697 v

750 40 0 1 2 24 4 3 3 2 1 0 4 0 0 1 0 0 0 3

196 t

751 34 2 2 1 15 1 2 0 3 2 0 1 0 0 1 1 0 0 1

t

23 0 1 2 36 4 4 1 2 1 1 2 0 0 0 1 0 0 3

t

753 42 0 1 2 4 4 1 3 1 2 0 2 0 0 1 0 0 1 4 1,503

182 t

754 37 2 1 1 18 4 4 4 2 1 0 3 0 0 1 1 0 0 3

v

755 32 0 1 1 24 2 1 3 2 2 0 3 0 1 1 0 0 0 4

931 158 t

756 29 0 0 2 21 0 4 2 2 1 0 1 0 1 1 1 0 0 1

v

757 34 0 4 1 24 4 2 4 2 1 0 2 0 0 1 0 0 0 4 2,578 1,289 196 t
758 33 0 0 2 24 4 2 2 2 1 0 3 0 0 1 1 0 0 5 1,927 1,156 193 t
759 21 1 1 1 12 2 1 2 1 1 0 4 1 0 1 0 0 0 3 1,289 773 133 t
760 36 2 1 3 24 0 4 2 1 1 0 1 0 0 1 1 0 1 6

3,816

t

761 50 2 2 1 36 2 4 2 2 1 0 4 0 0 0 0 0 0 4

2,136

t

762 37 1 1 3 6 4 3 2 2 2 1 1 0 0 0 0 0 1 1

308 t

763 29 2 2 1 9 1 3 3 2 1 0 2 0 0 1 0 0 0 1

v

764 21 0 1 2 60 3 4 3 2 1 0 2 0 0 1 1 0 0 4

v

765 26 0 3 1 12 2 2 2 2 1 0 2 0 0 1 0 0 0 1 1,386

t

766 37 0 0 1 48 2 3 3 2 1 0 4 0 1 1 1 0 0 4

v

767 27 0 1 1 48 1 1 2 2 1 0 1 0 1 1 0 0 1 6

473 v

768 24 2 2 1 72 2 2 2 2 1 0 2 0 0 1 0 0 0 4

v

769 30 2 2 1 36 3 3 4 2 1 0 4 0 0 0 0 0 0 1 2,862 2,862 782 t
770 38 0 1 1 12 4 2 0 0 1 0 1 0 0 1 0 0 0 1 926 740 163 v
771 25 2 1 2 12 0 3 1 2 1 1 4 0 0 0 0 0 0 3

1,484 -647 t

772 32 0 1 1 18 2 2 2 3 1 0 4 0 0 0 1 0 0 4

419 t

773 25 1 1 2 18 2 4 2 2 1 1 4 0 1 0 0 0 0 4

t

774 35 1 2 1 18 2 4 2 1 2 0 3 0 0 1 1 0 0 1

783 t

775 37 1 1 1 12 2 1 1 1 1 0 3 0 0 1 0 0 1 1

637

t

39 3 0 2 15 4 4 2 2 1 0 3 0 0 0 1 0 0 4

762 -256 t

777 31 0 0 1 10 2 4 1 2 1 1 1 0 0 0 0 0 1 2

373 t

25 1 1 1 18 2 1 3 2 1 0 4 1 0 1 0 0 1 4

2,105 502 t

779 38 0 0 2 48 4 3 4 2 2 0 4 0 0 1 1 0 0 2

361 v

780 22 0 1 2 12 4 4 1 1 1 1 2 0 0 0 0 0 0 3 1,258 1,006 204 t
781 65 0 0 4 12 4 4 4 2 1 0 4 0 0 1 0 0 1 4 930 837 49 v
782 24 0 1 2 6 4 2 3 2 1 1 1 0 0 0 1 0 0 4 1,554 1,554 346 v
783 36 0 1 2 18 0 2 2 2 2 0 2 0 1 1 0 0 0 6

v

784 23 0 1 1 4 2 3 1 1 2 1 1 0 0 0 0 0 1 3 601 601 191 t
785 28 0 1 1 24 2 2 1 2 1 0 4 0 0 1 0 0 1 1 1,249 749 176 v

28 0 1 1 15 4 2 2 2 1 0 4 0 0 0 1 0 0 3

357 t

42 0 1 1 12 4 4 4 2 1 0 2 0 1 1 0 0 0 3

2,331 564 t

788 28 0 1 1 36 2 2 4 2 1 0 4 0 0 1 0 0 0 4

790 t

23 2 1 1 48 2 2 2 2 1 0 2 0 0 1 1 0 0 6

v

790 35 0 4 1 12 4 2 3 2 1 0 3 0 0 1 0 1 0 3

955 167 t

791 27 2 0 1 36 2 2 2 2 1 0 2 0 0 1 0 0 0 5

521 t

792 68 1 1 1 6 2 4 4 3 1 0 1 0 1 1 1 0 0 1

t

39 1 1 3 48 2 4 3 2 2 0 4 0 1 0 1 0 0 2

t

30 2 1 1 6 2 3 1 3 1 1 4 0 0 0 1 0 0 4

2,063 659 t

795 38 0 0 1 12 2 4 0 3 1 0 4 0 0 1 1 0 0 1

509 t

796 37 2 1 3 9 4 4 4 1 1 0 2 0 0 1 0 0 1 4

692 41 v

797 54 0 1 1 15 2 2 4 3 1 1 4 0 1 0 1 0 0 4

3,568 1,238 t

798 42 2 0 2 18 3 2 4 2 1 0 4 0 0 1 0 0 0 6

485 v

799 64 0 2 1 13 2 4 0 2 1 0 2 0 0 1 0 0 1 4

845 197 v

800 38 0 1 1 12 2 4 4 2 1 0 4 0 0 1 0 0 0 4 804 402 61 t
801 61 0 4 1 12 2 4 3 1 1 0 2 0 0 1 0 0 1 4

540 t

802 44 2 1 1 24 2 2 4 3 1 0 4 0 0 0 1 0 0 2

t

34 2 1 1 7 2 2 2 2 1 0 3 1 0 1 0 0 1 4 2,415 2,173 578 t

804 37 3 1 1 10 2 2 2 2 1 0 2 0 0 1 1 0 0 0

612 102 t

805 39 0 1 2 11 4 4 2 1 1 0 1 0 0 1 0 0 0 1

1,165 t

806 23 3 1 1 18 2 2 4 3 1 0 3 0 0 1 0 0 0 1

1,961 659 t

807 37 0 1 1 36 2 4 2 2 1 0 4 0 1 0 1 0 0 5

909

v

808 39 0 0 1 54 0 2 2 1 2 0 2 0 0 1 0 0 0 2

t

30 1 2 1 18 2 3 3 3 2 0 4 0 0 1 1 0 0 1

421 v

810 36 2 1 1 36 4 4 4 2 1 0 4 0 0 1 0 0 1 4

2,337 698 t

811 30 1 0 1 24 2 2 1 2 1 0 1 0 0 1 1 1 0 3

993 v

812 23 1 3 2 33 4 4 2 2 1 0 1 0 0 1 0 0 0 3

2,996

t

813 34 2 1 2 12 4 2 0 3 1 0 4 0 0 1 1 0 0 2

211 t

814 35 2 0 3 15 4 2 3 2 1 0 4 1 1 1 1 0 1 4

2,728 362 v

28 1 1 2 36 4 2 2 2 1 0 3 1 0 1 0 0 0 3

1,137 t

816 38 2 2 2 24 2 3 3 2 1 0 2 0 1 1 1 0 0 1

3,160 561 t

817 25 0 1 1 24 2 4 3 2 1 1 2 0 0 0 1 0 0 3

396 t

818 31 0 1 2 12 2 2 3 3 2 1 4 0 0 0 1 0 0 4

172 t

819 20 1 2 1 12 2 1 3 2 1 0 4 0 0 1 0 0 0 4 674 606

t

820 36 2 0 1 24 2 4 4 2 1 0 4 0 1 0 1 0 0 2

394 v

21 1 1 1 24 2 2 2 1 1 0 2 0 1 1 0 0 0 6

1,750 v

822 24 1 1 1 24 2 2 2 1 1 1 2 0 0 0 0 0 1 3

402 t

823 22 0 1 1 9 2 2 3 2 1 0 4 0 0 1 0 0 0 4

t

824 35 0 1 2 12 4 2 2 2 1 0 4 0 0 1 0 0 0 4 1,291

173 t

825 26 3 1 1 24 2 2 2 2 1 0 2 0 0 1 0 0 1 3 1,925

535 t

826 23 0 2 1 15 2 4 1 2 1 0 1 0 0 1 1 0 0 2

3,812

t

827 45 1 1 1 14 2 4 4 3 1 0 1 0 0 1 1 1 0 1

t

828 32 0 1 1 6 2 4 1 2 1 0 1 0 0 1 0 0 0 3 4,611

v

829 49 2 1 2 12 2 4 2 2 1 0 4 1 0 1 1 0 1 4 1,092 764 94 v
830 43 0 1 1 18 2 4 2 2 1 0 3 0 0 1 1 0 1 3

235 v

831 24 2 1 1 8 2 4 2 2 1 0 3 0 0 1 0 0 1 3 1,237 989

t

832 32 0 1 2 12 4 2 2 2 1 0 4 0 0 1 0 0 0 5 701 350 49 v
833 31 3 1 1 36 2 2 4 2 1 0 4 0 0 1 0 0 0 4

4,473 1,355 t

28 1 1 1 24 2 4 2 2 1 0 4 0 0 1 0 0 0 3

599 t

835 34 0 2 2 6 3 2 2 1 1 0 1 0 0 1 0 0 1 6

1,045 135 v

836 28 0 1 1 12 2 2 2 2 1 0 4 0 0 1 0 0 1 4 776 543 104 v
837 42 1 1 1 36 2 2 4 2 2 0 4 0 0 1 0 0 0 3

t

838 57 2 1 1 36 2 2 4 3 1 0 4 0 0 0 1 0 0 1

v

839 27 2 3 1 15 4 4 2 2 1 0 2 0 1 1 0 0 0 6 2,326 1,860 519 t

46 2 1 2 12 2 1 4 2 1 1 1 0 0 0 0 0 1 1 1,223

v

841 26 0 3 1 24 2 2 4 3 1 0 3 0 0 1 1 0 0 4

1,617 258 t

842 31 0 3 1 21 2 2 3 3 1 0 1 0 1 1 0 0 0 1

366 t

843 20 0 1 1 9 2 4 4 2 1 0 1 0 0 1 0 0 0 3

787 154 v

844 65 1 1 2 42 4 4 0 0 1 0 4 0 0 1 0 0 0 0

258 t

845 55 3 0 1 12 2 4 4 3 1 0 3 0 0 1 1 0 1 3 1,424 854 199 t
846 27 1 1 1 6 2 1 1 2 1 0 4 0 0 1 0 0 1 0 343 308 98 t

26 0 1 2 33 3 2 2 2 1 0 2 0 0 1 1 0 0 6

189 v

848 39 2 2 1 12 2 4 3 1 1 0 3 0 0 1 0 0 1 6

622 116 t

35 0 2 1 10 2 2 2 1 1 1 3 0 0 0 0 1 1 1

992 206 v

850 32 2 1 1 18 2 2 4 1 1 0 4 1 0 1 0 0 1 4

650 121 t

851 28 0 1 1 24 2 2 2 2 1 0 4 0 0 1 0 0 0 4

1,413 426 t

852 43 1 2 1 6 2 2 4 2 1 0 3 0 0 1 1 0 0 1 1,203 842 162 t
853 31 1 1 1 36 2 4 2 2 1 1 4 0 0 0 0 0 0 4

1,841

v

854 42 1 1 1 48 2 4 4 3 1 0 4 0 1 0 0 0 0 1

t

855 24 1 1 1 12 1 4 2 1 1 0 4 0 1 1 0 0 1 4 626 563

t

856 27 1 1 1 24 1 4 3 2 1 0 3 0 1 1 0 0 0 3

t

857 41 2 0 2 48 2 1 3 2 2 0 4 0 0 1 1 0 0 4

481 t

858 27 2 1 2 36 4 4 1 2 1 0 4 0 0 1 0 0 0 1

t

859 47 1 1 1 18 2 3 2 1 1 0 4 0 0 1 1 0 1 0

973

t

860 31 0 1 2 18 4 2 3 2 1 0 2 0 1 1 0 0 0 1

t

33 0 1 1 18 2 1 1 2 1 0 4 0 0 1 0 0 1 4 2,051

343 t

862 21 2 2 1 30 2 4 2 2 1 1 2 0 0 0 0 0 0 3

t

863 36 0 3 2 42 4 4 2 2 1 0 4 0 0 1 1 0 1 3 4,042

650 v

864 34 0 1 1 12 2 3 1 2 2 0 4 0 0 1 0 0 0 4 1,493 1,045 266 t
865 38 3 1 1 24 2 3 3 2 2 0 4 0 1 0 0 0 0 1 947 947

t

866 28 2 1 2 30 0 1 2 2 1 0 2 0 0 1 0 0 0 6

414 v

867 43 1 1 2 12 4 4 4 2 1 1 3 0 0 0 1 0 0 1

t

868 64 1 1 1 24 2 4 4 1 1 1 4 0 1 0 0 0 1 4

322 t

869 35 0 2 1 9 2 4 4 2 1 0 3 0 0 1 1 0 0 4

503 t

870 24 0 1 2 18 4 2 2 2 1 0 4 0 0 1 0 0 0 4

1,440 233 t

25 2 1 1 9 2 4 4 2 1 0 4 0 0 1 0 0 1 4

296 t

872 31 3 0 2 24 4 2 2 2 1 0 3 0 0 1 1 0 0 4

1,574 135 t

59 2 1 1 48 1 3 4 2 1 1 4 0 0 0 0 0 0 6

6,416

t

874 45 0 1 2 6 4 3 3 3 2 0 1 0 0 1 1 0 0 1

1,037 t

875 26 0 0 1 21 2 3 2 2 1 0 1 0 0 1 0 0 0 2

2,624 487 t

876 31 0 1 1 24 2 2 2 2 1 0 2 1 0 1 1 0 1 1 1,393 835 178 v

28 2 1 3 12 4 4 4 2 1 1 1 0 0 0 1 0 0 3

535 v

878 38 0 4 2 36 4 2 4 3 1 0 4 0 0 1 1 0 0 2

987 t

879 50 2 1 1 48 3 4 4 2 1 0 4 0 0 0 0 0 0 5

v

880 54 0 0 2 24 3 4 4 2 1 0 4 0 0 1 1 0 0 1 717 501 83 t
881 55 2 1 1 42 1 2 0 3 1 0 1 0 1 0 1 0 0 2

t

882 43 1 1 1 36 2 3 0 3 1 0 2 0 0 1 0 0 0 0

15,857

v

47 1 0 1 36 2 4 4 2 1 0 3 0 0 0 0 0 0 2

t

884 63 1 1 2 24 4 4 4 2 1 0 4 0 0 1 1 0 0 2

277 t

885 59 1 1 1 9 2 4 3 2 1 0 3 0 0 1 0 0 1 4

1,091 276 v

886 29 1 1 1 15 2 2 2 2 1 0 3 0 0 1 1 0 0 1 3,959

t

887 37 0 0 2 36 2 2 4 2 1 0 3 0 0 1 0 0 0 6

671 v

888 27 1 1 1 9 2 2 1 3 1 0 3 0 0 0 1 0 0 1

995

v

889 34 0 1 2 36 4 4 4 3 1 0 4 0 0 1 1 0 0 1

261 v

890 33 0 0 1 15 2 4 3 1 1 1 1 0 1 0 0 0 1 3

374 v

46 0 1 2 15 3 2 1 1 1 0 1 0 0 1 0 0 0 2

3,594 824 t

892 33 1 2 1 24 2 1 0 2 1 0 1 0 0 1 0 0 0 3 2,359

t

893 58 0 0 1 30 2 4 4 2 1 0 4 0 0 1 1 0 0 4

242 v

894 42 2 1 1 60 2 4 2 2 1 0 4 0 0 0 0 0 0 5

t

43 0 1 1 18 2 1 1 1 2 0 4 0 0 1 0 0 0 3 1,533 1,073

t

896 45 1 1 1 28 2 2 2 1 1 0 3 0 0 1 0 0 0 1

2,804

t

897 29 0 0 1 42 2 4 3 2 1 1 2 0 0 0 1 0 0 4

v

898 47 0 1 2 24 3 4 4 1 2 0 4 0 0 1 0 0 0 1

2,284

t

899 29 1 1 1 24 2 2 0 3 1 0 4 0 0 0 1 0 0 2

794 t

900 23 1 1 1 45 2 4 2 2 1 0 4 0 0 0 1 0 0 4

t

901 28 2 1 2 30 4 2 0 3 1 0 4 0 0 1 0 0 0 1

t

902 31 0 3 1 24 2 2 4 2 2 0 3 0 0 1 1 0 0 4

637 t

903 63 1 1 2 60 3 4 4 2 1 0 3 0 0 1 1 0 0 6

t

904 24 2 1 1 9 2 3 2 2 1 0 4 0 0 1 0 0 1 4 458 412 127 t
905 28 0 2 1 12 2 2 2 2 1 0 4 0 0 1 0 0 1 4

1,243 224 t

23 1 1 2 36 4 4 1 1 1 1 4 0 0 0 1 0 0 3

t

907 25 0 0 1 36 2 4 2 2 1 0 4 0 0 1 0 0 0 4 2,394

283 t

908 22 2 1 1 30 2 1 1 2 1 0 2 0 0 1 0 0 0 3

857 t

909 28 1 1 2 12 0 3 3 2 1 0 4 0 0 1 0 0 1 0

1,108 -368 t

910 36 2 0 2 20 3 4 3 3 2 1 3 0 1 0 1 0 0 2

807 t

911 35 2 3 1 14 2 2 4 2 1 0 1 0 0 1 1 0 1 6

846 144 t

912 36 2 3 1 12 4 3 3 3 1 0 3 0 0 1 1 0 0 1

2,366 810 v

913 29 1 1 2 12 4 2 2 2 1 0 3 0 0 1 0 0 1 1

3,149

t

914 44 3 1 1 12 2 2 2 1 1 1 2 0 0 0 1 0 0 4

264 v

915 46 0 4 2 18 4 4 4 2 1 0 4 0 0 1 0 0 0 4

1,582 344 t

916 34 0 0 2 6 4 2 2 1 2 0 1 0 0 1 0 0 1 4

1,328 218 v

31 2 1 2 24 4 4 4 2 1 0 4 0 0 1 1 0 1 6 1,935 967

t

918 65 1 1 2 21 4 4 4 2 1 0 4 0 0 1 0 0 1 1 571 456 87 t
919 33 2 1 2 18 0 4 2 2 1 0 1 0 1 1 1 0 0 3

702 t

920 40 2 1 1 18 3 3 4 3 1 0 4 0 0 1 1 0 0 3

t

921 55 0 4 1 12 2 2 3 2 1 0 3 0 0 1 0 1 0 2 1,413 1,271 384 t
922 64 0 1 1 10 2 4 2 2 1 0 2 0 0 1 1 0 0 1 1,364 1,364 373 t
923 22 1 1 1 24 2 1 1 2 1 0 4 0 1 0 0 0 0 3 3,149

323 v

924 39 1 1 1 30 2 3 4 2 2 0 1 1 0 1 0 0 0 4

376 t

925 22 0 1 1 18 2 4 0 2 1 1 3 0 0 0 0 0 1 4 433 346

t

926 57 0 2 3 11 4 4 0 1 1 0 4 0 0 1 0 0 1 4 1,154 1,154 219 t
927 25 0 0 2 24 2 2 4 2 1 0 4 0 0 1 0 0 0 4 999 999 197 t
928 29 0 2 1 24 2 4 2 3 1 1 4 0 0 0 1 0 0 4

1,330 310 t

929 48 1 1 1 24 3 4 1 2 1 0 4 0 1 1 0 0 1 4

614 -325 v

930 32 2 4 2 21 4 2 3 2 1 0 3 0 0 1 1 0 0 3

1,647 171 v

931 22 2 1 1 9 2 4 2 1 1 1 4 0 0 0 0 0 1 1 276 220 50 t
932 27 1 1 2 15 3 4 4 1 1 0 1 0 0 1 0 0 0 3

3,643 855 t

933 28 2 1 1 6 2 4 4 2 2 0 4 0 0 1 0 0 0 4

640 152 v

934 31 2 1 1 10 2 2 2 1 1 0 4 0 0 1 0 0 0 3

912 207 t

935 32 2 4 2 9 4 3 4 2 2 0 4 0 0 0 0 0 0 5

681 -538 t

936 23 1 1 1 30 2 4 3 2 1 1 4 0 0 0 0 0 1 3 2,406 1,924

v

937 40 2 1 1 18 2 4 3 2 1 1 2 0 0 0 0 0 1 3

699 v

938 52 0 2 2 6 4 4 2 1 1 0 4 0 0 1 0 0 0 1 362 253 41 t

27 0 1 2 9 2 2 3 2 1 0 3 0 0 1 0 0 0 6

1,159 200 v

940 43 0 4 2 24 4 1 2 1 1 0 4 0 0 1 0 0 1 4

1,061 172 t

941 28 3 3 3 12 4 2 3 2 1 0 4 0 0 1 1 0 1 1 939 751

t

942 33 2 0 1 18 2 2 2 2 1 0 4 0 0 1 0 0 0 1

729

t

943 55 1 1 3 18 4 4 0 0 2 0 2 0 0 0 0 0 0 0

833

t

944 26 3 1 1 12 1 1 1 0 1 0 4 0 0 1 0 0 1 6 609 548

t

945 61 2 4 2 15 3 3 2 2 1 0 3 0 1 1 0 0 0 0

907

v

946 32 0 1 1 18 2 2 1 2 1 0 3 0 0 1 1 0 0 4

556 t

947 35 0 1 2 24 3 3 3 1 1 0 3 0 0 1 1 0 0 2

3,275 604 t

948 44 1 1 2 15 4 4 4 2 2 0 4 0 0 1 1 0 0 3 1,478 886 137 v
949 26 0 1 1 6 2 3 2 2 1 1 2 1 0 0 0 0 0 1

3,518

t

950 28 3 2 2 6 4 4 4 2 2 0 2 0 0 1 1 0 0 1

166 t

951 45 0 2 1 39 2 2 4 3 1 0 4 0 0 1 1 0 0 2

5,152 948 t

952 36 0 0 2 6 4 4 4 2 1 0 4 0 0 0 0 0 0 4 700 350 29 t
953 41 1 1 1 6 2 4 1 1 2 0 3 0 0 1 1 0 1 1 662 595 182 v
954 45 3 1 1 18 2 1 1 1 1 0 1 0 1 1 0 0 0 3

3,049 902 v

955 35 0 0 2 48 4 1 3 2 1 0 2 0 0 0 1 0 0 2

1,010 v

956 31 2 1 2 18 4 2 1 1 1 0 2 0 0 1 0 0 1 3

v

957 31 1 1 1 48 2 2 2 2 1 0 3 0 0 1 1 0 0 4

v

958 27 0 1 2 24 2 3 1 1 1 0 4 0 0 1 0 0 0 0 937 655 103 t
959 60 1 1 2 12 4 3 4 2 1 0 3 0 0 1 0 0 0 3

1,572

t

960 32 0 1 1 24 3 2 2 2 1 0 1 0 0 0 0 0 0 6

975 t

961 45 0 0 1 15 2 4 4 2 2 0 4 0 1 0 0 0 0 2

780 130 v

962 49 0 1 1 12 2 2 2 1 1 0 4 0 0 1 0 0 1 1 640 320 44 t
963 64 0 0 1 9 2 4 4 1 1 0 1 0 0 1 0 0 1 5 3,832

323 v

964 26 1 1 2 42 3 2 3 2 2 0 3 0 1 1 1 0 0 4

v

965 40 1 1 1 12 2 4 2 1 2 1 4 0 0 0 0 0 0 5 684 615

v

966 41 2 1 1 18 4 1 4 2 1 0 2 0 0 1 1 0 0 3

1,098 t

967 47 3 1 1 30 4 4 4 2 1 0 4 0 0 1 0 0 0 4 3,017

323 t

968 26 0 1 1 18 2 1 1 2 1 0 3 0 0 1 0 0 1 4

293 v

969 31 1 4 1 12 2 3 2 2 2 0 1 0 0 1 0 0 0 1

882 t

970 40 3 1 1 15 2 4 4 3 1 1 4 0 0 0 1 0 0 5

208 v

37 2 1 1 9 2 2 2 1 2 0 2 0 0 1 0 0 1 4

2,118 630 t

972 31 2 2 2 20 0 4 4 2 1 0 3 0 1 1 1 0 0 2

809 t

973 36 3 4 2 24 4 4 2 2 1 0 2 0 0 1 1 0 1 6 1,275 892 116 t
974 26 2 2 2 30 0 4 2 1 1 1 4 0 0 0 0 0 0 6

t

975 33 0 1 1 15 2 2 3 2 1 0 2 0 0 1 0 0 0 2

366 v

976 35 1 1 2 12 4 3 4 2 1 0 4 0 0 1 0 0 0 1 691 414

t

977 63 0 1 2 12 4 4 4 1 1 0 2 0 0 1 1 0 1 4

288 t

978 67 2 1 1 18 2 4 0 2 1 0 2 0 0 1 1 0 0 0

3,872 1,149 v

979 27 1 1 1 40 4 3 2 2 1 0 4 0 1 1 1 0 0 5

t

980 35 2 0 1 9 2 2 1 0 1 0 4 0 0 1 0 0 1 1

929 192 t

981 26 2 1 2 15 0 1 1 0 1 1 2 0 0 0 0 0 1 1

-428 v

26 1 1 1 18 2 3 2 2 1 0 4 0 1 1 0 0 1 4

807 -352 t

983 38 2 0 1 48 3 4 2 2 2 0 4 0 0 0 1 0 0 6

t

984 46 0 1 2 24 4 3 4 2 1 0 4 0 0 1 0 0 1 4

482 t

985 57 1 1 1 12 2 4 4 1 1 0 4 0 1 1 0 0 1 4 709 425

v

26 0 2 1 9 2 2 2 2 2 1 1 1 0 0 0 1 1 1

2,146 481 t

987 24 1 1 1 12 2 4 4 2 1 1 4 0 0 0 0 0 0 3 652 456 112 v
988 36 0 0 2 30 4 3 3 2 1 0 2 0 0 1 0 0 0 4

459 t

989 40 0 0 2 28 1 4 1 2 2 1 3 1 1 0 1 0 1 2

v

990 42 1 1 1 18 2 3 2 2 1 0 2 0 0 1 0 0 0 3

3,322

v

991 33 2 0 1 9 2 2 2 1 1 0 1 0 0 1 0 0 1 1

679 v

992 39 1 1 1 24 2 2 4 3 1 1 4 0 0 0 1 0 0 3

2,676

v

993 43 1 1 2 12 3 2 2 1 2 0 4 0 0 1 0 0 1 1 1,344 940 158 v
994 46 0 0 2 24 4 4 2 3 2 0 2 0 0 1 1 0 0 2

894 t

995 31 0 2 2 24 2 4 4 2 1 0 2 0 0 1 0 0 0 4

t

996 30 2 2 1 24 2 4 4 2 1 0 4 0 0 0 0 0 0 3

1,841 322 t

997 40 1 1 2 11 4 2 2 1 2 0 1 0 0 1 0 0 1 1

324 t

998 25 2 2 1 15 1 2 2 2 1 1 2 0 0 0 0 0 0 1 1,264 884

t

999 48 2 1 2 24 4 2 4 1 1 0 4 0 0 1 0 0 0 4 1,743

202 t

27 2 2 1 45 4 4 0 2 1 0 3 0 0 1 0 0 0 2

1,200 v

OBS# AGE CHK_ACCT SAV_ACCT NUM_CREDITS DURATION HISTORY PRESENT_RESIDENT EMPLOYMENT JOB NUM_DEPENDENTS RENT INSTALL_RATE GUARANTOR OTHER_INSTALL OWN_RES TELEPHONE FOREIGN REAL_ESTATE TYPE AMOUNT_REQUESTED CREDIT_EXTENDED NPV Splitting Variable
1 6 7 0 4 1,

16 9 1,0

5 24 3 v
25 12 1,

29 1,1

65

47
4

8 2,

13 1,9

20 26
36 18 1,

91 1,7

21 41
30 2,

33 1,1

66 23
333 1,

86 48
27 1,

39 69 11
8,

133 6,

50 1,

40
44 5,9

43 94 -1,

82
10 56 61 55 1

63
1,

46 1,3

22 37
31 1,4

49 1,

304 2

52
1,8

35 9

17

508
14 8,4

87 5,0

92 9

76
15 70 4

96 93
42 1,

34 1,076 2

95
2,8

72 2,

58 74
950 57 -1

88
19 28 9,

572 6,

700 -4,

38
54 4,

59 4,

131 -2,

912
936 84 1

98
3,074 2,1

51 2

62
625 3

75 90
4,

210 2,

526

81
915

337
666 466 67
1,

657 1,

491 429
32 2,

662 1,

863 4

85
3,3

68 2,

694 414
6

45 114
672 470 116
5,

381 1,

768
4,

249 2,

549 -1,

157
6,

615 3,

307 3

79
5,

743 4,020 674
1,

236 741 140
1,

239 867 194
3,079 2,7

71 811
2,

212 2,212 611
1,

820 542
1,4

73 473 430
1,

967 1,

376 301
3,

186 862
3,

448 3,

103 824
1,

884 1,

507 415
11,054 7,

737 1,

64
3,

620 1,

810 334
3,092 1,

546

790
3,

573 2,

501 590
1,

934 1,

547 282
3,

123 2,

498

1,

330
759 53

305
5,507 4,

956 848
2,

273 1,

818 350
1,

534 920 -415
99
2,

964 1,012
3,

234 -1,

151
1,056

388
60 385 308
2,

329 1,

3

97 2

77
518

192
3,

652 2,

191
3,

660 2,

928 80
750 525

403
7,

476 5,

980 1,

585
1,

297 648 137
4,

139 3,

311 551
1,

538 1,

230 364
975
1,123 1,010

535
629 440
1,337 1,

203

479
6,403 3,

841 696
2,

325 1,

627 356
428 342
5,045 3,027
78 2,

812 1,

406 198
4,

933 3,

946 -2,

365
1,

188 594

446
1,

597 401
907 816 248
83 1,

101 990
2,

375 1,

425 148
5,

179 4,

143 -2,

232
2,

235 1,

341

603
5,

804 4,

643
7,

678 4,

606 682
89 7,

814 7,032 2,

237
2,

442 1,

709 -10
2,625

1,

254
4,

454 3,

117 397
1,

817 1,

453 207
1,

747 1,572 457
3,

527 2,

468 522
3,590 2,

872 343
1,

740 1,

218 168
1,

514 1,

211 296
8,

386 -3,

751
100 3,

565 2,

852 553
5,

951 5,

355 -3,080
102 4,308 -2,

807
2,

647 770
104 3,

618 879
105 1,

158 926 253
106 5,

965 1,508
107 1,

537 1,

383 291
108 730 511
109 1,

213 1,091 261
110 1,

409 1,

268 318
111 2,

323 1,

393
112 392 352
113 3,

868 2,

707 372
6,

887 6,198 -4,

715
115 4,

795 3,356 805
1,

924 1,

539
1,055 844 164
118 763 610 175
119 4,

455

2,

746
120 3,844 3,075 -2,

447
121 1,168 251
122 3,

835 2,301 458
1,

200 1,080 299
124 2,507 1,

504 262
125 1,

595
126 2,251 1,

575 349
127 1,603 961 195
128 1,

402 1,261
129 1,

574 1,

416
130 9,

398 6,

578

2,415
3,804 2,282 -1,051
132 5,511 3,

306 723
1,

938 1,

550 -696
134 1,

864 -1,

183
135 3,

599 2,

159 426
136 959

247
3,

399 2,039 493
138 6,070 758
12,

976 6,

488 -3,

587
983 589 141
1,887 1,

698 312
142 7,253 5,077
2,028 1,

825
144 1

1,

328 7,

929 -4,440
145 1,620 972
146
147 1,

721 860 163

220
149 1,

201 720 165
150 8,318 7,

486 -5,

624
5,493 4,

394 1,032
152 4,

686 2,343 378
153 3,

190 1,

914 -1,031
154 2,

631 1,

315

459
155 2,032 1,

219
156 1,750 1,050 229
1,546

813
5,

954 4,

167
3,124 616
160 1,965
161 918 734

284
162 1,

240 744 -409
1,

530 1,

377

653
1,553 931

366
1,308 784
166 1,

922 1,

345

494
900 -491
5,

742 1,198
169 2,

279
170 1,841
171 6,

331 5,

697 -2,024
172 838 -590
173 433 389 -328
174 1,

987 1,192

693
1,048
176 683

300
177 2,124 1,486 -587
178 8,065 4,

839 -3,043
1,

940 1,746
180 6,

313 2,

196
181 1,795 1,615
182 484 338
3,016 2,

412 567
184 1,

216 729

266
185 2,

993 2,095 359
4,042 2,425
187 2,169 1,

952

1,355
1,343
189 9,

277 5,

566 981
1,

829 464
3,

485 2,

788 456
4,

736 4,262

1,

718
193 12,

749 3,442
1,

670 1,

503 -488
1,236 286
2,145 1,072

673
197 2,

353 2,117 405
7,393 4,

435 767
199 4,844 3,

390 -2,152
1,

569 941
2,096 1,

467
202 1,567 1,096 241
2,241 1,

568 258
204 5,

866 2,933 225
205 6,204 4,

963 1,229
206 1,262 1,009 275
1,

953 1,

562 -976
208 1,164
209 363
797 717

302
932
6,

260 3,

756 708
1,237
214 2,708 1,

354
215 3,416
5,848 4,093 896
217 757
2,064 1,

651

882
1,647 1,152 -610
3,915 1,

957 -1,448
221 5,117 3,

581
222 5,

293 4,763 -4,064
223
224 2,141 1,

712 445
4,

605 3,

684 -1,

645
226 2,150 1,720 -683
227 5,302 4,

771 564
228 12,169 7,301 1,522
1,445 1,011
6,

419 4,493
231 1,

344 806

348
3,749 2,624 612
233 2,

910 1,455
7,

408 5,926 -3,

545
3,213 1,

927 434
3,229 1,119
2,247 1,797
238 2,146 1,

716 320
1,

283 898
3,249 2,599
8,648 6,918 -4,433
242 2,

292 -1,

437
243 958
244 1,872 1,

497
245 2,629 1,

577
246 2,759 2,207 421
3,017 2,715 656
654 -188
3,

622 2,173
250 1,113
1,126 563
252 2,

687 791
7,119 5,

695 -2,010
1,503 427
255 6,350 3,810

1,

837
256 6,

999 4,

899 -1,

881
257
5,433 4,

889 1,312
259 1,388 1,249
1,100 265
1,102

822
3,

357 2,

685 766
263 3,914 2,348

1,440
264 1,

444
4,

623 2,

773 -2,096
2,

303 2,072

968
267 1,

792
10,366 7,256
269 1,

478 1,330
270 2,896 2,027
271 1,377 688
272 2,476 1,

733
1,228 -376
274 760 608
3,160
276
2,214 1,328
278 3,275 880
1,

410 846
280 1,221 854
281 4,272 1,000
9,629 5,

777 -1,

853
2,712
11,816 7,089 -4,581
285 1,

943 1,

360 -792
1,

471
287 2,

439 2,195 -1,208
288 1,

382
289 2,181 1,

962 319
290 2,171 1,

519
10,

477 5,238 604
2,

991 2,

691 802
1,366 1,092

502
294 1,224 1,101
295 557
4,113 2,879 -1,160
3,

556 2,844 632
298 1,193

424
2,

923 1,

753
1,936
7,882 4,729
1,199 -289
1,804 1,623 407
1,264 1,137
6,187 4,

949 997
3,378 2,026
14,421 10,094 -7,360
5,954
309 1,

755 1,053
310 3,

617 2,170
1,

919 1,535
7,

855 4,

713

1,

659
781
314 1,

984 1,

785
2,

462 1,231 -464
316 7,758 4,654
317 7,308 6,577 2,059
1,414
3,777 2,266 492
2,108 1,

897
321 902 -273
322 1,

908 1,526 -1,279
2,

978
324 779
1,185 592
326 4,151 2,

490 413
327 2,

748 1,648
3,060 1,

836 -836
1,

520 1,064
4,

796 3,357 764
1,038 830
332 -256
2,659 1,329
11,590 -4,476
335 4,439 3,551
336 6,199 3,

719 -1,466
1,766
13,756 8,253 1,802
339 798
340 1,

369
1,277
1,

591 1,

431
2,058 1,

646
-280
346 2,670 1,

869
347 754 452
1,238
960
368
351 1,216

481
3,488 1,744
1,311
2,864

559
1,

995 579
1

2,389 8,672 -3,366
358 725
2,

384 1,907 -594
2,718 1,

630

831
361 3,349 2,344 -1,215
362 3,632 2,179
1,

858
1,980 1,188 -398
1,

851 1,

665
8,086 4,043 -1,

774
367 735
2,080
5,103 4,592
370 4,716 4,244
371 2,503 2,002
1,138
373
374 2,603 1,822
2,

483 2,234
5,771 5,193 1,122
12,

680 6,340 -2,

703
2,223 1,333
379 -192
380 2,

892 2,313
3,051 1,830

555
731 438
5,084 3,

558
1,559
1,442 -573
387 4,526 4,073
874
1,098 658
5,

800 4,

640
391 1,386
2,142 1,

499
1,

801 465
395
396 10,

974 6,

584 -2,

944
2,397 1,

677 -538
7,297 3,648 -2,507
8,229 6,

583 -2,272
400 3,959 3,167 916
4,

870 2,922 -1,742
1,403
2,069 1,862
404 1,

474 1,474
6,143 3,685 -1,770
2,225 1,

780 -747
3,181 2,

544 598
1,

977 1,383 -961
2,315 2,083
1,318 1,186
411 2,445
1,680 1,344
1,924

843
10,144 8,115 2,159
2,288
6,967 4,

876 989
417 909 727
418 3,414 2,048

1,278
-134
420 3,031 2,424 -997
1,

495 1,196
422 3,342 2,673
423 4,657 4,191 1,287
1,544 1,235
3,447 2,412 509
2,030 1,

827
11,

998 10,798 -4,141
3,

878 2,326
7,629 6,103
10,127 6,076 -2,454
432 1,494
1,028 925
4,110 3,

699 -2,183
3,949 3,159
436
2,473 1,978 -1,048
14,

782 7,391 -2,656
2,563
2,406
441 2,899 2,

609 826
1,381 1,242

443
2,

762

638
2,136 1,708
5,096 4,076 -1,

739
4,817 2,

890 -1,

679
1,950 1,170
1,245 996 -453
449 1,163
450 2,122 1,061
451 1,207 -375
2,255
3,105
1,255
1,079
4,712 3,298
1,082 973
2,133 600
460 1,358
461 1,275 765
1,

808 1,265 -751
463 2,600 1,

560 -557
948 -325
1,880 1,316
2,346 1,407
1,047 523
2,

580 1,290 -805
469 9,

857 6,899
2,284
2,

528 1,

769
472 14,027 7,013

2,463
2,

570 1,

799

1,039
3,380 2,

704
475 14,179
1,555 -545
1,

480 1,036
6,468 2,006
3,062 1,

531
7,472 5,230 1,339
482 3,931 3,537 -1,

985
3,780 1,890
2,327

772
3,422
10,

875 7,612 1,341
487 2,210 1,989 -948
3,231
489 4,057 2,839 -918
1,169 701
1,022
3,161 -2,801
6,872 6,184 -2,721
1,498
1,

845 1,660
496 1,

893
2,831 2,264
1,419
500 2,390 2,151
9,055
1,282 -352
1,374
4,746 3,322 -1,100
505 1,393
506 783 626
5,190
1,412 988
510 15,

945 7,972 -6,114
11,938 8,356 -3,313
512 3,578 2,862
513 2,121
1,240
515 3,566 2,139
516 -302
517
7,485 5,988 -2,232
1,360 1,088
1,501 1,200 -764
521 10,623 6,373
2,

613
524 1,

823 1,093 -648
1,258
7,418 5,192 1,304
561 -263
2,697
529 10,

722 9,

649 2,569
9,960 7,968 -2,393
1,

543 1,234
532 2,196 -989
533 3,398 819
3,384 -1,846
1,459 1,021
536 1,246 1,121 -569
1,542
7,685 4,611 -3,379
2,238 1,342
540 11,760 7,056 1,248
541 1,631 -926
5,

842 4,089
2,779 1,

667
1,484 -456
1,244
2,679
2,924 2,046
548 3,114 2,802 -1,133
1,209 -475
2,996 2,696 -1,242
1,309 -396
552
7,

966 4,779
554 2,319 1,159 -874
-474
1,331 -277
2,230
1,223 -517
-441
2,

828 1,696
12,204
1,

979 1,781
7,980 5,

586 -3,503
3,973 2,781
6,314 5,682
4,530 593
6,527 2,161
571 5,324 3,194
7,

596 4,557
3,990 1,326
576 1,285 1,156 -424
1,155
1,371 -388
1,941
9,271 6,489

3,149
582 7,432 4,459
1,

602
-337
3,976
2,221 1,554
588 1,322
-413
8,

947 6,262
1,107 885
18,424 12,896 -6,960
-173
-892
8,358 7,522
738
1,715 1,029
1,006
1,433 859
1,736
601 2,835 1,984
1,212
6,110 4,

888 1,392
2,299
4,527 -2,129
607
3,965 2,

775

1,203
1,295
2,012
6,458

2,804
7,174 5,739 -3,167
614 8,613 7,751
1,288
1,131 -313
2,577 2,061
619 5,129 3,077 -1,488
1,382 1,243
621 1,

935 1,548
3,104 2,483 724
10,961 7,672 -3,241
14,555 11,

644 -5,406
2,684
6,304 4,412 681
628 2,404 1,923
4,788 2,394
4,

675 2,805
4,811 3,848
633 5,801 3,480
634 2,101
635
636 2,331 1,165
637 3,

850 2,695
2,320 2,088
639
2,578
641 2,197
642 2,579 2,321

1,291
2,743 2,194
1,842 1,289 -599
3,

905 3,514
1,493 -819
2,312
2,769
650 9,034 7,227 -3,545
2,360 1,652
1,361
1,532
655 2,022 1,617
2,278 -868
1,372 -428
2,

930 2,051
2,799 1,399
-595
661 2,263
9,157 2,

992
663 2,116 1,

692
664 1,376
4,583 3,208
-311
3,496 2,796
668 5,150 3,605
669 1,347 942
1,103
671 6,560 5,

904 -2,623
1,538
921
11,560 9,248 -4,648
2,511 1,757
676 1,299
3,108 2,797 -1,444
3,535 710
2,675 1,605
7,511 5,257 -1,602
1,338
3,966 3,569 -1,

955
886
6,

761 4,056 -1,421
894
970
689 2,825 2,260
690 2,606 2,084
3,763 1,324
2,848 1,993
1,049
745 -200
2,009 -615
3,656 3,290
2,520 2,016 -647
6,289 3,144
3,857 3,471 1,057
6,948 4,863
702 8,072 5,650
2,100

832
705 1,352
706 9,566 7,652
1,007
3,816
12,612 6,306 -4,459
2,622 2,359
711 6,078 5,470 1,702
2,132 1,492
-330
714 -368
1,577
1,175
1,424
3,

913 3,130
7,

865 5,505 -2,364
2,767 2,490

2,105
1,204
726 2,149 -1,220
1,533 1,379
728
7,582 6,065
1,158
-340
732 4,351 3,045
1,525
-222
3,758 2,254
4,463 -1,012
3,650 2,920
7,374 6,636
1,408
8,471 4,235
1,149
2,576 2,318
3,386 3,047 -1,723
7,238 5,790
5,152
3,757
1,585 1,268
6,850 3,425 -1,718
752 7,127 4,988 -1,596
1,202
3,612 3,250 1,045
1,552
5,003 3,502 -1,636
4,241

2,676
2,671 -927
3,676 2,940
1,437 1,005 -356
15,653 7,826 937
1,247 -605
10,222 9,199 2,951
3,609 2,165
5,595 3,916 -2,321
2,

969
1,505 1,354
1,882 1,317 -576
4,380 3,504
1,274 -268
776 1,271
2,

901 1,740
778 3,509
2,751 1,925
4,165 3,748 -3,135
786 3,343 1,671
787 3,331
3,595 2,876
789 15,672 14,104 -12,029
1,592
3,711 2,597
14,896 13,406 -7,231
793 10,297 7,207 -4,283
794 2,063
2,859 2,287
1,154
3,568
2,427 2,184
1,409
3,059 2,447
12,579 10,063 -3,320
803
1,225
7,228 6,505
1,961
1,819 -637
9,436 7,548 1,677
809 2,249 1,574
2,337
7,721 4,632
4,281 -1,312
1,860 1,302
2,728
815 5,371 4,

833
3,512
3,972 2,383
1,963 1,177
-211
2,760 1,656
821 6,568 5,

911
3,021 2,114
1,478 1,034 -372
903
1,732
3,812 1,205
8,978 7,182 -3,830
2,766 -1,336
2,515 1,257
-430
4,473
834 4,169 2,501
1,743
3,446 3,101 -1,708
14,318 11,454 -5,352
840 856 -335
3,235
2,782 1,669
1,313
3,394 2,036
847 2,764 1,658
1,037
849 1,418
1,301
1,413
2,302 -888
7,763 5,434 -2,226
-231
3,552 1,776 -894
3,979 2,785
2,820 2,256 -1,037
1,217 -395
2,775 2,220 -689
861 1,435
3,441 2,752 -1,151
3,233
-411
4,221 2,954
4,843 4,358 -1,482
2,384 1,430
2,753 2,202
1,800
871 1,206 1,085
3,148
873 6,416 -3,914
6,761 6,084
5,248
877 3,617 3,255
5,711 4,568
6,224 4,979 -4,477
9,283 8,354 2,423
15,857 4,387
883 8,335 5,001 -2,571
2,957 1,774
1,364
2,771

1,073
7,409 4,445
1,422 -316
6,614 3,307
2,186 1,530
891 3,594
2,123 -1,023
1,867 1,120
6,288 5,659 -3,

994
895 -566
4,006 -1,282
7,166 5,016 1,013
2,538 -904
6,579 3,947
1,845 1,476 -884
5,234 4,187 -1,605
3,430 2,401
6,836 3,418 -2,339
2,073
906 6,229 3,737 -1,801
1,436
3,832 3,448
1,108
7,057 5,645
1,410
2,366
3,499 -1,351
1,881 1,128
1,582
1,898
917 -865
3,244 2,919
4,297 3,437 -1,255
1,889
2,522 1,765
-116
1,901
1,024
2,745
3,643
1,068
1,521
1,136
-1,024
3,001 2,700
939 1,449
1,516
-250
1,042 -364
1,190 -394
-349
1,512 -338
4,594 2,756
4,679
3,518 1,046
1,323 1,058
8,588
3,049
8,858 7,086
1,928 1,735 -849
6,758 4,054 -1,503
2,246 -654
3,863 3,476
1,300
1,916
4,370 3,933 -1,461
-487
6,361 5,088
1,810
1,453 1,162
3,651 3,285
1,905 1,143
971 2,118
6,148 4,918
4,280 2,568 -1,974
3,029 1,817
-225
1,655 1,489
3,872
5,998 4,198 -3,572
1,549
1,778 1,066
982 1,345
6,681 6,012 1,714
2,611 2,349
-142
986 3,577
6,742 4,045
7,824 7,041 1,536
4,153 -1,278
3,195 2,556
3,345 -971
6,842 5,473
3,621 3,258 -1,327
3,069
3,939 2,363
-286
1,394
1000 4,576 4,118

_x000D__x000D_

_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_

Data Dictionary

1 OBS#

2 AGE

Numerical

3 CHK_ACCT

4 SAV_ACCT

Categorical

5 NUM_CREDITS

Numerical

6 DURATION

Numerical

7 HISTORY

Categorical

8 PRESENT_RESIDENT

Categorical

9 EMPLOYMENT

Categorical

10 JOB

Categorical

11 NUM_DEPENDENTS

Numerical

12 RENT

13 INSTALL_RATE

Numerical

14 GUARANTOR

Binary 0: No, 1: Yes

15 OTHER_INSTALL

Binary 0: No, 1: Yes

16 OWN_RES

Binary 0: No, 1: Yes

17 TELEPHONE

Binary 0: No, 1: Yes

18 FOREIGN

Binary 0: No, 1: Yes

19 REAL_ESTATE

Binary 0: No, 1: Yes

20 TYPE

Categorical

21 AMOUNT_REQUESTED

Numerical

22 CREDIT_EXTENDED

Numerical

23 NPV

Numerical

24 Splitting Variable

Categorical

Var. # Variable Name Description Variable Type Code Description
Observation No. Numerical Sequence number in dataset
Age in years
Checking account status Categorical 0 : < 0
1: 0 < ...< 200
2 : => 200
3: no checking account
Average balance in savings account 0 : < 100
1 : 100<= ... < 500
2 : 500<= ... < 1000
3 : =>1000
4 : unknown/ no savings account
Number of existing credits
Duration of credit in months
Credit history 0: no credits taken
1: all credits at this bank paid back duly
2: existing credits paid back duly till now
3: delay in paying off in the past
4: critical account
Present resident since – years 0: <= 1 year
1<…<=2 years
2<…<=3 years
3:>4years
Present employment since 0 : unemployed
1: < 1 year
2 : 1 <= ... < 4 years
3 : 4 <=... < 7 years
4 : >= 7 years
Nature of job 0 : unemployed/ unskilled – non-resident
1 : unskilled – resident
2 : skilled employee / official
3 : management/ self-employed/highly qualified employee/ officer
Number of people for whom liable to provide maintenance
Applicant rents Binary 0: No, 1: Yes
Installment rate as % of disposable income
Applicant has a guarantor
Applicant has other installment plan credit
Applicant owns residence
Applicant has phone in his or her name
Foreign worker
Applicant owns real estate
Purpose of Credit 0: Other
1: New Car
2: Used Car
3: Furniture
4: Durable
5: Education
6: Retraining
Credit Amount Applied for
Credit Made
Net Profit from the Loan (Net Loss if Negative)
A variable added to ensure a balanced partition t: training record, v: validation record

_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_

Classification Trees and k-NN applied to Bank Credit

This assignment concludes the analysis of the credit data, exploring whether we can improve on our earlier analysis that utilized linear and logistic regression. Please refer to the earlier assignments for the data description, and repeat if needed the data preparation steps, using the

credit2.xlsx

data:

In the spreadsheet under the tab “Data,” you will find data pertaining to 1,000 personal loan accounts. The tab “Data Dictionary” contains a description of what the various variables mean.

As a part of a new credit application, the company collects information about the applicant. The company then decides an amount of the credit extended (the variable CREDIT_EXTENDED). For these 1,000 accounts, we also have information on how profitable each account turned out to be (the variable NPV). A negative value indicates a net loss, and this typically happens when the debtor defaults on his/her payments.

1. Create a categorical variable that indicates whether or not a new credit extension will result in a positive NPV.

2. Create dummy variables for all categorical variables with more than two values (if appropriate).

3. Split the data into two parts using the splitting variable that is a part of the data set[footnoteRef:1]. This is to ensure a more balanced split between the validation and training samples. After the data partition you should have 666 rows in your training data and 334 in your validation data. [1: If you run into issues that your # of columns exceeds 50, you may leave out the employment variable.]

Please answer all questions. Supply supporting documentation and show calculations as needed. Please submit a single well-formatted  Word file.  In addition, please upload an Excel file with your model outputs .

Classification trees

Classify customers as profitable/not profitable with a classification tree

1. Run the Classification Tree algorithm using all the relevant independent variables (excluding as before Credit Extended, Obs# etc. ) including all the dummy variables (recall that one does not exclude base values when running classification trees), with the profitable/not profitable as the output variable. Use the validation data to prune back the tree, and select to use the best pruned tree for scoring.

a. Include the classification confusion matrix for the validation sample and a figure of the best pruned tree as Exhibits.  

2. Analyze the output.

a. How many decision nodes are in the best pruned tree?

b. What is the error rate for i) the training data and ii) the validation data in the best pruned tree?

c. What explains the difference in the error rate?

d. Which applicants for credit will get rejected by the model (using the best pruned tree)? (Describe the type of customers using the English language.)

3. Using the model for decision making.

a. Consider a 27-year-old domestic student that has $100 in her checking account but no savings account. The student has one existing credits, which has so far been paid back duly. The credit duration is 12 months. The applicant has been renting her current place for less than 12 months, does not own any real estate, just started graduate school (the present employment variable is set to 1 and nature of job to 2). The applicant has no dependents and no guarantor. The applicant wants to buy a used car and has requested $4,500 in credit, and therefore the installment rate is quite high, or 2.25%. However, the applicant does not have other installment plan credits. Finally, the applicant has a phone in her name.

How would the best pruned tree classify the student?

k-NN

Classify customers as profitable/not profitable with k-NN

4. Run the k-NN algorithm for classification, testing all values of k from 1 to 10, selecting to score the data on the best k (remember to standardize/normalize the data). Request detailed output for both the training and validation data.

a. Using the search log, plot the %Error of the validation sample. Include the plot in your assignment.

b. What is the best value of k?

c. Briefly explain why the % Error is zero for the training sample when k=1, but not for the validation sample.

5. Analyze the output.

a. What some of the main differences are between the customers identified as most likely to be profitable and the customers that are identified as least likely to be profitable? Briefly discuss. 

Method comparisons

You have now run three different classification algorithms on this data; logistic regression, classification tree and k-NN. Compare their performance in two ways. First using statistical measures and second using their possible impact on the credit extension process. Feel free to take advantage of the solutions to Individual Assignment 2 as a starting point.

Hint: Below is a potential set-up to measure the business impact. First, collect the predicted probability of being profitable for both the training and validation data as well as the true NPV into a single spreadsheet. Perhaps similar to this:

Then select a cell for a cut-off (in my case I used E1). Then for each method and each sample we can calculate the cumulative profit, for a specific cut-off using the sumifs() function in Excel. Specifically, the following formula sums up the NPV of all credit extensions that are made using the training sample and logistic regression:

You then need to extend this approach to both data samples and all three methods. Perhaps similarly to this:

You can then create data tables to investigate the best cut-off for each method and the corresponding NPV on the validation data.

Week 2 Individual Assignment 2: Quantitative Analysis of Credit – Solutions

This assignment is based on the data we used during our two live sessions, but it has been updated to include a splitting variable (

credit2.xlsx

). In the spreadsheet under the tab “Data,” you will find data

pertaining to

1

,

0

00 personal loan accounts. The tab “Data Dictionary” contains a description of what the various variables mean.

As a part of a new credit application, the company collects information about the applicant. The company then decides an amount of the credit extended (the variable CREDIT_EXTENDED). For these 1,000 accounts, we also have information on how profitable each account turned out to be (the variable

NPV

). A negative value indicates a net loss, and this typically happens when the debtor defaults on his/her payments.

The goal in this assignment is to investigate how one can use this data to better manage the bank’s credit extension program. Specifically, our goal is to develop a classification model to classify a new credit account as “profitable” or “not profitable.” Secondly we want to compare its performance in the context of decision support to a linear regression model that predicts NPV directly.

Please answer all the questions. Supply supporting documentation and show calculations as

needed. Please submit a single, well-formatted PDF or Word file. The instructor should not need to go searching for your answers! In addition, please upload an Excel file with your model outputs – the file will not be graded, but will help the instructor give you feedback, if your model differs substantially from the solutions.

For extra assistance, you may want to access the tutorials located on the course resource center page.

Data Preparation

The data preparation repeats the steps from the live session:

a) The goal is to predict whether or not a new credit will result in a profitable account. Create a new variable to use as the dependent variable.

b) Create dummy variables for all categorical variables with more than 2 values (or if you prefer, you can sort your variables into numerical and categorical when you run the model).

c) Split the data into 2 parts using the splitting variable that has been added to the data set. This is to ensure a more balanced split between the

validation

and

training

samples.
Note

that Analytic Solver Data Mining only allows

50

columns in the analysis, so leave out your base dummies (if you created them) when partitioning. After the data partition, you should have 666 rows in your training data and 334 in your validation data.

The Assignment

1. Applying Logistic Regression

If one fits a Logistic Regression Model using all the independent variables, one observes a) a gap in the classification performance between the training data and the validation data, and b) very

high p-values for some of the variables. The performance gap between the training and validation may be a sign of overfitting, and the high p-values may be a sign of “useless” variables in the model, or of multicollinearity.

a) Our goal is to classify credit requests into “profitable” and “not profitable.” To that end, select to run “forward selection,” and set FIN down to 1.5 (this lowers the threshold for a variable to enter the model, resulting in more models to choose from). Select one of the forward selection models based on the principles discussed in the book and/or the tutorials on the course resource center and run it.

Note: Exclude Credit Extended and any other variables not appropriate for the analysis.

Include the model (the variables and the corresponding regression coefficients) as an Exhibit.

Predictor

Estimate

Intercept

0.1

409

AGE

0.0

350

NUM_CREDITS

0.3

472

DURATION

-0.0208

INSTALL_RATE

0.4

070

GUARANTOR

0.8

746

OTHER_INSTALL

0.6

841

OWN_RES

0.5

299

REAL_ESTATE

0.4792

AMOUNT_REQUESTED

-0.0001

GENDER_F

0.3894

CHK_ACCT_1

0.7

863

CHK_ACCT_2

1.3594

CHK_ACCT_3

2.1811

SAV_ACCT_4

0.8059

HISTORY_4

0.6811

PRESENT_RESIDENT_2

-0.4176

EMPLOYMENT_2

0.3505

EMPLOYMENT_3

0.7936

TYPE_2

1.9168

TYPE_3

0.5290

TYPE_4

0.6752

Please refer to the Excel solutions for additional details.

b) Why did you select this particular model?

From the feature selection output we chose to run the model with 18 coefficients. This model was chosen because it has Cp close to the number of coefficients in the model (and not higher), it has probability above .05 and the improvement in RSS if we expand the model further is relatively small.

c) Based on your model, and setting the

cut-off

value to 0.5, please provide the following information (based on the validation data):

· The sensitivity of the model: 0.88

· The specificity of the model: 0.495

In other words, at the default cut-off we correctly identify 88% of the profitable customers, but include around 50% of the unprofitable customers.

2. ROC Curves

a) We now want to compare the predictive performance of the model on the training sample and on the validation sample. Create a single figure that compares the ROC curves for both the training sample and the validation sample. Please refer to the ROC tutorials in the resource center as needed for a step-by-step guide for creating an ROC curve. Alternatively, you can combine the two curves that Analytical Solver Data Mining provides into a single plot.

Include a
clean
figure as an Exhibit.

3. Finding the “best” cut-off

a) Create a data-table to calculate the

total

NPV (assuming we extend credit to all classified as

“profitable” as a function of the cut-off based on the training data. Select the best cut- off.

Include the table as an Exhibit.

0

0

cut-off 0 0.1

0.2

0.3 0.4 0.5 0.6 0.7 0.8

0.9

1

NPV training

-56740

-26705

-2644

18771

45734

68023

88312

90

200

84

550

63883

NPV validation

-39141

-15636

-6309

13945

31128

36599

51636

51623

43999

32005

Please refer to the solutions for a more detailed table.

b) What is your selected cut-off? 0.725 (based on a more detailed table in the Excel file)

c) Create the same table for the validation data. Include the table as an Exhibit.

Refer to the table above

d) Apply the cut-off you selected based on the training data to the validation data. What is the total profit on the validation data? $51,330

e) Provide a figure that shows the cumulative NPV as a function of the cut-off for both the training data and the validation data.

4. Comparison with linear regression

a) Repeat our model development from our first live session (note you need to repeat the steps as we now have a new data split). Rerun a variable selection model to find a “good model” using the updated data.

Include the model (the variables and the corresponding regression coefficients) as an Exhibit.

For my linear regression model I selected to run a stepwise selection with the default

parameters. Note that this is not the only “correct” model, a careful analysis would have included both backwards, forwards and stepwise variable selection and the comparison of a couple of candidate models, before selecting one based on their performance (and you can define performance in multiple ways as we have discussed). Hopefully your model’s performance exceeds the performance of the model discussed here!

Predictor

Estimate

Intercept

INSTALL_RATE

<0.001

AMOUNT_REQUESTED

<0.001

CHK_ACCT_1

CHK_ACCT_2

CHK_ACCT_3

<0.001

SAV_ACCT_4

TYPE_2

<0.001

0.001

P-Value

594.6747

<

0.001

RENT

-288.596

0.010

-152.409

-0.17395

327.4346

0.005

396.0738

0.033

563.3212

378.5465

0.001

525.5611

TYPE_5

-489.718

0.011

TYPE_6

-50

0

.304

b) Create a data table that summarizes the total profit as a function of the NPV cut-off for extending credit on the training data (note that now your cut-off is in $ you will need to investigate what is a good cut-off, for example -$50 or $50, or something else). Select the best cut-off.

Include the table as an Exhibit.

Please refer to the Excel file for detailed information, the table below shows some highlights.

0

total
training
NPV
validation

750

74541

16890

700

75131

19502

650

73680

24582

600

71729

27223

-550

79911

28620

500

77482

30658

450

80913

30622

400

89518

33657

-350

86859

41614

300

78862

41014

250

84718

41885

-200

85475

44566

150

81744

39188

100

80865

36418

-50

75280

31917

71269

31705

50

64194

29323

100

62314

27407

150

59080

19587

200

52279

19844

250

50432

19938

300

46356

20864

350

40465

16292

400

33020

18002

450

25780

16046

500

22455

13862

550

16736

9610

600

12651

8478

650

9394

6152

700

9235

6167

750

8759

5329

c) What is your selected cut-off? -$400

d) Create the same table for the validation data and include it as an Exhibit.

Please refer to the table above

e) Apply the cut-off you found to the validation data. What is the total profit on the validation data? $33,657

f) Provide a figure that shows the cumulative NPV as a function of the cut-off for both the training data and the validation data.

5. Model comparison

a) Compare the performance of the logistic regression model and the linear regression model. How does the total profit compare for the two models? Which model would you select as the foundation of a decision support system and why?

When we compare the performance as measured by the total NPV is higher for both the training and the validation sample, as a result I would select my Logistic Regression model over the Linear Regression model (although it may be worth the effort to try to improve on the linear regression model).

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy