Please see attached. Do not bid if you cannot solve this, I am fed of up random bids and refunds from experts who cannot solve this, yet lie that they can.
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d>t
d> >Data
1 2 6 4 4 2 1 0 4 0 0 1 1 0 1 4 2
2 1 1 2 1 1 2 1 1 3 0 0 0 0 0 0 1 5
3
v 0 1 3 9 4 4 2 2 1 0 4 0 0 1 1 0 0 1 4
8
t 2 4 1 2 3 1 2 1 0 3 0 1 1 1 0 1 6 3
6
t 0 3 1 30 2 2 4 3 1 0 4 0 1 1 0 0 0 4 3
5
t 6
0
v 2 1 1 9 2 1 2 2 1 0 2 0 1 1 1 0 1 6 1
5
8
t 6
7
v 0 0 2 24 2 1 1 2 1 0 1 0 0 1 1 0 0 4 5, 3 6
v 0 1 1 12 4 4 4 2 1 0 4 0 0 1 0 0 1 4 8
6
v 9
6
t 2 2 2 6 3 2 4 2 2 0 1 0 1 1 0 0 0 6 t t 24 2 0 1 48 2 2 3 2 1 0 1 0 0 1 0 0 0 1 t 27 3 4 1 6 2 2 1 0 1 0 2 0 0 1 0 1 1 1 9
t 0 2 1 6 2 4 4 2 2 0 2 0 1 0 1 0 0 4 6
t 4
4
t 0
t 0 1 2 36 3 1 1 2 1 0 1 0 0 1 0 0 0 6 6
t 0 4 3 24 2 3 2 3 1 0 2 0 0 1 1 0 0 6 1
t 2
t t t 6
v 915 t t v 0 0 1 18 2 3 3 2 1 0 4 0 0 1 0 1 0 1 t t t t 5,381 t t t t t t t t 1,820 v 1, t t 3,186 v t t 0
v t t v t v 1
t v t t 6
498 68 t 2,964 t 3,234 t 950 t 58 1 1 4 12 4 3 3 1 1 0 4 0 0 1 1 0 1 4 19 t t t 337 t 5
t t t t t v 585 88 t v 56 t t t t 99 v 507 t 26 1 0 1 24 2 4 4 2 1 1 2 0 0 0 0 0 1 2 t t v 1,597 t t 27 0 1 2 12 2 2 2 2 1 0 3 0 0 1 1 0 1 1 198 v t t t 956 v t 38 0 1 1 24 2 3 3 3 1 0 3 0 0 1 1 0 0 2 t t 2,625 v t t v v t t v 8,386 t 37 0 0 2 12 4 1 1 1 2 0 2 0 0 1 0 0 0 5 v v 24 1 1 1 48 2 4 1 2 1 1 3 0 0 0 0 0 0 6 4,308 t 2,647 v 27 1 1 1 24 2 2 2 2 1 0 2 0 1 1 0 0 0 3 4,020 t 26 2 3 1 12 2 1 2 2 1 0 3 0 0 1 1 0 0 4 v 30 2 1 2 27 3 2 4 3 1 0 1 0 0 1 1 0 0 2 5,965 t 50 2 0 2 15 4 4 4 2 1 0 4 1 0 1 1 0 1 4 t 46 0 0 2 7 4 2 4 1 1 1 4 0 0 0 1 0 0 4 85 v 47 0 3 1 15 2 3 4 2 1 0 4 0 1 1 1 0 0 4 t 54 1 1 1 12 4 3 4 2 1 0 4 0 0 1 0 0 1 2 t 24 2 1 1 36 2 4 3 2 1 1 4 0 0 0 0 0 0 4 296 t 23 3 1 1 15 2 4 1 2 1 1 4 0 0 0 1 0 0 5 91 t 41 0 1 2 24 4 2 4 3 1 1 4 0 0 0 1 0 0 2 v t 30 2 1 1 36 2 1 1 3 1 0 4 0 0 1 1 0 0 4 t 381 v t 26 0 1 1 12 2 1 2 2 1 0 4 0 0 1 1 0 1 3 t 30 2 1 2 36 3 2 2 3 1 0 2 0 1 1 1 0 1 6 4,455 t 34 2 2 1 48 0 4 3 1 2 0 4 0 0 0 0 0 0 6 t 27 1 1 1 12 2 3 2 1 1 0 4 0 0 1 0 0 1 1 934 t 45 0 0 1 36 2 4 4 1 1 0 2 0 0 1 1 0 1 4 t t 51 0 3 1 9 2 4 4 1 1 0 2 0 0 0 0 0 0 1 t 51 0 1 1 6 2 2 3 2 2 0 3 0 0 1 0 0 0 4 1,595 534 v 46 3 1 1 12 2 2 2 1 1 0 1 0 0 1 0 0 0 3 t 55 1 1 1 24 2 4 4 2 1 0 4 0 0 1 0 0 0 4 v 37 0 3 1 12 4 4 3 2 1 1 3 0 0 0 1 0 0 3 397 t 50 0 1 1 12 2 2 2 2 1 0 4 0 0 1 0 0 1 3 446 t 28 2 1 1 36 2 4 1 3 1 1 1 0 0 0 1 0 0 2 v v 25 0 2 1 24 2 1 2 2 1 0 4 0 1 1 0 0 0 3 t v 30 0 2 2 18 4 2 2 2 1 0 4 0 0 1 0 0 1 5 1,491 t 26 1 1 1 21 2 4 3 1 1 1 1 0 0 0 0 0 0 3 t 29 2 1 1 9 2 2 2 2 1 0 1 0 0 1 0 1 0 3 479 v t 33 0 1 2 18 4 4 4 2 1 0 3 0 0 1 1 0 0 4 4,249 t v t v 35 0 1 2 33 4 2 3 3 1 0 3 0 0 1 1 0 0 2 730 t 518 v 29 2 1 2 24 2 3 2 3 1 0 2 0 1 1 1 0 0 0 v 30 1 1 1 12 2 3 2 2 1 0 2 0 0 1 0 0 0 3 200 t 29 0 1 1 6 2 1 2 2 1 0 3 0 0 1 0 0 1 4 518 466 135 t 36 1 1 1 15 2 3 1 2 1 0 2 0 0 1 0 0 1 1 t t 26 2 1 1 24 2 1 1 2 1 0 4 0 0 1 0 0 0 1 v 42 2 1 2 27 0 4 4 3 1 0 2 0 0 0 1 0 0 6 v t 32 0 1 1 36 2 2 2 3 1 0 2 0 0 0 1 0 0 2 v 24 1 1 1 18 2 2 2 2 1 0 2 0 0 1 0 0 1 4 t 28 2 2 2 15 2 4 2 2 1 1 2 0 0 0 1 0 0 1 t 60 0 1 2 24 3 4 4 2 1 0 4 0 0 0 1 0 0 1 125 t 45 0 3 1 6 1 4 4 1 2 0 2 0 1 1 0 0 0 4 v 1,546 t 835 t 3,124 t 42 2 0 2 24 3 4 2 2 1 1 4 0 0 0 1 0 0 1 1,572 307 v 30 2 1 1 9 2 1 2 2 1 0 4 0 0 1 0 0 0 3 v 48 3 2 1 10 2 4 4 1 2 0 1 0 0 0 0 0 0 1 t t t 78 t 37 2 1 1 12 2 2 2 1 1 0 4 0 0 1 0 0 0 3 t 900 t 5,742 t 37 0 0 1 12 2 4 2 2 1 0 4 0 0 0 1 0 0 4 1,595 426 v 25 2 2 1 15 2 2 2 1 1 0 3 0 0 1 0 0 1 0 2,631 457 t 46 1 1 2 48 4 4 4 2 1 0 4 0 0 0 1 0 0 2 t 35 1 1 1 6 1 4 4 2 1 0 4 0 0 0 0 0 0 5 1,198 t 24 2 4 1 6 1 2 1 2 2 1 4 0 1 0 0 0 0 5 t 21 1 1 1 24 2 4 2 1 2 1 2 0 0 0 0 0 1 4 t 838 186 t 23 1 1 1 18 2 2 1 1 1 0 1 0 0 1 0 0 0 1 976 t 24 1 1 2 18 4 4 2 2 1 1 4 0 0 0 0 0 1 3 v 25 1 1 2 36 4 2 2 3 1 0 3 0 0 1 1 0 0 5 t 466 t 41 0 0 1 24 2 4 4 3 2 0 3 0 0 1 1 0 0 2 6,313 v 48 2 1 2 18 4 4 4 1 1 1 3 1 1 0 1 0 1 4 282 v 28 2 1 1 6 2 3 3 1 1 0 3 1 1 1 0 0 1 4 71 v t 23 1 1 1 18 2 3 1 2 1 1 4 0 0 0 1 0 0 1 v 28 0 1 2 21 3 2 2 1 1 0 3 0 1 1 0 0 1 2 t 301 t 28 0 1 1 18 3 2 2 2 1 0 4 0 0 1 1 0 0 6 t 805 84 t 48 0 0 1 24 2 4 2 2 1 0 2 0 0 0 1 0 0 2 t 1,829 t t v 37 0 3 1 48 3 1 3 3 1 0 4 0 0 1 1 0 0 4 12,749 t v v v 47 2 1 2 21 3 4 2 2 1 0 1 0 0 1 0 0 0 1 t t 33 0 1 1 48 2 2 0 3 1 1 3 0 1 0 1 0 0 6 t 158 t 383 t 22 2 1 1 12 2 1 2 2 1 0 1 0 0 1 1 0 0 4 v t 30 2 2 2 18 2 2 2 2 1 0 2 0 0 1 1 0 0 1 v 44 2 1 1 18 3 4 2 1 2 0 2 0 0 1 1 0 1 0 t 25 0 1 1 12 2 2 2 2 1 0 3 0 0 1 0 0 0 4 t t 51 1 1 2 8 4 4 4 3 2 0 3 0 1 0 1 0 0 0 698 87 v 24 0 2 1 18 2 4 2 1 1 1 3 0 0 0 0 0 0 6 1,568 1,254 t t 652 167 t t 300 v 27 0 1 2 15 2 3 1 1 1 0 2 0 1 1 0 0 0 3 151 t 27 1 1 1 27 2 2 2 3 1 0 3 0 0 1 0 0 0 4 3,074 922 t t 36 0 3 2 15 2 3 3 2 1 0 4 0 0 1 1 0 0 0 1,262 72 t t v t 26 0 1 2 27 3 4 3 2 1 0 3 0 0 1 0 0 0 6 647 t 50 1 1 2 27 0 4 0 2 1 0 2 0 1 1 1 0 0 6 v 30 0 1 2 12 2 2 2 2 1 0 4 0 1 1 0 0 1 4 707 565 90 v 35 0 2 1 12 2 1 3 2 1 0 3 0 0 1 0 0 0 4 t t 24 2 1 1 30 2 2 2 2 1 0 4 1 1 1 0 0 0 1 t 36 1 1 3 18 4 4 4 3 1 0 2 0 0 0 1 0 0 1 v 36 2 0 1 48 1 4 0 3 1 0 4 0 0 0 1 0 0 1 t 235 t 763 t 37 3 0 2 24 4 2 3 1 2 0 4 0 1 1 0 0 1 1 v v 34 1 1 1 24 2 1 3 3 1 0 2 0 0 0 1 0 0 2 306 t v t 3,229 t 338 t 23 0 1 2 10 4 3 1 2 1 1 1 0 0 0 0 0 1 3 v 215 t 564 t t 42 0 1 2 12 4 2 0 3 1 0 4 0 1 1 1 0 0 6 2,292 t 47 2 1 2 12 4 3 3 1 2 0 2 0 0 1 0 0 1 1 670 105 t 36 1 1 3 6 4 4 0 3 1 0 4 0 0 0 1 0 0 3 155 t 29 2 1 2 20 3 3 2 2 1 0 2 0 1 1 1 0 0 0 258 v 34 0 1 2 12 0 4 4 2 1 0 2 0 0 1 0 0 0 3 t t 457 t 302 v 27 0 2 2 6 4 1 2 2 1 0 1 0 0 1 0 0 0 4 1,237 195 v 92 v 26 3 1 1 15 2 4 3 2 1 1 2 0 0 0 1 0 0 6 2,687 t t 1,503 t 31 1 0 1 30 2 4 4 2 1 0 4 0 0 1 0 0 0 3 t 34 1 1 2 48 2 1 3 2 1 0 1 1 0 1 1 0 1 4 t 29 3 1 1 6 3 1 1 2 1 0 2 0 1 1 0 0 0 4 683 341 49 t v 26 0 1 1 9 2 2 2 2 1 1 4 0 0 0 0 0 1 3 366 t t t v 38 0 0 1 48 2 2 2 2 1 0 4 0 1 1 0 0 1 6 t 23 2 0 1 15 2 1 1 2 1 0 4 0 0 1 0 0 0 4 1,010 194 t t t 50 0 1 2 21 2 2 4 2 1 0 4 0 0 1 0 0 1 3 2,241 343 t 1,522 v 33 0 1 2 15 3 3 2 2 1 0 4 0 1 1 0 0 1 4 255 t 29 2 2 1 24 2 1 1 2 1 0 2 0 0 1 0 0 0 4 390 v 47 3 2 1 24 2 2 4 2 1 0 4 0 0 0 1 0 0 4 143 v 46 0 0 1 21 2 4 4 3 1 0 4 0 0 1 1 0 1 2 453 t 736 v 44 2 1 1 8 2 2 3 1 1 0 4 1 0 1 0 0 1 4 135 t 2,212 429 t 23 2 2 1 12 2 4 3 1 1 1 2 0 0 0 0 0 1 6 841 841 249 t 266 t 36 0 1 1 21 4 4 4 3 1 0 1 0 0 1 1 0 0 2 3,275 v 161 t 27 0 0 2 6 4 2 2 2 1 0 1 0 0 1 0 0 0 3 148 t 24 1 1 2 20 4 4 4 2 1 0 1 0 0 1 0 0 0 3 4,272 t v 1,627 -603 t t 23 0 1 1 18 2 4 1 2 1 0 4 0 0 1 0 0 1 0 t 882 85 v 35 1 1 1 24 2 4 1 2 1 0 4 0 0 1 1 0 1 4 t 26 1 2 2 24 4 1 3 2 1 0 4 0 0 1 1 0 1 6 967 141 t 36 2 0 2 30 4 4 4 2 1 0 4 0 0 1 0 0 1 1 v 38 1 1 2 12 4 4 2 1 1 0 4 0 1 1 0 1 0 1 261 t v v v 30 0 1 2 9 4 1 2 2 1 0 3 0 0 1 0 0 1 1 221 t 31 0 0 1 24 2 2 3 2 1 0 4 0 1 1 1 0 0 3 929 123 v v v 29 1 1 2 24 1 4 0 0 1 1 1 0 0 0 0 0 0 1 954 t 357 t 1,936 504 t 792 v 959 v t 275 v t 389 v t 4,763 1,000 t 58 1 1 1 24 2 4 4 1 1 0 4 1 0 1 1 0 1 0 211 t 20 3 0 2 24 4 4 4 2 1 1 4 0 0 0 0 0 0 3 265 v 328 v t 390 31 v 47 0 1 2 18 2 4 2 2 1 0 4 0 1 0 0 0 0 3 405 v v 29 2 4 1 24 4 4 4 2 1 1 2 0 0 0 0 0 0 2 900 v 70 2 1 1 10 2 4 0 3 1 0 2 0 1 0 1 0 0 1 t 848 194 v v 606 t 21 1 1 1 12 2 4 3 2 1 1 4 0 0 0 0 0 0 0 902 t 66 3 1 1 30 3 4 4 3 1 0 4 0 0 1 1 0 1 6 v 2,978 797 v 25 2 1 1 18 2 2 2 1 1 0 4 1 0 1 0 0 1 4 866 199 t 73 t 35 0 2 2 24 3 3 2 2 1 0 2 0 0 1 0 0 0 3 v 57 0 1 3 12 4 4 4 1 1 0 2 0 1 0 0 0 0 5 115 v v 225 t t 126 v 25 2 1 1 12 2 3 3 1 1 0 2 0 1 1 0 0 0 1 685 685 t 238 t 11,590 t 33 2 1 1 18 2 1 4 3 1 0 1 0 1 1 1 0 1 6 950 t 28 1 1 2 12 0 2 2 2 1 1 4 0 0 0 1 0 0 4 t 1,766 567 t v 26 3 1 1 12 2 1 1 2 1 0 4 0 0 1 0 0 1 1 1,330 181 t 31 1 1 1 6 4 4 3 2 1 0 1 0 0 1 0 0 0 4 1,957 292 t 343 v 249 v 253 t t 35 0 1 1 24 2 4 4 3 1 0 4 0 0 1 1 0 0 2 424 v 38 2 0 2 12 2 4 4 2 1 0 4 0 0 1 0 0 0 0 75 v 742 137 t 960 195 t 257 63 v 38 2 2 2 24 4 4 1 2 2 0 4 0 1 1 0 0 0 4 972 t 359 t 1,048 306 t 1,718 t 1,795 v t 22 1 1 1 15 2 4 2 1 1 0 4 0 0 1 0 0 0 6 806 226 t v t 28 0 1 1 36 2 2 2 3 1 0 4 0 0 1 1 0 0 3 t 22 1 1 1 24 1 4 2 2 1 1 1 1 1 0 0 1 0 2 392 t 1,486 409 v v 365 t t 35 2 1 2 6 3 1 0 3 1 0 4 0 1 1 1 0 0 3 1,050 88 t 1,872 568 t 439 t 44 1 0 2 6 4 3 1 1 2 0 1 0 0 1 0 0 1 1 747 v 41 2 2 2 30 3 2 4 2 1 0 4 0 1 1 0 0 0 6 313 t 682 103 t 66 2 3 1 9 2 3 2 1 1 0 4 0 0 1 0 0 1 4 790 553 143 t 28 0 4 1 24 2 4 2 2 1 1 2 0 0 0 1 0 0 2 365 t 565 v v t 188 t 23 2 2 1 12 2 2 1 1 1 0 4 0 1 1 0 0 0 1 836 501 v 51 3 1 1 24 2 4 4 2 1 0 3 0 0 0 0 0 0 3 589 t v 42 t 936 t 1,091 237 v 1,009 t 32 0 4 2 27 4 2 1 1 2 0 4 0 1 1 1 0 1 3 784 v 611 125 t 90 t 651 t 40 0 0 1 15 2 2 2 2 1 1 4 0 0 0 1 0 1 4 693 150 t 344 v v 42 0 1 3 4 4 1 3 1 2 0 2 0 0 1 0 0 1 1 1,455 1,455 176 t 26 0 1 2 36 2 2 0 3 1 0 4 0 0 1 1 0 0 3 t t t t 30 1 1 1 36 2 3 0 3 1 0 4 0 0 1 1 0 0 3 t v 1,122 257 t 428 v 33 3 1 1 12 2 1 1 3 1 0 4 0 1 1 1 0 0 3 454 v t t v t 648 t 348 t 26 0 0 1 12 2 4 1 2 1 1 2 0 0 0 1 0 0 2 2,445 654 v 349 t 1,924 t v 1,830 389 t v 36 0 3 1 36 2 4 4 2 1 0 4 0 0 1 0 0 0 1 192 t 26 1 1 2 21 3 1 1 2 1 0 2 0 0 1 0 0 0 5 t v 21 2 2 1 45 2 4 2 2 1 1 4 1 0 0 0 0 0 4 t 181 t 51 0 0 1 36 4 2 4 2 1 0 4 0 0 1 1 0 0 4 725 v 30 0 1 1 15 2 2 2 2 1 0 3 0 0 1 1 0 0 2 t 94 t t 499 t v 563 t 863 t t 29 3 0 1 4 2 2 1 1 2 0 1 0 0 1 0 1 1 1 1,344 411 t 153 t v 925 v 46 0 3 1 10 2 4 4 2 1 0 4 0 0 0 1 0 0 5 727 508 136 v t v 249 t 1,924 437 t 43 2 0 1 18 3 4 4 2 2 0 4 0 0 1 0 0 0 1 v t 1,657 t 481 t t v 160 v t 44 0 3 1 12 4 4 2 2 1 0 4 0 0 1 1 0 1 1 814 193 t 39 1 1 2 12 4 2 2 1 2 1 3 0 0 0 0 1 1 1 133 v 24 1 1 1 24 2 4 1 2 1 1 4 0 0 0 0 0 0 1 844 t 1,804 423 v 3,105 708 t 627 87 t 215 v 437 t 215 t 1,919 t 40 1 0 1 24 1 3 4 3 1 0 4 0 1 1 1 0 0 0 950 -376 v 23 3 1 1 10 2 2 1 2 1 0 4 0 0 1 0 0 0 3 156 t v 65 1 1 2 18 2 4 2 2 1 0 4 0 0 0 0 0 0 4 t t 219 v 222 t 73 t t 31 2 2 2 36 3 3 3 1 2 0 1 0 0 1 1 0 0 6 1,312 t 1,827 525 t 424 t 27 2 1 1 60 2 2 3 3 1 0 4 0 0 1 1 0 0 1 v v 589 v 30 1 0 2 39 4 4 3 3 1 0 4 0 0 1 1 0 0 3 7,089 662 v 933 t 62 t 6,468 t 317 v t 46 1 1 1 48 2 4 3 2 2 0 4 0 0 0 0 0 0 1 v 231 t 2,327 v 3,079 322 t t 25 0 1 1 10 2 2 2 1 1 1 2 0 1 0 0 0 1 3 v 881 v 43 2 1 1 24 2 3 3 2 1 0 3 0 0 1 1 0 0 3 t 70 v 247 t 3,161 t v 1,498 439 v 426 t 29 1 1 1 12 2 4 2 2 1 0 4 1 0 1 1 0 0 1 1,514 363 t 535 t 217 t 50 0 0 1 12 2 3 4 2 1 0 4 0 0 1 1 0 0 1 652 v 5,433 1,032 t 769 t 961 251 t t 35 0 1 2 11 4 4 1 3 1 0 4 0 0 1 0 0 0 1 835 93 v 26 0 0 1 6 1 2 2 1 2 0 1 1 1 1 0 0 1 1 163 t 5,190 424 t 181 v 58 2 1 1 54 0 4 1 2 1 1 3 0 0 0 1 0 0 6 t v 47 0 0 1 48 4 1 4 2 1 0 4 0 0 1 1 0 1 4 720 t 30 1 1 2 12 4 2 2 2 1 0 4 0 0 1 0 0 0 1 1,908 349 v 868 130 t 30 2 2 1 48 1 2 3 2 1 0 4 0 0 1 0 0 0 6 481 v 20 1 1 1 12 2 4 2 2 1 1 2 0 0 0 0 0 0 3 1,282 769 v 32 0 3 1 6 2 2 2 2 1 0 1 0 0 1 1 0 0 3 2,978 2,978 996 t v 217 t t 38 1 1 3 30 4 4 4 3 2 0 3 0 0 0 1 0 0 2 373 t 2,613 673 t 30 1 1 1 24 2 2 0 3 2 0 4 0 1 1 0 0 0 4 v 754 178 t t v 1,887 390 t 35 1 1 1 47 2 1 1 1 1 0 1 0 0 1 1 0 1 1 t t 341 v 31 1 1 1 36 1 4 4 2 1 0 4 0 1 1 0 0 0 3 2,746 v 39 1 1 2 8 4 4 3 1 1 0 1 0 0 1 0 1 1 1 3,398 v 3,384 t 258 t 23 2 1 1 24 2 2 1 1 1 0 4 0 1 1 0 0 1 1 v 925 163 v v 149 v 32 2 2 1 39 3 3 3 2 1 1 2 0 0 0 1 0 0 5 v 22 2 1 1 24 2 1 1 2 1 0 1 0 0 1 1 0 0 4 2,039 v 666 t 394 t 890 t 995 138 v 1,339 281 v 488 t 26 1 1 1 18 0 4 1 2 1 1 1 0 0 0 0 0 0 3 v 967 t t 785 v 37 1 1 2 6 4 3 3 2 1 0 4 0 0 1 0 1 0 1 609 609 119 t 456 v 33 3 1 1 21 4 1 1 2 1 1 2 0 0 0 0 0 0 5 v t 798 t 401 v t t 334 t 12,204 3,488 t 445 t t 536 t 1,096 t 2,718 t 6,527 t 35 0 3 1 15 2 4 4 2 1 0 1 0 0 0 0 0 0 1 629 v 658 t 3,990 v 32 1 0 1 24 2 4 3 2 1 1 4 0 0 0 0 0 0 1 t 1,039 187 v 1,096 t 1,358 359 v t 54 2 1 1 36 3 2 2 2 1 1 2 0 0 0 0 0 0 1 801 t 961 124 v t 3,976 1,113 v 400 t 40 2 4 2 11 4 4 2 2 1 0 4 0 0 1 0 0 0 1 1,322 345 t v 1,377 t 208 t v t t 1,804 t 76 t 240 t 250 v 128 t 1,388 339 t 53 0 3 1 24 2 4 4 2 1 0 3 0 0 1 0 0 0 3 411 t 151 t t 2,069 597 t t 29 0 1 1 12 2 2 1 2 1 0 2 0 1 1 0 0 0 4 2,171 1,953 592 t v 777 82 v 1,207 215 v 6,458 v t 27 0 4 2 27 3 2 2 2 1 0 2 0 0 1 0 0 0 2 1,442 t 1,159 252 v 678 t 502 v 74 2 1 1 9 1 4 4 3 2 0 2 0 1 0 1 0 0 2 v 237 t 43 0 1 3 12 4 4 4 2 1 0 4 0 0 1 1 0 1 3 124 t v t t 1,342 106 t t 26 0 1 2 18 4 2 2 2 1 0 2 0 0 1 0 0 0 4 380 t 472 t 673 t 1,076 t 49 0 0 1 12 4 4 4 2 1 1 2 0 0 0 1 0 0 3 747 t 23 2 1 1 13 2 4 1 1 1 0 2 1 0 1 0 0 0 4 2,101 688 v 23 2 1 2 13 4 4 1 2 1 0 4 1 0 1 0 0 1 4 882 441 60 v 49 0 0 1 12 4 4 4 2 1 0 1 0 0 1 1 0 1 4 228 v 27 0 1 2 18 4 1 3 2 1 0 3 0 0 1 0 0 0 2 324 t 348 t 21 0 0 1 18 2 2 1 2 1 1 4 0 0 0 1 0 1 4 1,126 675 120 t 1,546 318 t 43 0 0 2 24 4 4 3 2 2 0 4 0 0 1 1 0 0 2 1,098 139 t 33 1 1 1 12 2 1 1 1 2 0 4 0 0 1 0 0 1 1 t 392 t v 636 t v 557 v 674 v 29 2 2 1 36 2 1 1 3 1 1 4 0 0 0 1 0 0 3 t 329 t 1,224 291 v 766 126 t 37 0 1 1 24 4 4 2 2 1 0 4 0 0 1 1 0 0 1 446 v 1,822 t 1,234 v 492 v 150 t t 74 0 1 1 24 4 2 2 3 1 0 3 0 0 1 1 0 1 6 4,526 336 v 9,157 t 41 3 1 1 6 2 2 2 2 1 0 2 0 0 1 1 0 1 3 476 t 28 0 3 1 24 2 1 3 2 1 0 4 0 0 1 0 0 0 4 963 239 t 534 t t 692 t 33 0 1 1 24 4 4 4 2 1 0 4 0 0 1 1 0 0 3 876 t 27 3 0 2 10 4 2 3 2 1 0 4 0 0 1 1 0 0 4 173 v 882 123 t 24 2 2 1 48 2 2 3 2 1 0 3 0 0 1 0 0 0 1 v 112 t 135 t t 350 v 74 3 1 3 6 4 1 2 0 2 0 1 0 0 1 0 1 1 1 909 109 v t 3,181 v 289 t t 936 181 t v 797 197 t v 715 162 t 141 v 34 2 0 2 24 4 3 3 2 2 0 4 0 0 1 1 0 0 6 405 t 28 1 1 1 21 2 4 1 3 1 1 4 0 0 0 1 0 0 4 507 v 3,763 t 396 v 944 286 t 447 v t 651 t t 258 v v 1,231 v 25 1 0 3 30 0 3 1 2 1 0 2 0 1 1 0 0 0 6 351 v 1,890 t 23 1 3 1 6 2 2 0 0 1 1 1 0 0 0 1 0 0 2 811 141 t 31 0 1 2 36 4 2 2 2 1 0 2 0 1 1 0 0 0 4 1,185 t 805 174 t 864 t t 580 t 32 2 1 1 12 2 2 3 2 1 0 2 0 0 1 0 0 0 1 t 229 t t 66 2 3 1 12 2 3 2 1 1 0 4 0 0 1 0 0 1 4 766 689 v 946 170 v 705 34 t 1,424 390 t 899 t t v 722 147 v 29 1 1 1 12 1 1 2 2 1 0 4 0 0 0 0 0 0 4 2,149 t 389 t 49 1 0 1 12 2 4 4 1 1 0 2 0 0 1 1 0 0 3 1,262 1,262 436 v 1,366 v 306 t t 48 2 0 1 24 2 4 2 1 1 0 1 0 0 1 1 0 0 3 663 t 1,372 347 t v 384 v 3,124 t 799 t 1,159 t 201 t 463 t 804 98 t 692 t t 907 t 2,576 377 v 2,629 697 v 196 t t 23 0 1 2 36 4 4 1 2 1 1 2 0 0 0 1 0 0 3 t 182 t v 931 158 t v 3,816 t 2,136 t 308 t v v t v 473 v v 1,484 -647 t 419 t t 783 t 637 t 39 3 0 2 15 4 4 2 2 1 0 3 0 0 0 1 0 0 4 762 -256 t 373 t 25 1 1 1 18 2 1 3 2 1 0 4 1 0 1 0 0 1 4 2,105 502 t 361 v v 28 0 1 1 15 4 2 2 2 1 0 4 0 0 0 1 0 0 3 357 t 42 0 1 1 12 4 4 4 2 1 0 2 0 1 1 0 0 0 3 2,331 564 t 790 t 23 2 1 1 48 2 2 2 2 1 0 2 0 0 1 1 0 0 6 v 955 167 t 521 t t 39 1 1 3 48 2 4 3 2 2 0 4 0 1 0 1 0 0 2 t 30 2 1 1 6 2 3 1 3 1 1 4 0 0 0 1 0 0 4 2,063 659 t 509 t 692 41 v 3,568 1,238 t 485 v 845 197 v 540 t t 34 2 1 1 7 2 2 2 2 1 0 3 1 0 1 0 0 1 4 2,415 2,173 578 t 612 102 t 1,165 t 1,961 659 t 909 v t 30 1 2 1 18 2 3 3 3 2 0 4 0 0 1 1 0 0 1 421 v 2,337 698 t 993 v 2,996 t 211 t 2,728 362 v 28 1 1 2 36 4 2 2 2 1 0 3 1 0 1 0 0 0 3 1,137 t 3,160 561 t 396 t 172 t t 394 v 21 1 1 1 24 2 2 2 1 1 0 2 0 1 1 0 0 0 6 1,750 v 402 t t 173 t 535 t 3,812 t t v 235 v t 4,473 1,355 t 28 1 1 1 24 2 4 2 2 1 0 4 0 0 1 0 0 0 3 599 t 1,045 135 v t v 46 2 1 2 12 2 1 4 2 1 1 1 0 0 0 0 0 1 1 1,223 v 1,617 258 t 366 t 787 154 v 258 t 26 0 1 2 33 3 2 2 2 1 0 2 0 0 1 1 0 0 6 189 v 622 116 t 35 0 2 1 10 2 2 2 1 1 1 3 0 0 0 0 1 1 1 992 206 v 650 121 t 1,413 426 t 1,841 v t t t 481 t t 973 t t 33 0 1 1 18 2 1 1 2 1 0 4 0 0 1 0 0 1 4 2,051 343 t t 650 v t 414 v t 322 t 503 t 1,440 233 t 25 2 1 1 9 2 4 4 2 1 0 4 0 0 1 0 0 1 4 296 t 1,574 135 t 59 2 1 1 48 1 3 4 2 1 1 4 0 0 0 0 0 0 6 6,416 t 1,037 t 2,624 487 t 28 2 1 3 12 4 4 4 2 1 1 1 0 0 0 1 0 0 3 535 v 987 t v t 15,857 v 47 1 0 1 36 2 4 4 2 1 0 3 0 0 0 0 0 0 2 t 277 t 1,091 276 v t 671 v 995 v 261 v 374 v 46 0 1 2 15 3 2 1 1 1 0 1 0 0 1 0 0 0 2 3,594 824 t t 242 v t 43 0 1 1 18 2 1 1 1 2 0 4 0 0 1 0 0 0 3 1,533 1,073 t 2,804 t v 2,284 t 794 t t t 637 t t 1,243 224 t 23 1 1 2 36 4 4 1 1 1 1 4 0 0 0 1 0 0 3 t 283 t 857 t 1,108 -368 t 807 t 846 144 t 2,366 810 v 3,149 t 264 v 1,582 344 t 1,328 218 v 31 2 1 2 24 4 4 4 2 1 0 4 0 0 1 1 0 1 6 1,935 967 t 702 t t 323 v 376 t t 1,330 310 t 614 -325 v 1,647 171 v 3,643 855 t 640 152 v 912 207 t 681 -538 t v 699 v 27 0 1 2 9 2 2 3 2 1 0 3 0 0 1 0 0 0 6 1,159 200 v 1,061 172 t t 729 t 833 t t 907 v 556 t 3,275 604 t 3,518 t 166 t 5,152 948 t 3,049 902 v 1,010 v v v 1,572 t 975 t 780 130 v 323 v v v 1,098 t 323 t 293 v 882 t 208 v 37 2 1 1 9 2 2 2 1 2 0 2 0 0 1 0 0 1 4 2,118 630 t 809 t t 366 v t 288 t 3,872 1,149 v t 929 192 t -428 v 26 1 1 1 18 2 3 2 2 1 0 4 0 1 1 0 0 1 4 807 -352 t t 482 t v 26 0 2 1 9 2 2 2 2 2 1 1 1 0 0 0 1 1 1 2,146 481 t 459 t v 3,322 v 679 v 2,676 v 894 t t 1,841 322 t 324 t t 202 t 27 2 2 1 45 4 4 0 2 1 0 3 0 0 1 0 0 0 2 1,200 v
_x000D__x000D_
_x000D__x000D_ Numerical Categorical Numerical Numerical Categorical Categorical Categorical Categorical Numerical Numerical Binary 0: No, 1: Yes Binary 0: No, 1: Yes Binary 0: No, 1: Yes Binary 0: No, 1: Yes Binary 0: No, 1: Yes Binary 0: No, 1: Yes Categorical Numerical Numerical Numerical Categorical _x000D__x000D_
Classification Trees and k-NN applied to Bank Credit
This assignment concludes the analysis of the credit data, exploring whether we can improve on our earlier analysis that utilized linear and logistic regression. Please refer to the earlier assignments for the data description, and repeat if needed the data preparation steps, using the credit2.xlsx data: In the spreadsheet under the tab “Data,” you will find data pertaining to 1,000 personal loan accounts. The tab “Data Dictionary” contains a description of what the various variables mean. As a part of a new credit application, the company collects information about the applicant. The company then decides an amount of the credit extended (the variable CREDIT_EXTENDED). For these 1,000 accounts, we also have information on how profitable each account turned out to be (the variable NPV). A negative value indicates a net loss, and this typically happens when the debtor defaults on his/her payments. 1. Create a categorical variable that indicates whether or not a new credit extension will result in a positive NPV. 2. Create dummy variables for all categorical variables with more than two values (if appropriate). 3. Split the data into two parts using the splitting variable that is a part of the data set[footnoteRef:1]. This is to ensure a more balanced split between the validation and training samples. After the data partition you should have 666 rows in your training data and 334 in your validation data. [1: If you run into issues that your # of columns exceeds 50, you may leave out the employment variable.]
Please answer all questions. Supply supporting documentation and show calculations as needed. Please submit a single well-formatted Word file. In addition, please upload an Excel file with your model outputs .
Classification trees
Classify customers as profitable/not profitable with a classification tree
1. Run the Classification Tree algorithm using all the relevant independent variables (excluding as before Credit Extended, Obs# etc. ) including all the dummy variables (recall that one does not exclude base values when running classification trees), with the profitable/not profitable as the output variable. Use the validation data to prune back the tree, and select to use the best pruned tree for scoring. a. Include the classification confusion matrix for the validation sample and a figure of the best pruned tree as Exhibits. 2. Analyze the output. a. How many decision nodes are in the best pruned tree? b. What is the error rate for i) the training data and ii) the validation data in the best pruned tree? c. What explains the difference in the error rate? d. Which applicants for credit will get rejected by the model (using the best pruned tree)? (Describe the type of customers using the English language.) 3. Using the model for decision making. a. Consider a 27-year-old domestic student that has $100 in her checking account but no savings account. The student has one existing credits, which has so far been paid back duly. The credit duration is 12 months. The applicant has been renting her current place for less than 12 months, does not own any real estate, just started graduate school (the present employment variable is set to 1 and nature of job to 2). The applicant has no dependents and no guarantor. The applicant wants to buy a used car and has requested $4,500 in credit, and therefore the installment rate is quite high, or 2.25%. However, the applicant does not have other installment plan credits. Finally, the applicant has a phone in her name. How would the best pruned tree classify the student?
k-NN
Classify customers as profitable/not profitable with k-NN
4. Run the k-NN algorithm for classification, testing all values of k from 1 to 10, selecting to score the data on the best k (remember to standardize/normalize the data). Request detailed output for both the training and validation data. a. Using the search log, plot the %Error of the validation sample. Include the plot in your assignment. b. What is the best value of k? c. Briefly explain why the % Error is zero for the training sample when k=1, but not for the validation sample.
5. Analyze the output. a. What some of the main differences are between the customers identified as most likely to be profitable and the customers that are identified as least likely to be profitable? Briefly discuss.
Method comparisons
You have now run three different classification algorithms on this data; logistic regression, classification tree and k-NN. Compare their performance in two ways. First using statistical measures and second using their possible impact on the credit extension process. Feel free to take advantage of the solutions to Individual Assignment 2 as a starting point.
Hint: Below is a potential set-up to measure the business impact. First, collect the predicted probability of being profitable for both the training and validation data as well as the true NPV into a single spreadsheet. Perhaps similar to this: Then select a cell for a cut-off (in my case I used E1). Then for each method and each sample we can calculate the cumulative profit, for a specific cut-off using the sumifs() function in Excel. Specifically, the following formula sums up the NPV of all credit extensions that are made using the training sample and logistic regression: You then need to extend this approach to both data samples and all three methods. Perhaps similarly to this: You can then create data tables to investigate the best cut-off for each method and the corresponding NPV on the validation data.
Week 2 Individual Assignment 2: Quantitative Analysis of Credit – Solutions
This assignment is based on the data we used during our two live sessions, but it has been updated to include a splitting variable (
credit2.xlsx
). In the spreadsheet under the tab “Data,” you will find data pertaining to 1 , 0 00 personal loan accounts. The tab “Data Dictionary” contains a description of what the various variables mean. As a part of a new credit application, the company collects information about the applicant. The company then decides an amount of the credit extended (the variable CREDIT_EXTENDED). For these 1,000 accounts, we also have information on how profitable each account turned out to be (the variable NPV ). A negative value indicates a net loss, and this typically happens when the debtor defaults on his/her payments. The goal in this assignment is to investigate how one can use this data to better manage the bank’s credit extension program. Specifically, our goal is to develop a classification model to classify a new credit account as “profitable” or “not profitable.” Secondly we want to compare its performance in the context of decision support to a linear regression model that predicts NPV directly. Please answer all the questions. Supply supporting documentation and show calculations as needed. Please submit a single, well-formatted PDF or Word file. The instructor should not need to go searching for your answers! In addition, please upload an Excel file with your model outputs – the file will not be graded, but will help the instructor give you feedback, if your model differs substantially from the solutions.
For extra assistance, you may want to access the tutorials located on the course resource center page. The data preparation repeats the steps from the live session: a) The goal is to predict whether or not a new credit will result in a profitable account. Create a new variable to use as the dependent variable. b) Create dummy variables for all categorical variables with more than 2 values (or if you prefer, you can sort your variables into numerical and categorical when you run the model). c) Split the data into 2 parts using the splitting variable that has been added to the data set. This is to ensure a more balanced split between the validation and training samples. that Analytic Solver Data Mining only allows 50 columns in the analysis, so leave out your base dummies (if you created them) when partitioning. After the data partition, you should have 666 rows in your training data and 334 in your validation data. If one fits a Logistic Regression Model using all the independent variables, one observes a) a gap in the classification performance between the training data and the validation data, and b) very high p-values for some of the variables. The performance gap between the training and validation may be a sign of overfitting, and the high p-values may be a sign of “useless” variables in the model, or of multicollinearity. a) Our goal is to classify credit requests into “profitable” and “not profitable.” To that end, select to run “forward selection,” and set FIN down to 1.5 (this lowers the threshold for a variable to enter the model, resulting in more models to choose from). Select one of the forward selection models based on the principles discussed in the book and/or the tutorials on the course resource center and run it.
Note: Exclude Credit Extended and any other variables not appropriate for the analysis. Include the model (the variables and the corresponding regression coefficients) as an Exhibit.
Predictor
Estimate
Intercept
– 0.1 409
AGE
0.0 350
NUM_CREDITS
– 0.3 472
DURATION
-0.0208
INSTALL_RATE
– 0.4 070
GUARANTOR
0.8 746
OTHER_INSTALL
– 0.6 841
OWN_RES
0.5 299
REAL_ESTATE
0.4792
AMOUNT_REQUESTED
-0.0001
GENDER_F
0.3894
CHK_ACCT_1
0.7 863
CHK_ACCT_2
1.3594
CHK_ACCT_3
2.1811
SAV_ACCT_4
0.8059
HISTORY_4
0.6811
PRESENT_RESIDENT_2
-0.4176
EMPLOYMENT_2
0.3505
EMPLOYMENT_3
0.7936
TYPE_2
1.9168
TYPE_3
0.5290
TYPE_4
0.6752
Please refer to the Excel solutions for additional details.
b) Why did you select this particular model?
From the feature selection output we chose to run the model with 18 coefficients. This model was chosen because it has Cp close to the number of coefficients in the model (and not higher), it has probability above .05 and the improvement in RSS if we expand the model further is relatively small.
c) Based on your model, and setting the cut-off value to 0.5, please provide the following information (based on the validation data): · The sensitivity of the model: 0.88
· The specificity of the model: 0.495
In other words, at the default cut-off we correctly identify 88% of the profitable customers, but include around 50% of the unprofitable customers.
a) We now want to compare the predictive performance of the model on the training sample and on the validation sample. Create a single figure that compares the ROC curves for both the training sample and the validation sample. Please refer to the ROC tutorials in the resource center as needed for a step-by-step guide for creating an ROC curve. Alternatively, you can combine the two curves that Analytical Solver Data Mining provides into a single plot. Include a a) Create a data-table to calculate the total NPV (assuming we extend credit to all classified as “profitable” as a function of the cut-off based on the training data. Select the best cut- off. Include the table as an Exhibit. 0.2 0.9 NPV training -56740 -26705 -2644 18771 45734 68023 88312 90 200 84 550 63883 0 NPV validation -39141 -15636 -6309 13945 31128 36599 51636 51623 43999 32005 0 Please refer to the solutions for a more detailed table. b) What is your selected cut-off? 0.725 (based on a more detailed table in the Excel file)
c) Create the same table for the validation data. Include the table as an Exhibit.
Refer to the table above
d) Apply the cut-off you selected based on the training data to the validation data. What is the total profit on the validation data? $51,330
e) Provide a figure that shows the cumulative NPV as a function of the cut-off for both the training data and the validation data. a) Repeat our model development from our first live session (note you need to repeat the steps as we now have a new data split). Rerun a variable selection model to find a “good model” using the updated data. Include the model (the variables and the corresponding regression coefficients) as an Exhibit.
For my linear regression model I selected to run a stepwise selection with the default
parameters. Note that this is not the only “correct” model, a careful analysis would have included both backwards, forwards and stepwise variable selection and the comparison of a couple of candidate models, before selecting one based on their performance (and you can define performance in multiple ways as we have discussed). Hopefully your model’s performance exceeds the performance of the model discussed here!
Estimate
P-Value
594.6747 <
0.001
RENT
-288.596 0.010 -152.409 <0.001 -0.17395 <0.001
327.4346 0.005 396.0738 0.033 563.3212 <0.001
378.5465 525.5611 <0.001
TYPE_5
-489.718 0.011
TYPE_6
-50 0 .304 0.001 b) Create a data table that summarizes the total profit as a function of the NPV cut-off for extending credit on the training data (note that now your cut-off is in $ you will need to investigate what is a good cut-off, for example -$50 or $50, or something else). Select the best cut-off. Include the table as an Exhibit. Please refer to the Excel file for detailed information, the table below shows some highlights. – 750 74541 16890 – 700 75131 19502 – 650 73680 24582 – 600 71729 27223 -550 79911 28620 500 77482 30658 – 450 80913 30622 – 400 89518 33657 -350 86859 41614 – 300 78862 41014 – 250 84718 41885 -200 85475 44566 – 150 81744 39188 – 100 80865 36418 75280 31917 71269 31705 64194 29323 62314 27407 59080 19587 52279 19844 50432 19938 46356 20864 40465 16292 33020 18002 25780 16046 22455 13862 16736 9610 12651 8478 9394 6152 9235 6167 8759 5329 c) What is your selected cut-off? -$400 d) Create the same table for the validation data and include it as an Exhibit.
Please refer to the table above
e) Apply the cut-off you found to the validation data. What is the total profit on the validation data? $33,657
f) Provide a figure that shows the cumulative NPV as a function of the cut-off for both the training data and the validation data. a) Compare the performance of the logistic regression model and the linear regression model. How does the total profit compare for the two models? Which model would you select as the foundation of a decision support system and why?
When we compare the performance as measured by the total NPV is higher for both the training and the validation sample, as a result I would select my Logistic Regression model over the Linear Regression model (although it may be worth the effort to try to improve on the linear regression model).
2
OBS#
AGE
CHK_ACCT
SAV_ACCT
NUM_CREDITS
DURATION
HISTORY
PRESENT_RESIDENT
EMPLOYMENT
JOB
NUM_DEPENDENTS
RENT
INSTALL_RATE
GUARANTOR
OTHER_INSTALL
OWN_RES
TELEPHONE
FOREIGN
REAL_ESTATE
TYPE
AMOUNT_REQUESTED
CREDIT_EXTENDED
NPV
Splitting Variable
1
6
7
0
4
1,
16
9
1,0
5
24
3
v
2
25
12
1,
29
1,1
65
–
47
3
4
8
2,
13
1,9
20
26
4
36
18
1,
91
1,7
21
41
5
30
2,
33
1,1
66
23
6 29 2 0 1 24 3 2 1 1 1 0 4 0 1 1 0 0 0 3 2,
333
1,
86
48
7
27
1,
39
69
11
8 30 0 1 1 36 2 2 2 2 1 0 1 0 1 1 0 0 0 2
8,
133
6,
50
1,
40
9
44
5,9
43
94
-1,
82
10
56
61
55
1
63
11 41 0 2 1 24 2 4 4 1 1 1 4 0 0 0 0 0 1 1
1,
46
1,3
22
37
12
31
1,4
49
1,
304
2
52
13 25 1 1 2 21 2 2 2 2 1 0 3 0 0 1 1 0 1 4
1,8
35
9
17
–
508
14
8,4
87
5,0
92
9
76
15
70
4
96
93
16
42
1,
34
1,076
2
95
17 36 0 2 1 24 4 4 4 2 2 0 3 0 0 1 1 0 1 4
2,8
72
2,
58
74
18 33 1 1 2 15 0 3 4 2 2 1 4 0 0 0 0 0 0 1
950
57
-1
88
19
28
9,
572
6,
700
-4,
38
20
54
4,
59
4,
131
-2,
912
21 52 0 3 2 9 4 2 4 2 1 0 4 0 0 1 1 0 0 5
936
84
1
98
22 33 0 0 2 9 4 2 2 2 2 0 1 0 0 1 0 0 1 4
3,074
2,1
51
2
62
23 26 2 1 1 12 2 1 1 1 1 0 4 1 1 1 0 0 1 4
625
3
75
90
24 26 3 1 1 36 2 2 2 2 1 0 4 0 0 1 0 0 0 4
4,
210
2,
526
–
81
25 29 1 0 1 24 2 2 4 2 1 0 4 0 1 1 0 0 0 1
915
–
337
26 39 1 4 2 6 4 4 3 1 1 0 3 0 0 1 1 0 1 1
666
466
67
27 27 1 1 1 12 2 2 2 2 1 0 2 0 0 1 0 0 1 3
1,
657
1,
491
429
28
32
2,
662
1,
863
4
85
29 23 0 4 2 15 4 4 4 2 1 1 3 0 0 0 1 0 0 2
3,3
68
2,
694
414
30 26 0 1 1 12 2 2 2 2 1 0 2 0 0 1 1 1 1 6 1,076
6
45
114
31 54 0 1 1 6 2 4 0 0 1 0 1 0 0 1 1 0 1 1
672
470
116
32 40 2 0 1 48 2 4 0 0 1 0 3 0 1 0 1 0 0 0
5,
381
1,
768
33 28 2 1 2 30 4 2 0 3 1 0 4 0 0 1 0 0 0 1
4,
249
2,
549
-1,
157
34 75 1 1 2 24 4 4 0 3 1 0 2 0 0 0 1 0 0 2
6,
615
3,
307
3
79
35 24 2 1 2 24 4 4 1 2 1 0 2 0 0 0 1 0 0 5
5,
743
4,020
674
36 23 0 1 1 9 2 4 1 2 1 1 1 0 0 0 1 0 1 0
1,
236
741
140
37 61 2 0 1 18 2 4 2 2 1 0 4 0 0 0 0 0 0 5
1,
239
867
194
38 36 0 0 1 36 2 4 2 2 1 0 4 0 0 1 0 0 1 1
3,079
2,7
71
811
39 39 1 0 1 20 2 4 3 2 1 0 4 0 0 1 1 0 0 3
2,
212
2,212
611
40 30 0 1 1 18 2 2 2 3 1 0 2 0 0 1 1 0 0 1
1,
820
542
41 39 0 1 1 18 2 4 1 2 1 0 3 0 0 1 1 0 1 4
1,4
73
473
430
42 20 2 1 1 24 2 4 4 2 1 0 4 0 0 1 1 0 0 4
1,
967
1,
376
301
43 20 0 4 1 15 2 3 3 2 1 1 2 0 0 0 0 0 0 1
3,
186
862
44 74 0 1 1 5 2 4 3 1 1 0 1 0 0 1 0 0 1 6
3,
448
3,
103
824
45 39 0 1 1 12 2 4 4 3 1 0 4 0 0 1 1 0 0 1
1,
884
1,
507
415
46 30 0 0 1 36 4 2 2 3 1 0 4 0 0 1 1 0 0 2
11,054
7,
737
1,
64
47 37 1 1 1 36 2 2 2 2 2 0 1 1 0 1 0 0 0 3
3,
620
1,
810
334
48 22 2 2 1 24 2 2 1 2 1 1 3 0 0 0 1 0 0 4
3,092
1,
546
–
790
49 23 2 1 1 12 4 1 2 1 1 0 1 0 0 1 0 0 1 4
3,
573
2,
501
590
50 26 0 1 2 12 4 2 4 2 1 0 2 0 0 1 0 0 0 4
1,
934
1,
547
282
51 27 1 1 1 24 2 1 1 2 1 0 4 0 0 1 0 0 0 1
3,
123
2,
498
–
1,
330
52 26 1 1 1 12 2 2 3 2 1 0 4 0 0 1 0 0 1 1
759
53
–
305
53 44 0 1 2 24 4 4 4 2 1 0 3 0 0 0 0 0 0 0
5,507
4,
956
848
54 32 2 1 2 36 2 1 3 2 2 0 3 0 0 1 0 0 0 5
2,
273
1,
818
350
55 23 2 1 1 12 2 1 1 2 1 1 1 0 0 0 0 0 1 4
1,
534
920
-415
56 23 0 0 2 12 4 4 3 2 1 0 4 0 0 1 0 0 1 0
99
57 49 1 0 1 24 2 4 4 2 2 0 4 0 1 0 1 0 0 2
2,
964
1,012
58 23 1 1 1 24 2 4 1 1 1 1 4 0 0 0 1 0 1 3
3,
234
-1,
151
59 30 2 1 2 18 4 3 4 2 1 0 3 1 1 1 0 0 1 1
1,056
–
388
60
385
308
61 45 2 1 1 7 2 1 1 2 1 0 1 1 0 1 0 0 1 4
2,
329
1,
3
97
2
77
62 22 1 2 1 12 2 3 0 2 1 0 4 0 0 1 0 0 0 0 741
518
–
192
63 27 2 1 2 21 4 3 3 2 1 0 2 0 0 1 0 0 0 6
3,
652
2,
191
64 28 1 1 1 24 2 4 2 2 1 0 2 0 0 1 0 0 0 4
3,
660
2,
928
80
65 27 1 1 1 18 2 1 0 0 1 0 4 0 0 1 0 0 1 5
750
525
–
403
66 50 1 1 1 48 2 1 3 3 1 0 4 0 0 0 1 0 0 5
7,
476
5,
980
1,
585
67 23 3 1 1 12 2 4 2 2 1 1 3 0 0 0 0 0 1 4
1,
297
648
137
68 27 0 2 2 24 4 3 2 1 1 0 3 0 0 1 1 0 0 6
4,
139
3,
311
551
69 56 0 1 1 6 2 2 1 2 1 0 1 0 0 1 0 0 0 5
1,
538
1,
230
364
70 25 1 1 2 15 4 3 2 2 1 0 2 0 0 1 0 0 0 3
975
71 29 0 3 1 12 2 4 2 1 1 1 4 0 0 0 0 0 0 3
1,123
1,010
–
535
72 32 0 3 2 18 4 3 4 3 1 0 4 0 1 1 1 0 0 4
629
440
73 34 3 1 2 9 0 2 1 3 1 0 4 0 0 1 1 0 0 4
1,337
1,
203
–
479
74 33 2 1 1 24 3 2 1 2 1 0 1 0 0 1 0 0 0 4
6,403
3,
841
696
75 32 1 2 1 24 1 3 3 2 1 0 2 0 1 1 0 0 0 1
2,
325
1,
627
356
76 49 1 1 1 6 2 1 4 2 1 0 2 0 1 1 1 0 0 3
428
342
77 59 0 0 1 15 4 4 4 2 1 0 1 0 0 1 1 0 0 1
5,045
3,027
78
2,
812
1,
406
198
79 25 2 1 2 39 4 2 3 2 1 0 2 1 0 1 0 0 1 4
4,
933
3,
946
-2,
365
80 39 2 1 1 21 2 4 4 2 2 0 2 0 0 1 0 0 0 6
1,
188
594
–
446
81 54 0 1 2 24 4 4 4 2 2 0 4 0 0 0 0 0 0 5
1,
597
401
82 26 2 1 1 8 2 2 1 2 1 0 3 0 0 1 1 0 1 6
907
816
248
83
1,
101
990
84 44 0 3 2 24 3 2 2 2 2 0 4 0 0 1 1 0 0 6
2,
375
1,
425
148
85 29 1 1 1 36 2 2 3 2 1 0 4 0 0 1 0 0 0 3
5,
179
4,
143
-2,
232
86 33 1 1 2 20 4 2 2 2 1 1 4 1 1 0 0 1 0 1
2,
235
1,
341
–
603
87 27 0 4 2 24 4 2 2 2 1 0 4 0 0 1 0 0 1 2
5,
804
4,
643
88 40 0 3 2 36 3 4 3 2 1 0 2 0 0 1 1 0 0 3
7,
678
4,
606
682
89
7,
814
7,032
2,
237
90 43 1 1 4 27 4 4 4 3 2 0 4 0 1 1 1 0 0 6
2,
442
1,
709
-10
91 43 1 1 1 16 4 4 4 2 1 1 2 1 1 0 1 0 0 1
2,625
–
1,
254
92 34 0 1 2 36 3 4 2 2 1 0 4 0 0 1 0 0 1 4
4,
454
3,
117
397
93 28 0 1 2 18 4 2 2 2 1 0 4 0 0 1 0 0 0 3
1,
817
1,
453
207
94 24 1 1 1 24 2 1 1 1 1 0 4 0 0 1 0 1 0 3
1,
747
1,572
457
95 45 0 0 1 12 2 3 1 3 2 0 2 0 0 1 1 0 0 1
3,
527
2,
468
522
96 40 2 1 3 18 4 3 0 0 2 0 3 0 0 1 1 0 0 6
3,590
2,
872
343
97 30 0 1 2 6 4 2 4 2 1 1 2 0 0 0 0 0 1 4
1,
740
1,
218
168
98 22 2 2 1 15 2 2 2 2 1 0 4 1 0 1 0 0 1 0
1,
514
1,
211
296
99 49 2 1 1 30 4 2 3 2 1 0 2 0 0 1 0 0 0 3
8,
386
-3,
751
100
3,
565
2,
852
553
101 22 2 1 1 48 2 2 2 2 1 0 2 0 0 1 0 0 1 4
5,
951
5,
355
-3,080
102
4,308
-2,
807
103 44 1 3 1 6 2 3 2 2 2 1 2 0 0 0 0 0 1 4
2,
647
770
104
3,
618
879
105
1,
158
926
253
106
5,
965
1,508
107
1,
537
1,
383
291
108
730
511
109
1,
213
1,091
261
110
1,
409
1,
268
318
111
2,
323
1,
393
112
392
352
113
3,
868
2,
707
372
114 29 1 1 1 36 3 3 2 2 1 0 4 0 1 1 1 0 0 5
6,
887
6,198
-4,
715
115
4,
795
3,356
805
116 38 0 1 1 10 2 4 2 2 1 0 1 0 0 1 1 1 0 4
1,
924
1,
539
117 30 0 1 2 18 4 1 1 2 1 0 4 0 0 1 0 0 0 1
1,055
844
164
118
763
610
175
119
4,
455
–
2,
746
120
3,844
3,075
-2,
447
121
1,168
251
122
3,
835
2,301
458
123 23 1 0 1 12 2 4 2 2 1 1 4 0 1 0 1 0 0 5
1,
200
1,080
299
124
2,507
1,
504
262
125
1,
595
126
2,251
1,
575
349
127
1,603
961
195
128
1,
402
1,261
129
1,
574
1,
416
130
9,
398
6,
578
–
2,415
131 42 2 1 1 36 0 1 2 2 1 0 4 0 0 1 1 0 0 4
3,804
2,282
-1,051
132
5,511
3,
306
723
133 32 1 1 1 24 2 3 1 2 1 0 4 0 0 1 0 0 0 4
1,
938
1,
550
-696
134
1,
864
-1,
183
135
3,
599
2,
159
426
136
959
–
247
137 37 3 0 1 12 2 3 4 3 1 0 2 0 0 1 0 0 0 4
3,
399
2,039
493
138
6,070
758
139 38 2 1 1 18 2 4 0 3 1 0 3 0 0 0 1 0 0 2
12,
976
6,
488
-3,
587
140 19 2 4 1 12 2 4 1 1 1 1 1 0 0 0 0 0 1 3
983
589
141
141 28 2 0 2 18 4 4 2 2 1 0 4 0 1 1 0 0 1 6
1,887
1,
698
312
142
7,253
5,077
143 30 2 0 1 12 2 2 2 2 1 0 4 0 0 1 0 0 0 2
2,028
1,
825
144
1
1,
328
7,
929
-4,440
145
1,620
972
146
147
1,
721
860
163
148 23 1 1 1 6 2 4 1 2 1 0 4 0 0 1 0 0 0 5 448 268
–
220
149
1,
201
720
165
150
8,318
7,
486
-5,
624
151 42 1 1 1 36 2 4 4 2 2 0 2 0 0 0 0 0 0 2
5,493
4,
394
1,032
152
4,
686
2,343
378
153
3,
190
1,
914
-1,031
154
2,
631
1,
315
–
459
155
2,032
1,
219
156
1,750
1,050
229
157 24 1 1 1 24 1 4 3 1 1 1 4 1 1 0 0 0 0 4
1,546
–
813
158 38 0 1 1 30 4 2 3 2 1 0 3 0 0 1 0 0 0 4
5,
954
4,
167
159 49 2 1 2 12 4 3 1 1 2 0 1 0 1 1 0 0 1 1
3,124
616
160
1,965
161
918
734
–
284
162
1,
240
744
-409
163 32 0 1 2 18 4 2 2 2 1 0 3 0 1 1 0 0 0 1
1,
530
1,
377
–
653
164 44 1 1 1 18 1 3 2 2 1 0 4 0 1 1 0 0 0 3
1,553
931
–
366
165 38 2 1 2 15 2 4 4 1 1 0 4 0 0 1 0 0 0 0
1,308
784
166
1,
922
1,
345
–
494
167 23 1 0 1 12 2 2 2 2 1 0 4 0 0 1 0 0 0 1
900
-491
168 31 0 2 2 36 2 2 3 2 1 0 2 0 0 1 1 0 0 6
5,
742
1,198
169
2,
279
170
1,841
171
6,
331
5,
697
-2,024
172
838
-590
173
433
389
-328
174
1,
987
1,192
–
693
175 23 2 1 1 10 1 4 2 1 1 0 4 0 1 1 0 0 1 4
1,048
176
683
–
300
177
2,124
1,486
-587
178
8,065
4,
839
-3,043
179 60 0 4 1 24 4 4 4 2 1 0 4 0 0 1 1 0 1 1
1,
940
1,746
180
6,
313
2,
196
181
1,795
1,615
182
484
338
183 24 3 1 1 12 2 1 2 2 1 0 3 0 0 1 0 0 0 4
3,016
2,
412
567
184
1,
216
729
–
266
185
2,
993
2,095
359
186 43 0 0 2 24 4 4 3 2 1 0 3 0 0 1 1 0 0 2
4,042
2,425
187
2,169
1,
952
–
1,355
188 46 3 1 2 6 4 4 4 2 2 0 1 0 0 1 0 1 1 1
1,343
189
9,
277
5,
566
981
190 46 0 1 2 15 4 4 4 2 1 0 4 0 0 1 1 0 0 4
1,
829
464
191 44 0 0 2 20 4 4 1 2 1 0 2 0 0 1 1 0 1 1
3,
485
2,
788
456
192 25 2 1 1 24 4 4 1 1 1 0 2 0 1 1 0 0 0 3
4,
736
4,262
–
1,
718
193
12,
749
3,442
194 22 2 1 1 9 2 2 1 2 1 0 4 0 0 1 1 0 0 4
1,
670
1,
503
-488
195 31 0 1 1 10 2 2 2 1 2 0 3 0 0 1 0 1 1 1 1,546
1,236
286
196 24 1 1 2 36 3 1 3 2 1 0 2 0 0 1 1 0 0 6
2,145
1,072
–
673
197
2,
353
2,117
405
198 43 0 1 1 24 2 4 2 1 2 0 1 0 0 1 0 0 0 1
7,393
4,
435
767
199
4,844
3,
390
-2,152
200 34 0 2 1 15 1 4 4 1 2 0 4 0 1 1 0 0 0 4
1,
569
941
201 49 0 1 1 12 4 3 3 1 2 0 2 0 0 1 0 0 1 5
2,096
1,
467
202
1,567
1,096
241
203 48 1 1 2 10 4 3 1 1 2 1 1 0 0 0 0 1 1 1
2,241
1,
568
258
204
5,
866
2,933
225
205
6,204
4,
963
1,229
206
1,262
1,009
275
207 61 2 1 1 36 0 4 4 3 1 0 4 0 0 0 1 0 0 6
1,
953
1,
562
-976
208
1,164
209
363
210 33 0 0 1 12 4 3 4 1 2 0 4 0 1 1 0 0 0 4
797
717
–
302
211 24 0 1 1 6 3 2 2 2 1 0 3 0 0 1 0 0 1 4
932
212 28 2 1 1 18 2 3 3 1 1 1 3 0 0 0 0 0 1 1
6,
260
3,
756
708
213 24 0 1 1 12 2 2 2 1 1 1 3 0 0 0 0 0 1 3 1,768
1,237
214
2,708
1,
354
215
3,416
216 24 3 1 1 36 2 1 2 2 1 0 4 0 0 1 0 0 0 4
5,848
4,093
896
217
757
218 34 2 1 1 24 3 2 0 3 1 0 3 0 0 1 1 0 0 3
2,064
1,
651
–
882
219 40 1 0 2 21 1 2 2 1 2 0 4 0 0 1 0 0 0 1
1,647
1,152
-610
220 36 2 1 1 27 2 2 2 2 2 0 4 0 0 1 1 0 0 6
3,915
1,
957
-1,448
221
5,117
3,
581
222
5,
293
4,763
-4,064
223
224
2,141
1,
712
445
225 24 1 1 2 48 0 4 4 2 2 0 3 0 0 0 0 0 0 2
4,
605
3,
684
-1,
645
226
2,150
1,720
-683
227
5,302
4,
771
564
228
12,169
7,301
1,522
229 49 3 0 1 18 1 4 3 1 1 0 4 0 1 1 0 0 0 4
1,445
1,011
230 44 1 1 2 24 4 4 4 3 2 0 2 0 0 0 1 0 0 2
6,
419
4,493
231
1,
344
806
–
348
232 26 3 1 1 24 2 4 1 2 1 0 2 0 0 1 0 0 0 3
3,749
2,624
612
233
2,
910
1,455
234 24 2 2 1 60 2 2 1 3 1 0 4 0 0 1 0 0 0 1
7,
408
5,926
-3,
545
235 25 2 3 1 18 2 3 1 2 1 1 1 0 0 0 0 0 1 4
3,213
1,
927
434
236 38 0 0 1 18 4 4 0 3 1 0 2 0 0 1 1 0 0 2
3,229
1,119
237 36 3 1 2 12 3 2 2 2 1 0 2 0 1 1 1 0 0 1
2,247
1,797
238
2,146
1,
716
320
239 25 0 0 1 22 2 4 3 2 1 1 4 0 0 0 0 0 0 1
1,
283
898
240 39 1 1 1 36 2 4 3 3 2 0 2 0 1 0 1 0 0 1
3,249
2,599
241 27 0 1 2 24 3 2 1 2 1 0 2 0 1 1 1 0 0 6
8,648
6,918
-4,433
242
2,
292
-1,
437
243
958
244
1,872
1,
497
245
2,629
1,
577
246
2,759
2,207
421
247 34 2 1 1 12 2 1 1 3 1 1 3 0 0 0 0 0 1 3
3,017
2,715
656
248 28 1 1 1 9 2 3 2 1 1 0 4 0 0 1 0 0 0 1
654
-188
249 57 1 4 2 30 2 4 4 2 1 1 4 0 0 0 1 0 0 3
3,
622
2,173
250
1,113
251 49 3 2 1 9 2 4 4 2 1 0 2 0 0 1 0 0 1 4
1,126
563
252
2,
687
791
253 53 1 1 2 48 0 4 2 2 2 0 3 0 0 0 0 0 0 3
7,119
5,
695
-2,010
254 41 0 1 1 12 3 4 2 2 1 1 4 0 0 0 0 0 1 2
1,503
427
255
6,350
3,810
–
1,
837
256
6,
999
4,
899
-1,
881
257
258 26 0 0 1 24 2 4 0 3 1 1 2 0 0 0 1 0 0 2
5,433
4,
889
1,312
259
1,388
1,249
260 36 0 4 1 21 2 4 4 1 1 0 4 0 1 1 0 0 1 6 1,572
1,100
265
261 34 2 1 1 24 1 4 3 1 1 0 4 0 1 0 0 0 0 5 1,837
1,102
–
822
262 29 1 4 1 21 2 2 1 2 1 0 4 0 1 1 0 0 0 4
3,
357
2,
685
766
263
3,914
2,348
–
1,440
264
1,
444
265 40 0 2 1 15 2 2 2 3 1 0 3 0 0 1 1 0 0 5
4,
623
2,
773
-2,096
266 45 1 1 1 24 2 1 4 2 1 0 4 0 0 1 0 0 1 1
2,
303
2,072
–
968
267
1,
792
268 42 0 1 1 60 2 4 4 3 1 0 2 0 0 1 1 0 0 1
10,366
7,256
269
1,
478
1,330
270
2,896
2,027
271
1,377
688
272
2,476
1,
733
273 24 1 1 1 12 2 2 2 1 1 0 4 0 0 1 0 0 1 1
1,228
-376
274
760
608
275 41 0 0 1 21 2 3 4 2 1 0 4 0 0 1 1 0 0 4
3,160
276
277 24 1 1 1 12 2 3 2 1 1 0 4 0 0 1 0 0 0 4
2,214
1,328
278
3,275
880
279 31 2 1 1 12 0 2 2 1 1 0 2 0 0 1 1 0 1 0
1,
410
846
280
1,221
854
281
4,272
1,000
282 24 1 1 2 36 4 4 3 2 1 0 4 0 0 1 1 0 0 2
9,629
5,
777
-1,
853
283 41 1 1 1 36 2 2 4 2 2 0 2 0 1 1 0 0 0 3
2,712
284 29 1 1 2 45 0 4 4 2 1 1 2 0 0 0 0 0 0 6
11,816
7,089
-4,581
285
1,
943
1,
360
-792
286 35 0 1 2 15 4 4 2 2 1 0 4 0 0 0 1 0 0 4
1,
471
287
2,
439
2,195
-1,208
288
1,
382
289
2,181
1,
962
319
290
2,171
1,
519
291 42 0 0 2 36 4 4 4 2 1 0 2 0 0 0 0 0 0 2
10,
477
5,238
604
292 25 2 0 1 30 2 4 4 2 1 0 2 0 0 1 0 0 0 4
2,
991
2,
691
802
293 22 1 1 1 9 2 4 1 2 1 1 3 0 0 0 0 0 0 4
1,366
1,092
–
502
294
1,224
1,101
295
557
296 28 2 3 1 24 2 4 1 2 1 1 3 0 0 0 0 0 0 2
4,113
2,879
-1,160
297 29 0 0 1 15 2 2 2 2 1 0 3 0 0 1 0 0 0 1
3,
556
2,844
632
298
1,193
–
424
299 28 3 2 1 21 2 1 2 3 1 0 1 0 1 1 1 0 0 1
2,
923
1,
753
300 23 1 0 2 18 2 4 3 1 1 1 2 0 0 0 0 0 0 4
1,936
301 45 1 1 1 42 2 4 3 2 2 0 2 1 0 0 0 0 0 3
7,882
4,729
302 60 1 1 2 24 4 4 4 1 1 0 4 0 0 1 0 0 0 1
1,199
-289
303 44 2 2 1 12 4 4 1 2 1 0 3 0 0 1 0 0 0 2
1,804
1,623
407
304 57 0 0 1 12 4 4 4 1 1 1 4 0 0 0 0 0 0 6
1,264
1,137
305 24 1 2 2 30 4 4 3 2 1 1 1 0 0 0 0 0 0 2
6,187
4,
949
997
306 31 0 0 1 18 2 1 2 2 1 0 2 0 0 1 1 0 0 2
3,378
2,026
307 25 2 1 1 48 0 2 2 2 1 0 2 0 0 1 1 0 0 6
14,421
10,094
-7,360
308 41 2 1 2 42 4 1 3 1 1 0 2 0 1 1 0 0 1 6
5,954
309
1,
755
1,053
310
3,
617
2,170
311 35 2 1 1 9 4 3 3 2 1 1 4 0 0 0 1 0 0 3
1,
919
1,535
312 25 0 1 2 36 4 2 2 2 1 0 4 0 1 1 1 0 1 1
7,
855
4,
713
–
1,
659
313 63 3 1 2 10 4 4 4 2 1 0 4 0 0 0 1 0 0 1
781
314
1,
984
1,
785
315 22 1 1 1 18 2 2 2 2 1 0 2 0 0 1 0 0 0 3
2,
462
1,231
-464
316
7,758
4,654
317
7,308
6,577
2,059
318 33 2 1 1 8 2 2 2 2 1 0 4 1 0 1 0 1 1 4
1,414
319 50 0 4 1 24 4 4 2 2 1 0 4 0 0 1 1 0 1 3
3,777
2,266
492
320 29 0 1 1 6 2 2 3 2 1 1 2 0 0 0 0 0 1 4
2,108
1,
897
321
902
-273
322
1,
908
1,526
-1,279
323 32 0 0 2 24 3 4 2 2 2 0 4 0 0 1 1 0 1 6
2,
978
324
779
325 27 0 1 2 12 4 2 2 2 1 0 3 0 0 1 0 0 1 6
1,185
592
326
4,151
2,
490
413
327
2,
748
1,648
328 28 2 1 2 48 2 4 3 2 1 0 4 0 0 1 0 0 1 4
3,060
1,
836
-836
329 63 0 0 1 15 4 4 4 2 1 0 4 0 0 1 0 0 0 3
1,
520
1,064
330 56 3 1 1 42 4 4 4 2 1 0 4 0 0 0 0 0 0 2
4,
796
3,357
764
331 49 1 1 2 10 4 3 3 2 1 0 4 0 0 1 1 0 0 1
1,038
830
332
-256
333 28 1 4 1 18 2 2 2 2 1 0 4 0 0 1 0 0 0 3
2,659
1,329
334 24 0 2 2 48 4 4 2 1 1 1 2 0 1 0 0 0 0 2
11,590
-4,476
335
4,439
3,551
336
6,199
3,
719
-1,466
337 21 0 1 1 6 2 2 2 2 1 1 1 0 0 0 0 0 0 3
1,766
338 63 0 0 1 60 4 4 4 3 1 0 2 0 1 0 1 0 0 1
13,756
8,253
1,802
339
798
340
1,
369
341 27 0 1 2 14 3 2 2 1 1 0 4 0 0 1 0 0 0 1 802 802 165 t
342 40 0 3 1 10 2 2 2 1 2 1 3 0 0 0 0 1 0 1 1,597
1,277
343 34 0 2 2 21 3 3 3 3 1 0 4 0 0 1 0 0 1 3
1,
591
1,
431
344 33 0 1 2 24 4 2 2 2 1 0 4 0 0 1 1 0 1 0
2,058
1,
646
345 41 0 1 1 12 2 4 4 1 2 0 4 0 1 1 0 0 0 5 719 431
-280
346
2,670
1,
869
347
754
452
348 36 0 0 1 6 2 4 0 3 2 0 4 0 0 1 1 0 0 0
1,238
349 30 0 4 2 15 3 2 3 2 1 0 3 0 0 1 0 0 0 3
960
350 38 2 0 1 6 2 4 4 2 1 0 4 0 0 1 0 0 0 4
368
351
1,216
–
481
352 20 2 1 2 12 3 4 2 2 1 1 4 0 0 0 0 0 1 4 585 526 91 t
353 23 0 2 1 24 2 4 3 2 1 0 3 0 0 1 0 0 0 2
3,488
1,744
354 26 0 2 1 24 2 3 3 2 1 0 4 0 0 1 1 0 0 4
1,311
355 34 3 1 1 18 2 1 2 1 2 0 2 0 0 1 0 0 1 3
2,864
–
559
356 27 2 2 1 12 4 1 1 2 1 0 4 0 0 1 0 0 0 1
1,
995
579
357 37 2 0 1 36 2 4 2 2 1 0 1 0 0 0 1 0 0 1
1
2,389
8,672
-3,366
358
725
359 33 2 1 1 36 2 1 1 1 1 1 4 0 0 0 0 0 0 0
2,
384
1,907
-594
360 20 2 1 1 24 2 4 2 1 1 1 3 0 0 0 1 0 0 1
2,718
1,
630
–
831
361
3,349
2,344
-1,215
362
3,632
2,179
363 22 1 1 1 12 2 1 1 2 1 1 4 0 0 0 0 0 0 3
1,
858
364 19 0 1 2 9 2 2 1 2 1 1 2 0 0 0 0 0 0 3
1,980
1,188
-398
365 33 0 1 2 24 4 2 3 2 1 0 4 1 0 1 1 0 0 4
1,
851
1,
665
366 42 2 2 4 36 3 4 4 3 1 0 2 0 0 1 1 0 0 1
8,086
4,043
-1,
774
367
735
368 24 0 3 1 6 4 2 2 2 1 0 1 0 0 1 0 0 0 1
2,080
369 47 0 1 3 24 4 3 1 2 1 0 3 0 0 0 1 0 0 4
5,103
4,592
370
4,716
4,244
371
2,503
2,002
372 25 1 1 2 9 4 4 2 1 1 0 4 0 0 1 0 0 1 4
1,138
373
374
2,603
1,822
375 22 1 3 1 24 1 4 2 2 1 0 4 0 1 1 1 0 1 3
2,
483
2,234
376 25 0 1 2 30 4 2 3 2 1 0 4 0 0 1 0 0 0 4
5,771
5,193
1,122
377 30 0 0 1 21 4 4 4 3 1 0 4 0 0 0 1 0 0 1
12,
680
6,340
-2,
703
378 52 0 2 2 24 4 4 4 2 1 0 4 0 1 1 0 0 0 4
2,223
1,333
379
-192
380
2,
892
2,313
381 35 0 0 2 12 4 4 4 2 1 0 4 0 0 1 0 0 0 4 976 488 52 t
382 54 1 1 1 48 2 4 2 2 1 0 3 0 0 1 0 0 0 0
3,051
1,830
–
555
383 47 1 1 2 8 4 4 4 1 1 0 4 0 0 1 0 0 1 1
731
438
384 42 2 0 1 24 2 4 4 2 1 0 2 0 0 1 1 0 0 4
5,084
3,
558
385 50 0 1 1 24 1 4 3 2 1 0 4 0 1 1 1 0 0 6
1,559
386 32 1 1 2 18 1 4 3 1 2 0 4 0 0 0 0 0 0 1
1,442
-573
387
4,526
4,073
388 24 0 0 1 15 2 1 1 2 1 0 4 0 0 1 0 0 1 0
874
389 65 0 1 2 18 4 4 0 0 1 0 4 0 0 1 0 0 0 4
1,098
658
390 34 2 1 2 36 4 4 2 2 1 0 3 0 0 1 1 0 0 2
5,
800
4,
640
391
1,386
392 28 0 4 1 11 2 2 4 2 1 0 1 0 0 1 1 0 1 6
2,142
1,
499
393 30 2 1 1 12 2 4 3 2 2 1 3 0 0 0 1 0 0 1 2,002
1,
801
465
394 42 0 3 2 12 4 4 4 2 2 0 4 0 0 1 1 0 0 4 522 261 36 t
395
396
10,
974
6,
584
-2,
944
397 35 0 3 2 24 2 2 4 2 1 0 3 0 1 1 1 0 0 4
2,397
1,
677
-538
398 36 1 1 1 60 2 4 4 2 1 1 4 0 0 0 0 0 0 6
7,297
3,648
-2,507
399 26 1 1 1 36 2 2 2 2 2 0 2 0 0 1 0 0 0 2
8,229
6,
583
-2,272
400
3,959
3,167
916
401 53 1 1 2 24 3 4 2 2 2 0 3 0 0 0 0 0 0 1
4,
870
2,922
-1,742
402 28 1 1 1 15 2 4 2 2 1 1 2 0 0 0 0 0 0 1
1,403
403 26 0 0 2 10 4 1 2 2 1 0 2 0 0 1 0 1 0 3
2,069
1,862
404
1,
474
1,474
405 58 1 1 2 48 4 4 4 1 1 0 4 0 1 0 0 0 0 2
6,143
3,685
-1,770
406 57 2 1 2 36 3 4 4 2 1 0 4 0 1 0 1 0 0 1
2,225
1,
780
-747
407 26 0 1 1 24 2 4 1 2 1 0 4 0 0 1 1 0 0 4
3,181
2,
544
598
408 40 1 0 1 36 2 4 4 3 1 0 4 0 0 1 1 0 0 5
1,
977
1,383
-961
409 52 1 1 1 10 2 4 4 1 1 0 3 0 0 1 0 0 1 4
2,315
2,083
410 54 2 4 1 12 2 4 4 2 1 0 4 0 0 1 1 0 1 1
1,318
1,186
411
2,445
412 35 1 3 1 12 2 1 4 2 1 0 3 0 0 1 0 0 1 4
1,680
1,344
413 27 2 0 1 18 2 3 1 2 1 1 4 0 0 0 0 0 1 3
1,924
–
843
414 21 0 2 1 60 2 4 3 2 1 0 2 0 0 1 1 0 1 4
10,144
8,115
2,159
415 23 0 1 1 21 4 4 1 2 1 0 4 0 0 1 1 0 0 3
2,288
416 36 2 2 1 24 3 4 3 3 1 1 4 0 0 0 1 0 0 6
6,967
4,
876
989
417
909
727
418
3,414
2,048
–
1,278
419 36 2 1 1 18 4 4 4 2 2 0 4 0 1 1 1 0 0 1 884 442
-134
420
3,031
2,424
-997
421 38 0 1 2 12 4 1 4 1 2 0 4 0 0 1 0 0 1 1
1,
495
1,196
422
3,342
2,673
423
4,657
4,191
1,287
424 42 0 1 3 4 4 1 3 1 2 0 2 0 0 1 0 0 1 4
1,544
1,235
425 35 0 3 1 12 1 3 2 1 2 0 4 0 0 1 0 0 1 0
3,447
2,412
509
426 24 2 0 1 9 2 1 3 2 1 0 2 0 0 1 1 0 0 3
2,030
1,
827
427 32 0 1 2 10 4 4 4 1 2 0 3 0 0 1 0 1 1 1 1,231 984 151 v
428 34 1 1 1 30 2 1 1 1 1 0 1 0 0 1 1 0 0 0
11,
998
10,798
-4,141
429 37 2 2 1 24 4 2 1 2 1 0 4 0 0 1 1 0 0 1
3,
878
2,326
430 46 0 0 2 48 4 2 4 3 2 0 4 0 1 1 0 0 0 6
7,629
6,103
431 44 0 3 1 48 4 2 2 2 1 0 2 0 1 0 0 0 0 1
10,127
6,076
-2,454
432
1,494
433 36 0 1 2 18 4 3 2 2 1 0 4 0 0 1 0 0 1 1
1,028
925
434 23 1 1 2 24 0 4 4 2 2 1 3 0 1 0 0 0 0 3
4,110
3,
699
-2,183
435 37 3 1 1 10 2 1 1 1 2 0 1 1 0 1 0 0 0 1
3,949
3,159
436
437 25 1 1 1 18 2 1 0 0 1 0 4 0 0 1 0 0 0 3
2,473
1,978
-1,048
438 60 2 2 2 60 1 4 4 3 1 0 3 0 1 0 1 0 0 0
14,
782
7,391
-2,656
439 26 0 2 2 30 3 2 2 1 1 0 2 0 0 1 0 0 0 6 4,272
2,563
440 31 0 1 1 9 4 3 0 3 1 0 2 0 0 1 0 0 0 3
2,406
441
2,899
2,
609
826
442 35 1 0 1 24 2 2 2 2 1 0 4 0 0 1 0 0 0 1
1,381
1,242
–
443
443 25 2 0 1 12 2 2 4 2 1 0 1 0 1 1 1 0 0 3
2,
762
–
638
444 25 1 1 1 9 2 2 2 2 1 0 3 0 0 1 0 0 1 3
2,136
1,708
445 30 2 1 1 48 4 3 2 3 1 0 2 0 0 1 1 0 0 3
5,096
4,076
-1,
739
446 31 1 1 1 24 2 3 3 2 1 0 2 0 0 1 1 0 0 1
4,817
2,
890
-1,
679
447 34 0 1 2 18 2 1 3 2 1 0 4 0 1 1 1 0 0 6
1,950
1,170
448 33 2 1 1 18 4 2 2 2 1 0 4 0 0 1 0 0 0 4
1,245
996
-453
449
1,163
450
2,122
1,061
451
1,207
-375
452 54 0 0 1 24 2 1 1 2 1 0 4 0 0 1 0 0 0 1
2,255
453 26 2 1 1 18 2 4 2 1 2 0 4 1 0 1 0 0 1 4 1,113 1,113 371 t
454 25 0 0 2 24 2 2 1 2 1 0 4 0 0 1 0 0 0 4
3,105
455 61 0 1 2 12 4 4 4 1 1 0 4 0 0 1 0 0 1 1
1,255
456 67 2 1 2 9 2 4 3 3 1 0 4 0 0 1 1 0 0 5 1,199
1,079
457 37 2 0 2 24 3 2 2 3 1 0 4 0 1 1 1 0 0 6
4,712
3,298
458 27 2 1 2 9 2 4 4 1 1 0 4 0 0 1 0 0 0 4
1,082
973
459 52 0 0 1 12 2 4 4 3 1 0 4 0 0 0 1 0 0 1
2,133
600
460
1,358
461
1,275
765
462 22 0 1 1 18 3 1 3 2 1 0 4 0 0 1 0 0 1 3
1,
808
1,265
-751
463
2,600
1,
560
-557
464 25 2 1 1 24 2 4 1 1 1 0 3 0 0 1 1 0 0 1 1,355
948
-325
465 32 1 1 2 18 4 1 3 3 1 0 4 0 0 1 1 0 0 4
1,880
1,316
466 35 0 1 2 24 4 3 3 2 1 0 4 0 0 1 1 0 0 2
2,346
1,407
467 50 3 1 1 6 4 4 2 1 1 0 2 0 0 1 0 0 0 5
1,047
523
468 41 0 3 1 21 3 2 1 1 2 0 4 0 1 1 0 0 1 6
2,
580
1,290
-805
469
9,
857
6,899
470 28 0 1 1 24 2 2 3 2 1 0 4 0 0 1 1 0 0 4
2,284
471 32 2 1 1 27 2 1 1 2 2 0 4 0 0 1 1 0 0 6
2,
528
1,
769
472
14,027
7,013
–
2,463
473 21 0 1 1 27 2 3 2 2 1 1 3 0 0 0 0 0 1 1
2,
570
1,
799
–
1,039
474 37 0 1 1 4 4 1 3 2 2 0 1 0 0 1 0 0 1 1
3,380
2,
704
475
14,179
476 55 0 4 2 12 3 4 4 2 2 0 4 0 0 0 0 0 0 0
1,555
-545
477 27 0 2 2 24 4 3 3 2 1 0 4 0 0 1 1 0 0 1 2,463 2,463 658 v
478 66 3 3 3 12 4 4 0 0 1 0 2 0 1 0 0 0 0 1
1,
480
1,036
479 60 2 0 1 20 2 4 0 3 1 0 1 0 0 1 1 0 1 2
6,468
2,006
480 32 0 3 1 24 2 3 4 2 1 1 4 0 0 0 1 0 0 3
3,062
1,
531
481 24 2 0 1 12 2 2 0 0 1 1 1 0 0 0 0 0 1 1
7,472
5,230
1,339
482
3,931
3,537
-1,
985
483 35 0 1 2 18 4 2 1 3 1 0 3 0 0 1 1 0 0 3
3,780
1,890
484 25 3 1 1 15 2 3 1 1 1 0 2 0 0 1 0 0 1 4
2,327
–
772
485 47 0 1 3 18 2 4 4 2 2 0 4 0 1 1 1 0 0 3
3,422
486 45 0 1 2 36 3 2 4 2 2 0 2 0 0 1 1 0 0 1
10,
875
7,612
1,341
487
2,210
1,989
-948
488 29 1 1 1 12 2 2 2 1 2 0 2 0 0 1 0 0 0 3 3,590
3,231
489
4,057
2,839
-918
490 29 0 0 2 18 4 3 2 2 1 0 4 0 0 1 1 0 0 4
1,169
701
491 36 0 1 1 24 2 1 4 3 1 0 4 0 0 1 1 0 1 4 1,278
1,022
492 31 1 1 1 24 1 2 2 2 1 1 4 0 0 0 1 0 0 6
3,161
-2,801
493 55 1 1 1 24 1 1 1 2 1 0 2 0 1 1 1 0 0 3
6,872
6,184
-2,721
494 23 1 1 1 12 2 1 2 2 1 0 4 0 1 1 0 0 0 4
1,498
495 46 1 1 1 15 2 1 1 2 1 1 4 1 0 0 0 0 0 3
1,
845
1,660
496
1,
893
497 22 2 1 1 6 2 1 1 1 1 0 3 0 0 1 0 0 0 0 454 363 81 t
498 33 0 1 1 30 4 2 2 2 1 0 4 0 0 1 1 0 0 4
2,831
2,264
499 30 0 1 2 24 4 2 3 1 1 0 2 0 0 1 0 0 0 3 2,028
1,419
500
2,390
2,151
501 35 0 0 1 36 2 4 2 1 2 0 2 0 0 0 1 0 0 5
9,055
502 32 1 2 1 24 2 2 2 1 1 0 4 0 0 1 0 0 0 4
1,282
-352
503 36 1 1 1 6 2 2 2 1 1 0 1 0 1 1 1 0 1 3
1,374
504 25 2 1 2 45 4 2 1 1 1 0 4 0 0 1 0 0 0 4
4,746
3,322
-1,100
505
1,393
506
783
626
507 48 0 0 4 27 2 4 4 2 2 0 4 0 0 1 1 0 0 0
5,190
508 66 1 1 2 12 4 4 4 3 1 0 4 0 0 0 0 0 0 2 1,526 1,526 318 t
509 29 0 1 2 12 4 2 2 3 1 0 4 1 0 1 1 0 1 6
1,412
988
510
15,
945
7,972
-6,114
511 39 2 1 2 24 4 3 2 3 2 0 2 0 0 1 1 0 0 0
11,938
8,356
-3,313
512
3,578
2,862
513
2,121
514 38 0 0 2 12 4 2 4 2 1 0 4 0 0 1 1 0 1 4
1,240
515
3,566
2,139
516
-302
517
518 53 0 0 1 30 1 1 0 3 1 0 4 0 1 1 1 0 1 2
7,485
5,988
-2,232
519 31 0 1 2 15 4 2 2 2 1 0 4 0 0 1 0 0 0 4
1,360
1,088
520 34 2 1 2 9 4 3 4 3 1 0 2 0 0 1 1 0 0 5
1,501
1,200
-764
521
10,623
6,373
522 39 2 0 2 6 4 3 3 1 1 0 1 0 0 1 0 0 0 0 932 652 78 t
523 27 0 1 2 36 0 2 2 2 1 0 4 0 0 1 0 0 0 0
2,
613
524
1,
823
1,093
-648
525 25 0 1 1 24 2 1 3 2 1 0 4 0 0 1 1 0 1 6
1,258
526 27 2 0 1 60 3 1 2 1 1 0 1 0 0 1 0 0 1 4
7,418
5,192
1,304
527 37 2 1 1 15 2 3 4 2 2 0 4 0 0 1 0 0 0 4 802
561
-263
528 32 0 1 1 9 2 2 2 2 2 0 1 0 0 1 0 0 1 4
2,697
529
10,
722
9,
649
2,569
530 26 2 1 1 48 2 2 1 2 1 0 1 0 0 1 1 0 0 3
9,960
7,968
-2,393
531 33 0 4 1 6 2 2 2 2 1 0 4 0 0 1 0 0 1 3
1,
543
1,234
532
2,196
-989
533
3,398
819
534 44 1 1 1 6 4 4 2 3 1 1 1 0 0 0 1 0 1 3
3,384
-1,846
535 43 0 1 1 15 4 2 2 1 1 0 4 0 0 1 0 0 0 4
1,459
1,021
536
1,246
1,121
-569
537 36 0 1 1 12 2 4 3 2 1 0 2 0 0 1 1 0 0 6
1,542
538 37 1 1 1 48 1 4 3 2 1 1 2 1 0 0 0 0 0 6
7,685
4,611
-3,379
539 25 0 1 2 18 4 1 2 2 1 0 2 0 0 1 0 0 0 4
2,238
1,342
540
11,760
7,056
1,248
541
1,631
-926
542 35 0 1 2 36 4 2 4 2 2 0 2 0 0 1 1 0 0 2
5,
842
4,089
543 21 2 1 1 18 2 3 2 2 1 1 1 0 0 0 1 0 0 2
2,779
1,
667
544 25 2 0 1 12 2 1 2 2 1 0 2 0 0 1 1 0 1 4
1,484
-456
545 41 0 0 2 9 4 4 4 1 1 1 4 0 0 0 0 0 0 5
1,244
546 29 0 1 1 24 2 1 1 3 1 0 4 0 0 1 1 0 0 2
2,679
547 63 1 1 1 24 2 4 2 2 2 0 3 1 1 1 1 0 0 2
2,924
2,046
548
3,114
2,802
-1,133
549 47 2 1 1 6 3 4 0 3 1 0 4 0 0 1 1 0 0 1
1,209
-475
550 20 1 0 1 24 2 4 2 2 1 0 2 0 0 1 0 0 0 3
2,996
2,696
-1,242
551 27 0 0 1 10 2 4 2 1 1 0 4 1 0 1 0 0 0 1
1,309
-396
552
553 30 2 1 2 26 2 3 1 2 1 0 2 0 0 1 0 0 0 2
7,
966
4,779
554
2,319
1,159
-874
555 43 1 1 2 24 3 2 0 2 2 0 4 0 0 0 0 0 1 1 1,333 799
-474
556 22 2 1 1 12 2 1 1 2 1 0 2 0 1 1 0 0 0 4
1,331
-277
557 23 2 2 2 24 3 2 3 2 1 1 3 0 0 0 1 0 0 4 1,553 1,242 193 v
558 24 0 1 2 15 4 3 3 2 1 0 2 0 1 1 0 0 0 3 2,788
2,230
559 20 1 1 1 18 2 4 2 2 1 1 1 0 1 0 0 0 1 3 2,039
1,223
-517
560 32 2 2 1 6 1 1 1 1 1 0 1 0 1 1 0 0 0 1 931 744
-441
561 22 1 3 1 24 1 4 2 2 1 0 4 0 1 1 1 0 1 3
2,
828
1,696
562 48 2 0 1 48 0 2 2 3 1 0 2 0 1 1 1 0 0 6
12,204
563 35 0 0 1 15 2 2 4 2 1 0 4 0 0 1 0 0 0 4
1,
979
1,781
564 47 0 1 3 12 2 4 4 2 2 0 4 0 1 1 1 0 0 5 1,393 1,393 210 v
565 27 0 0 2 36 3 4 1 2 1 1 4 0 0 0 1 0 0 6
7,980
5,
586
-3,503
566 22 1 1 1 14 2 4 0 2 1 0 1 0 0 0 0 0 0 1
3,973
2,781
567 27 0 1 2 24 4 2 0 3 1 0 4 0 1 1 1 0 0 0
6,314
5,682
568 26 0 1 1 30 4 4 3 3 1 1 4 0 0 0 1 0 0 4
4,530
593
569 34 0 0 1 60 2 4 2 2 2 0 4 0 0 0 1 0 0 1
6,527
2,161
570 50 0 3 1 6 2 4 2 2 1 1 2 0 0 0 0 0 0 2 1,236 988 243 t
571
5,324
3,194
572 63 0 0 2 30 4 4 4 2 1 0 1 0 0 1 0 0 0 2
7,
596
4,557
573 41 0 4 2 6 4 2 2 1 1 0 2 0 1 1 0 0 1 1 250 150 22 t
574 29 2 0 1 36 1 2 1 0 1 0 3 0 1 1 0 0 0 0
3,990
1,326
575 28 1 1 2 13 4 1 1 1 1 0 3 0 1 1 0 0 0 6 1,797 898 115 v
576
1,285
1,156
-424
577 40 2 1 2 12 2 3 4 1 1 0 3 1 1 1 0 0 1 4
1,155
578 25 1 0 1 24 2 4 2 2 1 1 4 0 0 0 0 0 1 1
1,371
-388
579 35 2 4 1 18 2 2 2 1 1 0 4 0 0 1 1 0 0 6
1,941
580 22 0 2 1 9 2 4 1 2 1 1 2 0 0 0 0 0 0 3 2,301 2,301 722 t
581 24 1 1 1 36 2 1 3 2 1 0 2 0 0 1 1 0 0 1
9,271
6,489
–
3,149
582
7,432
4,459
583 30 1 1 2 21 4 3 4 2 1 0 4 0 0 1 1 0 0 1
1,
602
584 48 1 1 2 12 0 4 2 2 1 0 4 0 1 1 0 0 0 1 1,082 757
-337
585 35 2 0 1 21 2 3 3 2 1 0 2 0 0 1 1 0 0 3
3,976
586 33 0 2 1 24 2 3 1 2 1 0 4 0 0 1 1 0 1 1 1,474 737 154 t
587 20 0 3 1 15 2 4 2 2 1 1 2 0 0 0 0 0 0 3
2,221
1,554
588
1,322
589 53 1 1 1 12 2 4 1 2 1 0 4 0 0 1 0 0 0 5 795 477
-413
590 31 0 0 1 36 3 2 3 3 2 0 3 0 1 1 1 0 0 2
8,
947
6,262
591 20 1 1 1 12 2 2 2 3 2 1 2 0 0 0 1 0 1 4
1,107
885
592 32 2 1 1 48 0 2 2 3 1 0 1 0 1 1 1 1 0 0
18,424
12,896
-6,960
593 46 1 1 2 12 1 2 1 2 1 0 4 0 1 1 1 0 0 1 697 348
-173
594 30 2 2 2 30 3 3 1 3 1 0 4 0 1 1 0 0 0 4 1,919 1,535
-892
595 30 2 3 2 48 0 1 1 2 1 0 1 0 0 1 0 0 0 1
8,358
7,522
596 57 1 4 2 24 4 4 4 3 1 1 4 0 0 0 1 0 0 4 1,231
738
597 26 2 0 1 30 2 1 2 2 1 0 4 0 0 1 0 0 0 4
1,715
1,029
598 57 3 3 1 24 2 3 2 1 1 0 3 0 0 1 0 0 0 4 1,258
1,006
599 25 1 1 2 15 4 3 2 2 1 1 4 0 0 0 0 0 0 3
1,433
859
600 31 0 1 1 12 2 4 3 1 1 0 3 0 0 1 0 0 1 3
1,736
601
2,835
1,984
602 53 0 0 2 24 4 4 4 2 1 0 4 0 0 1 0 0 0 4 2,424
1,212
603 39 0 1 1 6 0 4 4 1 1 0 4 0 0 1 0 0 0 4 426 383 117 v
604 31 0 1 1 48 4 3 2 2 1 0 1 0 1 0 1 0 0 5
6,110
4,
888
1,392
605 39 0 3 1 36 2 4 4 2 1 0 4 0 0 1 0 0 0 4
2,299
606 52 2 0 1 12 2 1 0 3 1 0 2 0 0 1 1 0 0 4 6,468
4,527
-2,129
607
608 34 1 1 1 42 2 3 1 2 1 0 4 0 0 1 0 0 0 4
3,965
2,
775
–
1,203
609 27 2 1 2 18 4 1 1 2 1 0 4 0 0 1 0 0 0 3
1,295
610 61 0 0 1 12 4 2 3 2 1 0 4 0 0 1 0 0 0 5
2,012
611 39 0 1 2 18 1 4 4 3 2 0 2 0 1 1 1 0 0 1
6,458
–
2,804
612 30 1 0 1 42 2 3 3 3 1 0 4 0 0 1 1 0 0 4
7,174
5,739
-3,167
613 40 1 1 1 12 2 2 2 1 1 0 4 0 0 1 0 0 1 4 701 420 93 t
614
8,613
7,751
615 39 1 1 2 6 4 4 4 2 1 0 1 0 0 1 1 0 0 1 860 688 111 t
616 48 1 2 2 9 4 4 4 2 2 0 3 1 0 1 0 1 1 0
1,288
617 33 1 1 1 18 2 2 0 2 1 0 4 0 0 1 0 0 0 3
1,131
-313
618 42 1 1 1 12 2 1 2 2 1 0 2 0 0 1 0 0 0 3
2,577
2,061
619
5,129
3,077
-1,488
620 28 0 1 2 6 4 1 2 2 1 0 1 0 0 1 1 0 0 4
1,382
1,243
621
1,
935
1,548
622 31 1 1 1 18 0 1 3 2 1 0 3 0 1 1 1 0 0 6
3,104
2,483
724
623 27 2 4 2 48 2 2 3 2 1 0 1 0 1 1 1 0 0 4
10,961
7,672
-3,241
624 23 2 0 1 6 2 2 0 0 1 0 1 0 0 1 1 0 0 1
14,555
11,
644
-5,406
625 52 0 1 3 12 4 4 4 2 1 0 4 0 0 1 0 0 1 4 717 573 79 t
626 35 0 1 2 24 4 2 2 1 1 0 4 0 0 1 0 0 1 4
2,684
627 36 0 0 2 36 4 4 4 2 1 0 4 0 0 1 0 0 1 6
6,304
4,412
681
628
2,404
1,923
629 26 1 1 1 48 2 3 3 2 2 0 4 0 0 1 0 0 0 2
4,788
2,394
630 20 0 0 1 12 2 4 1 2 1 1 1 0 0 0 0 0 0 2
4,
675
2,805
631 24 0 0 1 30 2 4 3 1 1 1 2 0 1 0 0 0 0 2
4,811
3,848
632 38 1 1 1 12 2 3 2 1 2 0 2 1 0 1 0 0 0 3 708 708 242 t
633
5,801
3,480
634
2,101
635
636
2,331
1,165
637
3,
850
2,695
638 34 0 1 2 18 3 3 0 2 1 0 2 0 0 1 0 0 1 4
2,320
2,088
639
640 55 1 1 1 12 2 4 0 3 1 0 3 0 0 0 0 0 0 3
2,578
641
2,197
642
2,579
2,321
–
1,291
643 29 0 1 2 28 4 2 4 2 1 0 4 0 0 1 0 0 0 4
2,743
2,194
644 23 0 3 1 6 2 4 3 1 1 1 2 0 0 0 0 0 1 0 660 660 200 v
645 34 1 1 1 36 2 4 1 2 1 0 4 0 0 1 1 0 0 1
1,842
1,289
-599
646 36 1 1 2 11 4 2 2 2 2 1 2 0 0 0 0 0 1 1
3,
905
3,514
647 29 1 1 1 24 3 2 1 1 1 1 4 0 0 0 1 0 0 4 1,659
1,493
-819
648 24 0 3 1 39 2 4 2 2 1 0 4 0 0 1 0 0 0 2 2,569
2,312
649 52 0 1 1 12 2 4 2 2 1 0 2 0 0 1 1 0 0 4 3,077
2,769
650
9,034
7,227
-3,545
651 36 3 3 1 15 4 2 2 2 1 0 2 0 0 1 1 0 0 2
2,360
1,652
652 40 1 1 1 6 4 4 1 1 2 0 2 0 0 1 0 1 1 1
1,361
653 31 0 2 1 15 4 3 2 2 1 0 4 0 0 1 0 0 0 5
1,532
654 75 1 0 1 6 2 3 0 3 1 0 4 0 0 1 1 0 0 1 1,374 1,374 440 t
655
2,022
1,617
656 28 2 2 2 18 0 3 1 2 1 0 3 0 0 1 0 0 0 1
2,278
-868
657 36 1 1 1 12 2 3 3 2 1 0 2 0 0 1 0 0 0 1
1,372
-428
658 27 2 1 1 12 2 1 3 2 1 0 2 0 0 1 0 0 1 4
2,
930
2,051
659 36 1 1 2 9 4 2 2 2 2 1 2 0 0 0 0 0 1 1
2,799
1,399
660 23 1 1 2 24 2 4 3 2 1 1 4 0 0 0 0 0 0 1 1,442 1,009
-595
661
2,263
662 27 2 0 1 60 3 2 2 3 1 0 2 0 0 0 0 0 0 4
9,157
2,
992
663
2,116
1,
692
664
1,376
665 32 1 1 2 30 0 2 2 2 1 0 2 1 0 1 0 0 1 3
4,583
3,208
666 41 2 1 1 12 2 4 4 1 2 0 4 0 1 1 0 0 0 1 888 799
-311
667 34 2 4 1 30 1 2 2 2 2 0 4 0 1 1 1 0 0 3
3,496
2,796
668
5,150
3,605
669
1,347
942
670 29 2 1 2 12 2 3 3 2 1 0 4 1 0 1 0 1 1 4
1,103
671
6,560
5,
904
-2,623
672 40 0 0 2 30 4 2 4 2 2 0 3 0 0 1 1 0 0 4 3,077
1,538
673 47 0 3 2 15 4 2 2 1 1 0 2 0 0 1 0 0 0 4 1,316
921
674 23 2 1 2 24 2 4 2 3 1 1 1 0 0 0 0 0 0 2
11,560
9,248
-4,648
675 23 1 1 1 15 2 4 0 2 1 1 1 0 0 0 0 0 0 1
2,511
1,757
676
1,299
677 31 1 1 1 30 2 4 1 1 1 0 2 0 0 1 0 0 0 3
3,108
2,797
-1,444
678 37 0 1 2 36 4 4 3 2 1 0 4 0 0 1 1 0 0 1
3,535
710
679 40 0 3 1 22 2 4 4 2 1 0 3 0 0 1 0 0 0 4
2,675
1,605
680 51 1 0 1 18 2 4 4 2 2 0 1 0 0 0 1 0 0 2
7,511
5,257
-1,602
681 26 2 1 1 6 2 3 1 1 1 0 3 0 0 1 0 1 1 4 590 413 111 t
682 62 0 3 1 6 2 4 2 2 1 0 1 0 0 1 0 0 1 0
1,338
683 33 1 1 3 18 4 4 4 2 1 1 1 0 1 0 1 0 1 1
3,966
3,569
-1,
955
684 21 0 0 1 12 2 2 2 2 1 0 4 0 0 1 0 0 0 4
886
685 68 0 0 2 18 2 4 2 2 1 1 2 0 0 0 0 0 0 1
6,
761
4,056
-1,421
686 40 0 0 1 10 2 3 3 2 1 0 4 0 0 1 1 0 0 0
894
687 27 1 1 1 18 2 1 1 2 1 0 4 0 1 1 0 0 0 4 2,389 2,150 676 t
688 36 1 1 1 18 1 4 1 3 1 0 3 0 1 0 1 0 0 4 1,940
970
689
2,825
2,260
690
2,606
2,084
691 24 1 0 1 21 2 2 3 1 1 0 2 0 0 1 0 1 1 1
3,763
1,324
692 32 0 2 1 10 2 2 2 2 2 0 1 0 0 1 0 0 1 2
2,848
1,993
693 21 1 1 1 18 4 4 1 2 1 1 4 0 0 0 0 0 0 3
1,049
694 28 3 1 1 9 2 2 2 1 1 0 3 0 0 1 0 0 1 4
745
-200
695 30 1 3 1 24 1 4 1 2 2 0 4 0 0 0 1 0 0 3 3,349
2,009
-615
696 49 3 0 2 30 4 4 4 1 1 0 4 0 1 1 0 0 0 4
3,656
3,290
697 23 2 3 2 27 4 2 2 1 1 0 4 0 0 1 0 0 0 4
2,520
2,016
-647
698 64 2 1 1 6 2 3 2 2 1 0 2 1 0 1 0 0 1 4 753 376 69 t
699 33 3 1 2 42 0 1 1 2 1 0 2 0 0 1 0 0 0 6
6,289
3,144
700 40 1 1 1 30 2 4 2 3 1 0 4 0 0 1 1 0 0 2
3,857
3,471
1,057
701 35 2 1 1 36 2 2 2 3 1 1 2 0 0 0 1 0 0 2
6,948
4,863
702
8,072
5,650
703 42 3 4 2 12 1 3 2 2 1 1 3 0 0 0 0 0 1 4 409 327 60 t
704 37 3 1 1 18 2 2 2 2 1 0 4 0 1 1 0 0 1 4
2,100
–
832
705
1,352
706
9,566
7,652
707 22 2 4 1 12 2 1 2 2 1 0 4 0 0 1 0 0 1 1
1,007
708 51 2 1 1 11 3 4 3 2 1 0 2 0 0 1 0 0 0 4 4,771
3,816
709 47 2 2 1 36 2 4 2 2 2 0 1 0 0 0 1 0 0 5
12,612
6,306
-4,459
710 34 2 2 1 18 2 4 2 2 1 0 4 0 0 1 0 0 0 6
2,622
2,359
711
6,078
5,470
1,702
712 27 1 0 2 10 4 3 1 2 1 1 2 0 0 0 0 1 1 3
2,132
1,492
713 30 2 1 1 12 2 2 2 2 1 0 4 0 0 1 0 0 0 0 639 639
-330
714
-368
715 51 0 2 2 12 4 3 3 2 1 0 4 0 0 1 1 0 0 1 682 682 172 t
716 45 1 1 1 12 1 1 4 1 1 0 4 0 1 1 0 0 0 0 339 271 59 v
717 20 2 4 1 11 2 1 1 2 1 0 4 0 0 1 0 0 1 3
1,577
718 52 1 3 2 6 4 4 4 2 1 0 4 0 0 1 0 0 0 4 338 202 22 v
719 68 2 1 3 16 4 3 0 0 1 0 2 0 0 0 1 0 0 1
1,175
720 27 2 2 4 12 2 4 1 2 1 1 4 0 1 0 0 0 0 3 951 570 -263 t
721 26 2 1 1 12 4 3 3 2 1 0 4 0 0 1 0 0 0 0
1,424
722 23 3 1 1 36 2 2 2 2 1 0 2 0 0 1 1 0 1 4
3,
913
3,130
723 53 1 1 1 12 2 4 4 3 1 0 4 0 0 0 1 0 0 3
7,
865
5,505
-2,364
724 61 2 2 2 21 2 2 4 1 1 1 4 0 1 0 0 0 0 6
2,767
2,490
–
2,105
725 35 0 2 1 6 0 1 2 2 1 1 4 0 1 0 0 1 0 1
1,204
726
2,149
-1,220
727 38 0 1 1 24 2 3 1 2 1 0 4 0 1 1 1 0 0 4
1,533
1,379
728
729 31 2 2 1 48 3 4 0 3 1 0 2 0 0 0 1 0 0 0
7,582
6,065
730 45 0 0 1 10 2 2 4 1 1 0 4 0 0 1 0 1 0 1 1,287
1,158
731 33 1 2 1 12 2 3 1 1 1 0 4 0 0 1 1 0 0 4 727 654
-340
732
4,351
3,045
733 34 0 4 1 24 2 3 3 2 2 0 4 0 0 1 1 0 0 1
1,525
734 24 1 0 1 15 2 2 2 2 1 1 4 0 0 0 0 0 0 0 1,275 637
-222
735 23 2 3 1 24 2 4 0 0 1 1 1 0 0 0 0 0 0 4
3,758
2,254
736 26 0 1 2 36 3 2 2 3 1 0 4 0 0 1 1 0 0 4
4,463
-1,012
737 22 1 1 1 18 2 4 1 2 1 1 1 0 0 0 0 0 0 3
3,650
2,920
738 36 0 0 1 7 3 4 4 2 1 0 3 0 0 0 0 0 0 4 846 423 77 v
739 40 2 1 2 18 4 4 0 3 1 0 4 0 1 1 1 0 0 3
7,374
6,636
740 46 1 1 2 36 4 2 2 2 1 0 3 0 0 1 1 0 0 3 2,348
1,408
741 27 1 1 1 15 2 2 1 2 1 0 4 0 0 1 0 1 1 4 1,053 631 119 v
742 23 1 0 2 18 3 2 2 2 1 1 1 0 0 0 1 0 0 5
8,471
4,235
743 46 0 4 2 18 4 3 2 2 1 0 4 0 0 1 0 0 1 4
1,149
744 37 0 4 2 24 4 4 4 2 1 0 4 0 0 1 1 0 1 1 1,287 1,158 280 t
745 35 2 1 1 7 2 2 2 2 1 0 2 1 0 1 0 0 1 4
2,576
2,318
746 35 1 1 1 12 2 4 4 2 1 0 3 0 0 0 1 0 0 2
3,386
3,047
-1,723
747 32 0 0 2 48 3 3 4 2 2 0 3 0 1 1 0 0 0 4
7,238
5,790
748 25 3 1 1 24 2 2 3 2 1 0 4 0 1 1 0 0 0 4
5,152
749 62 0 1 1 24 2 4 4 2 1 0 4 0 0 0 1 0 0 1
3,757
750 40 0 1 2 24 4 3 3 2 1 0 4 0 0 1 0 0 0 3
1,585
1,268
751 34 2 2 1 15 1 2 0 3 2 0 1 0 0 1 1 0 0 1
6,850
3,425
-1,718
752
7,127
4,988
-1,596
753 42 0 1 2 4 4 1 3 1 2 0 2 0 0 1 0 0 1 4 1,503
1,202
754 37 2 1 1 18 4 4 4 2 1 0 3 0 0 1 1 0 0 3
3,612
3,250
1,045
755 32 0 1 1 24 2 1 3 2 2 0 3 0 1 1 0 0 0 4
1,552
756 29 0 0 2 21 0 4 2 2 1 0 1 0 1 1 1 0 0 1
5,003
3,502
-1,636
757 34 0 4 1 24 4 2 4 2 1 0 2 0 0 1 0 0 0 4 2,578 1,289 196 t
758 33 0 0 2 24 4 2 2 2 1 0 3 0 0 1 1 0 0 5 1,927 1,156 193 t
759 21 1 1 1 12 2 1 2 1 1 0 4 1 0 1 0 0 0 3 1,289 773 133 t
760 36 2 1 3 24 0 4 2 1 1 0 1 0 0 1 1 0 1 6
4,241
–
2,676
761 50 2 2 1 36 2 4 2 2 1 0 4 0 0 0 0 0 0 4
2,671
-927
762 37 1 1 3 6 4 3 2 2 2 1 1 0 0 0 0 0 1 1
3,676
2,940
763 29 2 2 1 9 1 3 3 2 1 0 2 0 0 1 0 0 0 1
1,437
1,005
-356
764 21 0 1 2 60 3 4 3 2 1 0 2 0 0 1 1 0 0 4
15,653
7,826
937
765 26 0 3 1 12 2 2 2 2 1 0 2 0 0 1 0 0 0 1 1,386
1,247
-605
766 37 0 0 1 48 2 3 3 2 1 0 4 0 1 1 1 0 0 4
10,222
9,199
2,951
767 27 0 1 1 48 1 1 2 2 1 0 1 0 1 1 0 0 1 6
3,609
2,165
768 24 2 2 1 72 2 2 2 2 1 0 2 0 0 1 0 0 0 4
5,595
3,916
-2,321
769 30 2 2 1 36 3 3 4 2 1 0 4 0 0 0 0 0 0 1 2,862 2,862 782 t
770 38 0 1 1 12 4 2 0 0 1 0 1 0 0 1 0 0 0 1 926 740 163 v
771 25 2 1 2 12 0 3 1 2 1 1 4 0 0 0 0 0 0 3
2,
969
772 32 0 1 1 18 2 2 2 3 1 0 4 0 0 0 1 0 0 4
1,505
1,354
773 25 1 1 2 18 2 4 2 2 1 1 4 0 1 0 0 0 0 4
1,882
1,317
-576
774 35 1 2 1 18 2 4 2 1 2 0 3 0 0 1 1 0 0 1
4,380
3,504
775 37 1 1 1 12 2 1 1 1 1 0 3 0 0 1 0 0 1 1
1,274
-268
776
1,271
777 31 0 0 1 10 2 4 1 2 1 1 1 0 0 0 0 0 1 2
2,
901
1,740
778
3,509
779 38 0 0 2 48 4 3 4 2 2 0 4 0 0 1 1 0 0 2
2,751
1,925
780 22 0 1 2 12 4 4 1 1 1 1 2 0 0 0 0 0 0 3 1,258 1,006 204 t
781 65 0 0 4 12 4 4 4 2 1 0 4 0 0 1 0 0 1 4 930 837 49 v
782 24 0 1 2 6 4 2 3 2 1 1 1 0 0 0 1 0 0 4 1,554 1,554 346 v
783 36 0 1 2 18 0 2 2 2 2 0 2 0 1 1 0 0 0 6
4,165
3,748
-3,135
784 23 0 1 1 4 2 3 1 1 2 1 1 0 0 0 0 0 1 3 601 601 191 t
785 28 0 1 1 24 2 2 1 2 1 0 4 0 0 1 0 0 1 1 1,249 749 176 v
786
3,343
1,671
787
3,331
788 28 0 1 1 36 2 2 4 2 1 0 4 0 0 1 0 0 0 4
3,595
2,876
789
15,672
14,104
-12,029
790 35 0 4 1 12 4 2 3 2 1 0 3 0 0 1 0 1 0 3
1,592
791 27 2 0 1 36 2 2 2 2 1 0 2 0 0 1 0 0 0 5
3,711
2,597
792 68 1 1 1 6 2 4 4 3 1 0 1 0 1 1 1 0 0 1
14,896
13,406
-7,231
793
10,297
7,207
-4,283
794
2,063
795 38 0 0 1 12 2 4 0 3 1 0 4 0 0 1 1 0 0 1
2,859
2,287
796 37 2 1 3 9 4 4 4 1 1 0 2 0 0 1 0 0 1 4
1,154
797 54 0 1 1 15 2 2 4 3 1 1 4 0 1 0 1 0 0 4
3,568
798 42 2 0 2 18 3 2 4 2 1 0 4 0 0 1 0 0 0 6
2,427
2,184
799 64 0 2 1 13 2 4 0 2 1 0 2 0 0 1 0 0 1 4
1,409
800 38 0 1 1 12 2 4 4 2 1 0 4 0 0 1 0 0 0 4 804 402 61 t
801 61 0 4 1 12 2 4 3 1 1 0 2 0 0 1 0 0 1 4
3,059
2,447
802 44 2 1 1 24 2 2 4 3 1 0 4 0 0 0 1 0 0 2
12,579
10,063
-3,320
803
804 37 3 1 1 10 2 2 2 2 1 0 2 0 0 1 1 0 0 0
1,225
805 39 0 1 2 11 4 4 2 1 1 0 1 0 0 1 0 0 0 1
7,228
6,505
806 23 3 1 1 18 2 2 4 3 1 0 3 0 0 1 0 0 0 1
1,961
807 37 0 1 1 36 2 4 2 2 1 0 4 0 1 0 1 0 0 5
1,819
-637
808 39 0 0 1 54 0 2 2 1 2 0 2 0 0 1 0 0 0 2
9,436
7,548
1,677
809
2,249
1,574
810 36 2 1 1 36 4 4 4 2 1 0 4 0 0 1 0 0 1 4
2,337
811 30 1 0 1 24 2 2 1 2 1 0 1 0 0 1 1 1 0 3
7,721
4,632
812 23 1 3 2 33 4 4 2 2 1 0 1 0 0 1 0 0 0 3
4,281
-1,312
813 34 2 1 2 12 4 2 0 3 1 0 4 0 0 1 1 0 0 2
1,860
1,302
814 35 2 0 3 15 4 2 3 2 1 0 4 1 1 1 1 0 1 4
2,728
815
5,371
4,
833
816 38 2 2 2 24 2 3 3 2 1 0 2 0 1 1 1 0 0 1
3,512
817 25 0 1 1 24 2 4 3 2 1 1 2 0 0 0 1 0 0 3
3,972
2,383
818 31 0 1 2 12 2 2 3 3 2 1 4 0 0 0 1 0 0 4
1,963
1,177
819 20 1 2 1 12 2 1 3 2 1 0 4 0 0 1 0 0 0 4 674 606
-211
820 36 2 0 1 24 2 4 4 2 1 0 4 0 1 0 1 0 0 2
2,760
1,656
821
6,568
5,
911
822 24 1 1 1 24 2 2 2 1 1 1 2 0 0 0 0 0 1 3
3,021
2,114
823 22 0 1 1 9 2 2 3 2 1 0 4 0 0 1 0 0 0 4
1,478
1,034
-372
824 35 0 1 2 12 4 2 2 2 1 0 4 0 0 1 0 0 0 4 1,291
903
825 26 3 1 1 24 2 2 2 2 1 0 2 0 0 1 0 0 1 3 1,925
1,732
826 23 0 2 1 15 2 4 1 2 1 0 1 0 0 1 1 0 0 2
3,812
1,205
827 45 1 1 1 14 2 4 4 3 1 0 1 0 0 1 1 1 0 1
8,978
7,182
-3,830
828 32 0 1 1 6 2 4 1 2 1 0 1 0 0 1 0 0 0 3 4,611
2,766
-1,336
829 49 2 1 2 12 2 4 2 2 1 0 4 1 0 1 1 0 1 4 1,092 764 94 v
830 43 0 1 1 18 2 4 2 2 1 0 3 0 0 1 1 0 1 3
2,515
1,257
831 24 2 1 1 8 2 4 2 2 1 0 3 0 0 1 0 0 1 3 1,237 989
-430
832 32 0 1 2 12 4 2 2 2 1 0 4 0 0 1 0 0 0 5 701 350 49 v
833 31 3 1 1 36 2 2 4 2 1 0 4 0 0 1 0 0 0 4
4,473
834
4,169
2,501
835 34 0 2 2 6 3 2 2 1 1 0 1 0 0 1 0 0 1 6
1,743
836 28 0 1 1 12 2 2 2 2 1 0 4 0 0 1 0 0 1 4 776 543 104 v
837 42 1 1 1 36 2 2 4 2 2 0 4 0 0 1 0 0 0 3
3,446
3,101
-1,708
838 57 2 1 1 36 2 2 4 3 1 0 4 0 0 0 1 0 0 1
14,318
11,454
-5,352
839 27 2 3 1 15 4 4 2 2 1 0 2 0 1 1 0 0 0 6 2,326 1,860 519 t
840
856
-335
841 26 0 3 1 24 2 2 4 3 1 0 3 0 0 1 1 0 0 4
3,235
842 31 0 3 1 21 2 2 3 3 1 0 1 0 1 1 0 0 0 1
2,782
1,669
843 20 0 1 1 9 2 4 4 2 1 0 1 0 0 1 0 0 0 3
1,313
844 65 1 1 2 42 4 4 0 0 1 0 4 0 0 1 0 0 0 0
3,394
2,036
845 55 3 0 1 12 2 4 4 3 1 0 3 0 0 1 1 0 1 3 1,424 854 199 t
846 27 1 1 1 6 2 1 1 2 1 0 4 0 0 1 0 0 1 0 343 308 98 t
847
2,764
1,658
848 39 2 2 1 12 2 4 3 1 1 0 3 0 0 1 0 0 1 6
1,037
849
1,418
850 32 2 1 1 18 2 2 4 1 1 0 4 1 0 1 0 0 1 4
1,301
851 28 0 1 1 24 2 2 2 2 1 0 4 0 0 1 0 0 0 4
1,413
852 43 1 2 1 6 2 2 4 2 1 0 3 0 0 1 1 0 0 1 1,203 842 162 t
853 31 1 1 1 36 2 4 2 2 1 1 4 0 0 0 0 0 0 4
2,302
-888
854 42 1 1 1 48 2 4 4 3 1 0 4 0 1 0 0 0 0 1
7,763
5,434
-2,226
855 24 1 1 1 12 1 4 2 1 1 0 4 0 1 1 0 0 1 4 626 563
-231
856 27 1 1 1 24 1 4 3 2 1 0 3 0 1 1 0 0 0 3
3,552
1,776
-894
857 41 2 0 2 48 2 1 3 2 2 0 4 0 0 1 1 0 0 4
3,979
2,785
858 27 2 1 2 36 4 4 1 2 1 0 4 0 0 1 0 0 0 1
2,820
2,256
-1,037
859 47 1 1 1 18 2 3 2 1 1 0 4 0 0 1 1 0 1 0
1,217
-395
860 31 0 1 2 18 4 2 3 2 1 0 2 0 1 1 0 0 0 1
2,775
2,220
-689
861
1,435
862 21 2 2 1 30 2 4 2 2 1 1 2 0 0 0 0 0 0 3
3,441
2,752
-1,151
863 36 0 3 2 42 4 4 2 2 1 0 4 0 0 1 1 0 1 3 4,042
3,233
864 34 0 1 1 12 2 3 1 2 2 0 4 0 0 1 0 0 0 4 1,493 1,045 266 t
865 38 3 1 1 24 2 3 3 2 2 0 4 0 1 0 0 0 0 1 947 947
-411
866 28 2 1 2 30 0 1 2 2 1 0 2 0 0 1 0 0 0 6
4,221
2,954
867 43 1 1 2 12 4 4 4 2 1 1 3 0 0 0 1 0 0 1
4,843
4,358
-1,482
868 64 1 1 1 24 2 4 4 1 1 1 4 0 1 0 0 0 1 4
2,384
1,430
869 35 0 2 1 9 2 4 4 2 1 0 3 0 0 1 1 0 0 4
2,753
2,202
870 24 0 1 2 18 4 2 2 2 1 0 4 0 0 1 0 0 0 4
1,800
871
1,206
1,085
872 31 3 0 2 24 4 2 2 2 1 0 3 0 0 1 1 0 0 4
3,148
873
6,416
-3,914
874 45 0 1 2 6 4 3 3 3 2 0 1 0 0 1 1 0 0 1
6,761
6,084
875 26 0 0 1 21 2 3 2 2 1 0 1 0 0 1 0 0 0 2
5,248
876 31 0 1 1 24 2 2 2 2 1 0 2 1 0 1 1 0 1 1 1,393 835 178 v
877
3,617
3,255
878 38 0 4 2 36 4 2 4 3 1 0 4 0 0 1 1 0 0 2
5,711
4,568
879 50 2 1 1 48 3 4 4 2 1 0 4 0 0 0 0 0 0 5
6,224
4,979
-4,477
880 54 0 0 2 24 3 4 4 2 1 0 4 0 0 1 1 0 0 1 717 501 83 t
881 55 2 1 1 42 1 2 0 3 1 0 1 0 1 0 1 0 0 2
9,283
8,354
2,423
882 43 1 1 1 36 2 3 0 3 1 0 2 0 0 1 0 0 0 0
15,857
4,387
883
8,335
5,001
-2,571
884 63 1 1 2 24 4 4 4 2 1 0 4 0 0 1 1 0 0 2
2,957
1,774
885 59 1 1 1 9 2 4 3 2 1 0 3 0 0 1 0 0 1 4
1,364
886 29 1 1 1 15 2 2 2 2 1 0 3 0 0 1 1 0 0 1 3,959
2,771
–
1,073
887 37 0 0 2 36 2 2 4 2 1 0 3 0 0 1 0 0 0 6
7,409
4,445
888 27 1 1 1 9 2 2 1 3 1 0 3 0 0 0 1 0 0 1
1,422
-316
889 34 0 1 2 36 4 4 4 3 1 0 4 0 0 1 1 0 0 1
6,614
3,307
890 33 0 0 1 15 2 4 3 1 1 1 1 0 1 0 0 0 1 3
2,186
1,530
891
3,594
892 33 1 2 1 24 2 1 0 2 1 0 1 0 0 1 0 0 0 3 2,359
2,123
-1,023
893 58 0 0 1 30 2 4 4 2 1 0 4 0 0 1 1 0 0 4
1,867
1,120
894 42 2 1 1 60 2 4 2 2 1 0 4 0 0 0 0 0 0 5
6,288
5,659
-3,
994
895
-566
896 45 1 1 1 28 2 2 2 1 1 0 3 0 0 1 0 0 0 1
4,006
-1,282
897 29 0 0 1 42 2 4 3 2 1 1 2 0 0 0 1 0 0 4
7,166
5,016
1,013
898 47 0 1 2 24 3 4 4 1 2 0 4 0 0 1 0 0 0 1
2,538
-904
899 29 1 1 1 24 2 2 0 3 1 0 4 0 0 0 1 0 0 2
6,579
3,947
900 23 1 1 1 45 2 4 2 2 1 0 4 0 0 0 1 0 0 4
1,845
1,476
-884
901 28 2 1 2 30 4 2 0 3 1 0 4 0 0 1 0 0 0 1
5,234
4,187
-1,605
902 31 0 3 1 24 2 2 4 2 2 0 3 0 0 1 1 0 0 4
3,430
2,401
903 63 1 1 2 60 3 4 4 2 1 0 3 0 0 1 1 0 0 6
6,836
3,418
-2,339
904 24 2 1 1 9 2 3 2 2 1 0 4 0 0 1 0 0 1 4 458 412 127 t
905 28 0 2 1 12 2 2 2 2 1 0 4 0 0 1 0 0 1 4
2,073
906
6,229
3,737
-1,801
907 25 0 0 1 36 2 4 2 2 1 0 4 0 0 1 0 0 0 4 2,394
1,436
908 22 2 1 1 30 2 1 1 2 1 0 2 0 0 1 0 0 0 3
3,832
3,448
909 28 1 1 2 12 0 3 3 2 1 0 4 0 0 1 0 0 1 0
1,108
910 36 2 0 2 20 3 4 3 3 2 1 3 0 1 0 1 0 0 2
7,057
5,645
911 35 2 3 1 14 2 2 4 2 1 0 1 0 0 1 1 0 1 6
1,410
912 36 2 3 1 12 4 3 3 3 1 0 3 0 0 1 1 0 0 1
2,366
913 29 1 1 2 12 4 2 2 2 1 0 3 0 0 1 0 0 1 1
3,499
-1,351
914 44 3 1 1 12 2 2 2 1 1 1 2 0 0 0 1 0 0 4
1,881
1,128
915 46 0 4 2 18 4 4 4 2 1 0 4 0 0 1 0 0 0 4
1,582
916 34 0 0 2 6 4 2 2 1 2 0 1 0 0 1 0 0 1 4
1,898
917
-865
918 65 1 1 2 21 4 4 4 2 1 0 4 0 0 1 0 0 1 1 571 456 87 t
919 33 2 1 2 18 0 4 2 2 1 0 1 0 1 1 1 0 0 3
3,244
2,919
920 40 2 1 1 18 3 3 4 3 1 0 4 0 0 1 1 0 0 3
4,297
3,437
-1,255
921 55 0 4 1 12 2 2 3 2 1 0 3 0 0 1 0 1 0 2 1,413 1,271 384 t
922 64 0 1 1 10 2 4 2 2 1 0 2 0 0 1 1 0 0 1 1,364 1,364 373 t
923 22 1 1 1 24 2 1 1 2 1 0 4 0 1 0 0 0 0 3 3,149
1,889
924 39 1 1 1 30 2 3 4 2 2 0 1 1 0 1 0 0 0 4
2,522
1,765
925 22 0 1 1 18 2 4 0 2 1 1 3 0 0 0 0 0 1 4 433 346
-116
926 57 0 2 3 11 4 4 0 1 1 0 4 0 0 1 0 0 1 4 1,154 1,154 219 t
927 25 0 0 2 24 2 2 4 2 1 0 4 0 0 1 0 0 0 4 999 999 197 t
928 29 0 2 1 24 2 4 2 3 1 1 4 0 0 0 1 0 0 4
1,901
929 48 1 1 1 24 3 4 1 2 1 0 4 0 1 1 0 0 1 4
1,024
930 32 2 4 2 21 4 2 3 2 1 0 3 0 0 1 1 0 0 3
2,745
931 22 2 1 1 9 2 4 2 1 1 1 4 0 0 0 0 0 1 1 276 220 50 t
932 27 1 1 2 15 3 4 4 1 1 0 1 0 0 1 0 0 0 3
3,643
933 28 2 1 1 6 2 4 4 2 2 0 4 0 0 1 0 0 0 4
1,068
934 31 2 1 1 10 2 2 2 1 1 0 4 0 0 1 0 0 0 3
1,521
935 32 2 4 2 9 4 3 4 2 2 0 4 0 0 0 0 0 0 5
1,136
936 23 1 1 1 30 2 4 3 2 1 1 4 0 0 0 0 0 1 3 2,406 1,924
-1,024
937 40 2 1 1 18 2 4 3 2 1 1 2 0 0 0 0 0 1 3
3,001
2,700
938 52 0 2 2 6 4 4 2 1 1 0 4 0 0 1 0 0 0 1 362 253 41 t
939
1,449
940 43 0 4 2 24 4 1 2 1 1 0 4 0 0 1 0 0 1 4
1,516
941 28 3 3 3 12 4 2 3 2 1 0 4 0 0 1 1 0 1 1 939 751
-250
942 33 2 0 1 18 2 2 2 2 1 0 4 0 0 1 0 0 0 1
1,042
-364
943 55 1 1 3 18 4 4 0 0 2 0 2 0 0 0 0 0 0 0
1,190
-394
944 26 3 1 1 12 1 1 1 0 1 0 4 0 0 1 0 0 1 6 609 548
-349
945 61 2 4 2 15 3 3 2 2 1 0 3 0 1 1 0 0 0 0
1,512
-338
946 32 0 1 1 18 2 2 1 2 1 0 3 0 0 1 1 0 0 4
4,594
2,756
947 35 0 1 2 24 3 3 3 1 1 0 3 0 0 1 1 0 0 2
4,679
948 44 1 1 2 15 4 4 4 2 2 0 4 0 0 1 1 0 0 3 1,478 886 137 v
949 26 0 1 1 6 2 3 2 2 1 1 2 1 0 0 0 0 0 1
3,518
1,046
950 28 3 2 2 6 4 4 4 2 2 0 2 0 0 1 1 0 0 1
1,323
1,058
951 45 0 2 1 39 2 2 4 3 1 0 4 0 0 1 1 0 0 2
8,588
952 36 0 0 2 6 4 4 4 2 1 0 4 0 0 0 0 0 0 4 700 350 29 t
953 41 1 1 1 6 2 4 1 1 2 0 3 0 0 1 1 0 1 1 662 595 182 v
954 45 3 1 1 18 2 1 1 1 1 0 1 0 1 1 0 0 0 3
3,049
955 35 0 0 2 48 4 1 3 2 1 0 2 0 0 0 1 0 0 2
8,858
7,086
956 31 2 1 2 18 4 2 1 1 1 0 2 0 0 1 0 0 1 3
1,928
1,735
-849
957 31 1 1 1 48 2 2 2 2 1 0 3 0 0 1 1 0 0 4
6,758
4,054
-1,503
958 27 0 1 2 24 2 3 1 1 1 0 4 0 0 1 0 0 0 0 937 655 103 t
959 60 1 1 2 12 4 3 4 2 1 0 3 0 0 1 0 0 0 3
2,246
-654
960 32 0 1 1 24 3 2 2 2 1 0 1 0 0 0 0 0 0 6
3,863
3,476
961 45 0 0 1 15 2 4 4 2 2 0 4 0 1 0 0 0 0 2
1,300
962 49 0 1 1 12 2 2 2 1 1 0 4 0 0 1 0 0 1 1 640 320 44 t
963 64 0 0 1 9 2 4 4 1 1 0 1 0 0 1 0 0 1 5 3,832
1,916
964 26 1 1 2 42 3 2 3 2 2 0 3 0 1 1 1 0 0 4
4,370
3,933
-1,461
965 40 1 1 1 12 2 4 2 1 2 1 4 0 0 0 0 0 0 5 684 615
-487
966 41 2 1 1 18 4 1 4 2 1 0 2 0 0 1 1 0 0 3
6,361
5,088
967 47 3 1 1 30 4 4 4 2 1 0 4 0 0 1 0 0 0 4 3,017
1,810
968 26 0 1 1 18 2 1 1 2 1 0 3 0 0 1 0 0 1 4
1,453
1,162
969 31 1 4 1 12 2 3 2 2 2 0 1 0 0 1 0 0 0 1
3,651
3,285
970 40 3 1 1 15 2 4 4 3 1 1 4 0 0 0 1 0 0 5
1,905
1,143
971
2,118
972 31 2 2 2 20 0 4 4 2 1 0 3 0 1 1 1 0 0 2
6,148
4,918
973 36 3 4 2 24 4 4 2 2 1 0 2 0 0 1 1 0 1 6 1,275 892 116 t
974 26 2 2 2 30 0 4 2 1 1 1 4 0 0 0 0 0 0 6
4,280
2,568
-1,974
975 33 0 1 1 15 2 2 3 2 1 0 2 0 0 1 0 0 0 2
3,029
1,817
976 35 1 1 2 12 4 3 4 2 1 0 4 0 0 1 0 0 0 1 691 414
-225
977 63 0 1 2 12 4 4 4 1 1 0 2 0 0 1 1 0 1 4
1,655
1,489
978 67 2 1 1 18 2 4 0 2 1 0 2 0 0 1 1 0 0 0
3,872
979 27 1 1 1 40 4 3 2 2 1 0 4 0 1 1 1 0 0 5
5,998
4,198
-3,572
980 35 2 0 1 9 2 2 1 0 1 0 4 0 0 1 0 0 1 1
1,549
981 26 2 1 2 15 0 1 1 0 1 1 2 0 0 0 0 0 1 1
1,778
1,066
982
1,345
983 38 2 0 1 48 3 4 2 2 2 0 4 0 0 0 1 0 0 6
6,681
6,012
1,714
984 46 0 1 2 24 4 3 4 2 1 0 4 0 0 1 0 0 1 4
2,611
2,349
985 57 1 1 1 12 2 4 4 1 1 0 4 0 1 1 0 0 1 4 709 425
-142
986
3,577
987 24 1 1 1 12 2 4 4 2 1 1 4 0 0 0 0 0 0 3 652 456 112 v
988 36 0 0 2 30 4 3 3 2 1 0 2 0 0 1 0 0 0 4
6,742
4,045
989 40 0 0 2 28 1 4 1 2 2 1 3 1 1 0 1 0 1 2
7,824
7,041
1,536
990 42 1 1 1 18 2 3 2 2 1 0 2 0 0 1 0 0 0 3
4,153
-1,278
991 33 2 0 1 9 2 2 2 1 1 0 1 0 0 1 0 0 1 1
3,195
2,556
992 39 1 1 1 24 2 2 4 3 1 1 4 0 0 0 1 0 0 3
3,345
-971
993 43 1 1 2 12 3 2 2 1 2 0 4 0 0 1 0 0 1 1 1,344 940 158 v
994 46 0 0 2 24 4 4 2 3 2 0 2 0 0 1 1 0 0 2
6,842
5,473
995 31 0 2 2 24 2 4 4 2 1 0 2 0 0 1 0 0 0 4
3,621
3,258
-1,327
996 30 2 2 1 24 2 4 4 2 1 0 4 0 0 0 0 0 0 3
3,069
997 40 1 1 2 11 4 2 2 1 2 0 1 0 0 1 0 0 1 1
3,939
2,363
998 25 2 2 1 15 1 2 2 2 1 1 2 0 0 0 0 0 0 1 1,264 884
-286
999 48 2 1 2 24 4 2 4 1 1 0 4 0 0 1 0 0 0 4 1,743
1,394
1000
4,576
4,118
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_ Data Dictionary
Var. #
Variable Name
Description
Variable Type
Code Description
1 OBS#
Observation No.
Numerical
Sequence number in dataset
2 AGE
Age in years
3 CHK_ACCT
Checking account status
Categorical
0 : < 0
1: 0 < ...< 200
2 : => 200
3: no checking account
4 SAV_ACCT
Average balance in savings account
0 : < 100
1 : 100<= ... < 500
2 : 500<= ... < 1000
3 : =>1000
4 : unknown/ no savings account
5 NUM_CREDITS
Number of existing credits
6 DURATION
Duration of credit in months
7 HISTORY
Credit history
0: no credits taken
1: all credits at this bank paid back duly
2: existing credits paid back duly till now
3: delay in paying off in the past
4: critical account
8 PRESENT_RESIDENT
Present resident since – years
0: <= 1 year
1<…<=2 years
2<…<=3 years
3:>4years
9 EMPLOYMENT
Present employment since
0 : unemployed
1: < 1 year
2 : 1 <= ... < 4 years
3 : 4 <=... < 7 years
4 : >= 7 years
10 JOB
Nature of job
0 : unemployed/ unskilled – non-resident
1 : unskilled – resident
2 : skilled employee / official
3 : management/ self-employed/highly qualified employee/ officer
11 NUM_DEPENDENTS
Number of people for whom liable to provide maintenance
12 RENT
Applicant rents
Binary
0: No, 1: Yes
13 INSTALL_RATE
Installment rate as % of disposable income
14 GUARANTOR
Applicant has a guarantor
15 OTHER_INSTALL
Applicant has other installment plan credit
16 OWN_RES
Applicant owns residence
17 TELEPHONE
Applicant has phone in his or her name
18 FOREIGN
Foreign worker
19 REAL_ESTATE
Applicant owns real estate
20 TYPE
Purpose of Credit
0: Other
1: New Car
2: Used Car
3: Furniture
4: Durable
5: Education
6: Retraining
21 AMOUNT_REQUESTED
Credit Amount Applied for
22 CREDIT_EXTENDED
Credit Made
23 NPV
Net Profit from the Loan (Net Loss if Negative)
24 Splitting Variable
A variable added to ensure a balanced partition
t: training record, v: validation record
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_ Data Preparation
Note The Assignment
1. Applying Logistic Regression
2. ROC Curves
clean
figure as an Exhibit.3. Finding the “best” cut-off
cut-off
0
0.1
0.3
0.4
0.5
0.6
0.7
0.8
1
4. Comparison with linear regression
Predictor
Intercept
INSTALL_RATE
AMOUNT_REQUESTED
CHK_ACCT_1
CHK_ACCT_2
CHK_ACCT_3
SAV_ACCT_4
0.001
TYPE_2
total
training
NPV
validation
–
-50
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
5. Model comparison
We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.
Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.
Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.
Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.
Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.
Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.
We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.
Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.
You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.
Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.
Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.
You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.
You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.
Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.
We create perfect papers according to the guidelines.
We seamlessly edit out errors from your papers.
We thoroughly read your final draft to identify errors.
Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!
Dedication. Quality. Commitment. Punctuality
Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.
We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.
We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.
We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.
We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.