I have this Assignment using Jupyter by Anaconda and Python
it’s due this Friday 13 please read the pdf file carefully Thanks
Assignment 5: Multi-Classification
Due date: Mar 13th, 2020 (Friday)
Total Points: 100
Please put your name, student ID, date and time here
Name:
Student ID:
Date:
Time:
In this assignment, you will investigate the handwritten digits dataset.
Sample images:
Please apply the folowing eight methods to classify the handwritten digits dataset.
Split the dataset into training sets and test sets
Fit the training data sets to the following eight algorithms
Print the classification report on the test data sets
Method 1: KNN
Method 2: Linear SVM
Method 3: Gaussian Kernel SVM
Method 4: Naive Bayes
Method 5: Decision Tree
Method 6: Random Forest
Method 7: Voting Classifier
Method 8: Bagging
Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html
1 of 5 3/11/2020, 6:57 PM
In [4]: # Importing the dataset
from sklearn.datasets import load_digits
digits = load_digits()
print(digits)
Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html
2 of 5 3/11/2020, 6:57 PM
{‘data’: array([[ 0., 0., 5., …, 0., 0., 0.],
[ 0., 0., 0., …, 10., 0., 0.],
[ 0., 0., 0., …, 16., 9., 0.],
…,
[ 0., 0., 1., …, 6., 0., 0.],
[ 0., 0., 2., …, 12., 0., 0.],
[ 0., 0., 10., …, 12., 1., 0.]]), ‘target’: array([0, 1, 2, …, 8,
9, 8]), ‘target_names’: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), ‘images’: array
([[[ 0., 0., 5., …, 1., 0., 0.],
[ 0., 0., 13., …, 15., 5., 0.],
[ 0., 3., 15., …, 11., 8., 0.],
…,
[ 0., 4., 11., …, 12., 7., 0.],
[ 0., 2., 14., …, 12., 0., 0.],
[ 0., 0., 6., …, 0., 0., 0.]],
[[ 0., 0., 0., …, 5., 0., 0.],
[ 0., 0., 0., …, 9., 0., 0.],
[ 0., 0., 3., …, 6., 0., 0.],
…,
[ 0., 0., 1., …, 6., 0., 0.],
[ 0., 0., 1., …, 6., 0., 0.],
[ 0., 0., 0., …, 10., 0., 0.]],
[[ 0., 0., 0., …, 12., 0., 0.],
[ 0., 0., 3., …, 14., 0., 0.],
[ 0., 0., 8., …, 16., 0., 0.],
…,
[ 0., 9., 16., …, 0., 0., 0.],
[ 0., 3., 13., …, 11., 5., 0.],
[ 0., 0., 0., …, 16., 9., 0.]],
…,
[[ 0., 0., 1., …, 1., 0., 0.],
[ 0., 0., 13., …, 2., 1., 0.],
[ 0., 0., 16., …, 16., 5., 0.],
…,
[ 0., 0., 16., …, 15., 0., 0.],
[ 0., 0., 15., …, 16., 0., 0.],
[ 0., 0., 2., …, 6., 0., 0.]],
[[ 0., 0., 2., …, 0., 0., 0.],
[ 0., 0., 14., …, 15., 1., 0.],
[ 0., 4., 16., …, 16., 7., 0.],
…,
[ 0., 0., 0., …, 16., 2., 0.],
[ 0., 0., 4., …, 16., 2., 0.],
[ 0., 0., 5., …, 12., 0., 0.]],
[[ 0., 0., 10., …, 1., 0., 0.],
[ 0., 2., 16., …, 1., 0., 0.],
[ 0., 0., 15., …, 15., 0., 0.],
…,
[ 0., 4., 16., …, 16., 6., 0.],
[ 0., 8., 16., …, 16., 8., 0.],
[ 0., 1., 8., …, 12., 1., 0.]]]), ‘DESCR’: “.. _digits_dataset:\n\
nOptical recognition of handwritten digits dataset\n
————————————————–\n\n**Data Set Characteristic
s:**\n\n :Number of Instances: 5620\n :Number of Attributes: 64\n :Attr
ibute Information: 8×8 image of integer pixels in the range 0..16.\n :Missing
Attribute Values: None\n :Creator: E. Alpaydin (alpaydin ‘@’ boun.edu.tr)\n
:Date: July; 1998\n\nThis is a copy of the test set of the UCI ML hand-written d
igits datasets\nhttp://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Ha
Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html
3 of 5 3/11/2020, 6:57 PM
In [27]: import matplotlib.pyplot as plt
digits.images[0].shape
list = [10,100,100,45]
fig = plt.figure()
for i,j in enumerate(list):
plt.subplot(2,2,i+1)
plt.imshow(digits.images[j],cmap=’gray’)
In [2]: X = digits.data
y = digits.target
Step 1. Split the dataset into training data and testing data ( 10
points )
In [ ]:
Step 2. Algorithm Analysis ( 80 points )
Method 1. KNN
In [ ]:
Method 2. Linear SVM
In [ ]:
Method 3. Gaussian Kernal SVM
In [ ]:
Method 4. Naive Bayes
Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html
4 of 5 3/11/2020, 6:57 PM
In [ ]:
Method 5. Decision Tree
In [ ]:
Method 6. Random Forest
In [ ]:
Method 7. Voting Classifier
In [ ]:
Method 8. Bagging
In [ ]:
Step 3: Accuracy Results Table ( 8 points )
KNN L_SVM RBF_SVM NB DT RF Voting Bagging
Accuracy
Weighted Precision
Weighted Recall
Step 4: Conclusion ( 2 Points )
In [ ]:
In [ ]:
In [ ]:
In [ ]:
Assignment 5 file:///C:/Users/Al-Ja/Downloads/Assignment 5.html
5 of 5 3/11/2020, 6:57 PM
{
“cells”: [
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“
\n”,
“
\n”,
“\n”,
“
\n”,
“
\n”,
“\n”,
“\n”,
“
\n”,
“
\n”,
“
\n”,
“
\n”,
“
\n”,
“
\n”,
“
\n”,
“
”
]
},
{
“cell_type”: “code”,
“execution_count”: 4,
“metadata”: {
“scrolled”: true
},
“outputs”: [
{
“name”: “stdout”,
“output_type”: “stream”,
“text”: [
“{‘data’: array([[ 0., 0., 5., …, 0., 0., 0.],\n”,
” [ 0., 0., 0., …, 10., 0., 0.],\n”,
” [ 0., 0., 0., …, 16., 9., 0.],\n”,
” …,\n”,
” [ 0., 0., 1., …, 6., 0., 0.],\n”,
” [ 0., 0., 2., …, 12., 0., 0.],\n”,
” [ 0., 0., 10., …, 12., 1., 0.]]), ‘target’: array([0, 1, 2, …, 8, 9, 8]), ‘target_names’: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), ‘images’: array([[[ 0., 0., 5., …, 1., 0., 0.],\n”,
” [ 0., 0., 13., …, 15., 5., 0.],\n”,
” [ 0., 3., 15., …, 11., 8., 0.],\n”,
” …,\n”,
” [ 0., 4., 11., …, 12., 7., 0.],\n”,
” [ 0., 2., 14., …, 12., 0., 0.],\n”,
” [ 0., 0., 6., …, 0., 0., 0.]],\n”,
“\n”,
” [[ 0., 0., 0., …, 5., 0., 0.],\n”,
” [ 0., 0., 0., …, 9., 0., 0.],\n”,
” [ 0., 0., 3., …, 6., 0., 0.],\n”,
” …,\n”,
” [ 0., 0., 1., …, 6., 0., 0.],\n”,
” [ 0., 0., 1., …, 6., 0., 0.],\n”,
” [ 0., 0., 0., …, 10., 0., 0.]],\n”,
“\n”,
” [[ 0., 0., 0., …, 12., 0., 0.],\n”,
” [ 0., 0., 3., …, 14., 0., 0.],\n”,
” [ 0., 0., 8., …, 16., 0., 0.],\n”,
” …,\n”,
” [ 0., 9., 16., …, 0., 0., 0.],\n”,
” [ 0., 3., 13., …, 11., 5., 0.],\n”,
” [ 0., 0., 0., …, 16., 9., 0.]],\n”,
“\n”,
” …,\n”,
“\n”,
” [[ 0., 0., 1., …, 1., 0., 0.],\n”,
” [ 0., 0., 13., …, 2., 1., 0.],\n”,
” [ 0., 0., 16., …, 16., 5., 0.],\n”,
” …,\n”,
” [ 0., 0., 16., …, 15., 0., 0.],\n”,
” [ 0., 0., 15., …, 16., 0., 0.],\n”,
” [ 0., 0., 2., …, 6., 0., 0.]],\n”,
“\n”,
” [[ 0., 0., 2., …, 0., 0., 0.],\n”,
” [ 0., 0., 14., …, 15., 1., 0.],\n”,
” [ 0., 4., 16., …, 16., 7., 0.],\n”,
” …,\n”,
” [ 0., 0., 0., …, 16., 2., 0.],\n”,
” [ 0., 0., 4., …, 16., 2., 0.],\n”,
” [ 0., 0., 5., …, 12., 0., 0.]],\n”,
“\n”,
” [[ 0., 0., 10., …, 1., 0., 0.],\n”,
” [ 0., 2., 16., …, 1., 0., 0.],\n”,
” [ 0., 0., 15., …, 15., 0., 0.],\n”,
” …,\n”,
” [ 0., 4., 16., …, 16., 6., 0.],\n”,
” [ 0., 8., 16., …, 16., 8., 0.],\n”,
” [ 0., 1., 8., …, 12., 1., 0.]]]), ‘DESCR’: \”.. _digits_dataset:\\n\\nOptical recognition of handwritten digits dataset\\n————————————————–\\n\\n**Data Set Characteristics:**\\n\\n :Number of Instances: 5620\\n :Number of Attributes: 64\\n :Attribute Information: 8×8 image of integer pixels in the range 0..16.\\n :Missing Attribute Values: None\\n :Creator: E. Alpaydin (alpaydin ‘@’ boun.edu.tr)\\n :Date: July; 1998\\n\\nThis is a copy of the test set of the UCI ML hand-written digits datasets\\nhttp://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits\\n\\nThe data set contains images of hand-written digits: 10 classes where\\neach class refers to a digit.\\n\\nPreprocessing programs made available by NIST were used to extract\\nnormalized bitmaps of handwritten digits from a preprinted form. From a\\ntotal of 43 people, 30 contributed to the training set and different 13\\nto the test set. 32×32 bitmaps are divided into nonoverlapping blocks of\\n4x4 and the number of on pixels are counted in each block. This generates\\nan input matrix of 8×8 where each element is an integer in the range\\n0..16. This reduces dimensionality and gives invariance to small\\ndistortions.\\n\\nFor info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.\\nT. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.\\nL. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,\\n1994.\\n\\n.. topic:: References\\n\\n – C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their\\n Applications to Handwritten Digit Recognition, MSc Thesis, Institute of\\n Graduate Studies in Science and Engineering, Bogazici University.\\n – E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.\\n – Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.\\n Linear dimensionalityreduction using relevance weighted LDA. School of\\n Electrical and Electronic Engineering Nanyang Technological University.\\n 2005.\\n – Claudio Gentile. A New Approximate Maximal Margin Classification\\n Algorithm. NIPS. 2000.\”}\n”
]
}
],
“source”: [
“# Importing the dataset\n”,
“from sklearn.datasets import load_digits\n”,
“digits = load_digits()\n”,
“print(digits)”
]
},
{
“cell_type”: “code”,
“execution_count”: 27,
“metadata”: {},
“outputs”: [
{
“data”: {
“image/png”: “iVBORw0KGgoAAAANSUhEUgAAATgAAAD8CAYAAADjcbh8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADuxJREFUeJzt3d+LXWfZxvHreqfOgTVmoDZCmpCppAg9SiUUpCCJotQfmBx4kILS8SRHlQQCUo+S/gMyHogQak3AhhxUmxYprQWdiCclSTNFk7SSlgkZov1FUoMUQvB+D2YL806m7vXsdz9rr33v7wdC58e953lW5s7Vtfbez3ocEQKAjP5n1BMAgFoIOABpEXAA0iLgAKRFwAFIi4ADkBYBByAtAg5AWgQcgLTuqvFDbVdfHjE1NVVUv3nz5qL6e+65p6hekm7evFlU//bbbxePUSoiXH2QCdFGX5eanp4uqt++fXvxGBcvXix+TAs+iIh7+xVVCbg2bNiwoaj+0KFDRfVzc3NF9ZK0sLBQVL93797iMYDVSv/HfeLEieIxduzYUfyYFlxpUsQlKoC0GgWc7Udtv2X7su0na08KaAu9nVvfgLM9Jennkr4p6UFJj9l+sPbEgNro7fyanME9LOlyRLwTEbcknZS0p+60gFbQ28k1Cbj7JF1d9fly72vAuKO3k2vyKup6bzO44+Vy2/sl7f9/zwhoT9/epq/HW5OAW5a0ddXnWyRdW1sUEUclHZW6+X4hYB19e5u+Hm9NLlHPSHrA9v22pyXtk/Ri3WkBraC3k+t7BhcRt20/IekVSVOSnomIC9VnBlRGb+fXaCVDRLwk6aXKcwFaR2/nNrZLtY4dO1ZUv2dP2av/Tz31VFG9VL68a5DlYKXHjdxKe2h2drbKPLqKpVoA0iLgAKRFwAFIi4ADkBYBByAtAg5AWgQcgLQIOABpEXAA0iLgAKRFwAFIi4ADkFYnFtsPsgC4dPH88ePHi+qPHDlSVC9JMzMzRfUd3W8SI1Ta14cPHy6qH2Qv3tJ/n0tLS8Vj1MIZHIC0CDgAaTXZF3Wr7T/avmT7gu0DbUwMqI3ezq/Jc3C3JR2KiNdtb5B0zvarEXGx8tyA2ujt5PqewUXE3yPi9d7HNyVdEntHIgF6O7+iV1Ftz0p6SNJr63yP/SMxtj6pt+nr8dY44Gx/RtJvJB2MiH+u/T77R2Jc/bfepq/HW6NXUW1/SisN8GxE/LbulID20Nu5NXkV1ZJ+KelSRPy0/pSAdtDb+TU5g3tE0g8kfdX2Yu/PtyrPC2gDvZ1ck53t/yzJLcwFaBW9nV8n1qLeuHGj+hhtbJjcxnEgt9I106dPn65aL0nXr18vqt+9e3fxGAsLC8WPaYKlWgDSIuAApEXAAUiLgAOQFgEHIC0CDkBaBByAtAg4AGkRcADSIuAApEXAAUirE2tR2R8UGe3atav4MRs3biyqn5ubK6ofZL/fUoMcN2tRAaAQAQcgrcYBZ3vK9nnbv6s5IaBN9HVuJWdwB7SyrRqQCX2dWNNNZ7ZI+rakp+tOB2gPfZ1f0zO4eUk/lvTvinMB2kZfJ9dkV63vSHovIs71qdtv+6zts0ObHVAJfT0Zmu6q9V3bS5JOamUHol+vLYqIoxGxMyJ2DnmOQA309QToG3AR8ZOI2BIRs5L2SfpDRHy/+syAiujrycD74ACkVbRUKyIWJC1UmQkwIvR1XpzBAUirE4vtFxcXq49Ruoh5ZmameIzSmwa0sfAZozPIAvLSjZ9Lx9i2bVtR/SBqLZwfBGdwANIi4ACkRcABSIuAA5AWAQcgLQIOQFoEHIC0CDgAaRFwANIi4ACkRcABSMsRMfwfag//h65Re73b0tJS1Z8vlW/aO4iIcPVBJkQbfV3bIOu+T506VVTf0hrrc01uQsoZHIC0CDgAaTXdNnDG9nO237R9yfaXa08MaAO9nVvT+8H9TNLLEfE929OSPl1xTkCb6O3E+gac7c9K+oqkOUmKiFuSbtWdFlAfvZ1fk0vUL0h6X9KvbJ+3/bTtuyvPC2gDvZ1ck4C7S9KXJP0iIh6S9C9JT64tYoNcjKG+vU1fj7cmAbcsaTkiXut9/pxWmuL/YINcjKG+vU1fj7cmGz//Q9JV21/sfelrki5WnRXQAno7v6avov5I0rO9V5nekfTDelMCWkVvJ9Yo4CJiURKn6EiH3s6NlQwA0urExs+D2Lt3b1H9/Px8UX3pJs5SO4vngba1ceOJWjiDA5AWAQcgLQIOQFoEHIC0CDgAaRFwANIi4ACkRcABSIuAA5AWAQcgLQIOQFq1Nn5+X9KVdb71OUkfDH3A7hvVcW+LiHtHMG5K9PUdRnncjXq7SsB94mD22Um8M+qkHvekmNTf7zgcN5eoANIi4ACk1XbAHW15vK6Y1OOeFJP6++38cbf6HBwAtIlLVABpEXAA0mol4Gw/avst25dtP9n/ETnYXrL9F9uL7IyeE73d7d6u/hyc7SlJf5P0da3sJH5G0mMRkX6DXdtLknZGxCS+CTQ9erv7vd3GGdzDki5HxDsRcUvSSUl7WhgXqI3e7rg2Au4+SVdXfb7c+9okCEm/t33O9v5RTwZDR293vLfb2BfV63xtUt6b8khEXLO9SdKrtt+MiD+NelIYGnq7473dxhncsqStqz7fIulaC+OOXERc6/33PUnPa+WSBnnQ2x3v7TYC7oykB2zfb3ta0j5JL7Yw7kjZvtv2hv98LOkbkv462llhyOjtjvd29UvUiLht+wlJr0iakvRMRFyoPW4HfF7S87allb/nExHx8minhGGit7vf2yzVApAWKxkApEXAAUiLgAOQVpUXGWx37om96enpovrt27cXj3HxYvdW6ETEeu/VwgDa6OutW7f2L1pl06ZNRfUff/xxUb0kvfvuu0X1H374YfEYA/igyZ4MbbzRtxM2b95cVH/ixIniMXbs2FH8GGC1Q4cOFdUfOHCgqP6NN94oqpek+fn5ovpjx44VjzGA9Tb/uUOjS9RJvWMC8qO3c+sbcL07Jvxc0jclPSjpMdsP1p4YUBu9nV+TMzjumICs6O3kmgTcJN8xAbnR28k1eZGh0R0TerdM6extU4B19O1t+nq8NQm4RndMiIij6m0j1sW3iQDr6Nvb9PV4a3KJOpF3TMBEoLeT63sGN8F3TEBy9HZ+jd7oGxEvSXqp8lyA1tHbubEWFUBaVe4H18UnY48cOVJUf/DgweIxZmZmih9TG2tRh6eNvp6bmyuqv379elH9qVOniuoH0bsRZm3nImJnvyLO4ACkRcABSIuAA5AWAQcgLQIOQFoEHIC0CDgAaRFwANIi4ACkRcABSIuAA5AWAQcgrbHdF3XPnrK9QQ4fPlxUv3fv3qJ6SZqdnS2qX1paKh4DuZXuKVp6E4mPPvqoqF6SHn/88eLHdAVncADSarIv6lbbf7R9yfYF22VbaQMdRW/n1+QS9bakQxHxuu0Nks7ZfjUiLlaeG1AbvZ1c3zO4iPh7RLze+/impEti70gkQG/nV/QcnO1ZSQ9Jeq3GZIBRobdzavwqqu3PSPqNpIMR8c91vs8GuRhL/6236evx1ijgbH9KKw3wbET8dr0aNsjFOOrX2/T1eGvyKqol/VLSpYj4af0pAe2gt/Nr8hzcI5J+IOmrthd7f75VeV5AG+jt5JrsbP9nSWw9h3To7fxYyQAgrbFdi3r8+PGi+tOnT1etl8o34d29e3fxGAsLC8WPQV7nz58vqr9x40bxGFeuXCl+TFdwBgcgLQIOQFoEHIC0CDgAaRFwANIi4ACkRcABSIuAA5AWAQcgLQIOQFoEHIC0OrEWddeuXcWP2bhxY1H93NxcUX3pfpODGOS4WYuK1V544YWi+jbWP+/YsaN4jFp7BHMGByAtAg5AWo0DzvaU7fO2f1dzQkCb6OvcSs7gDmhl30ggE/o6sUYBZ3uLpG9LerrudID20Nf5NT2Dm5f0Y0n/rjgXoG30dXJNtg38jqT3IuJcn7r9ts/aPju02QGV0NeToem2gd+1vSTppFa2WPv12qKIOBoROyNi55DnCNRAX0+AvgEXET+JiC0RMStpn6Q/RMT3q88MqIi+ngy8Dw5AWkVLtSJiQdJClZkAI0Jf58UZHIC0HBHD/6H28H/oGseOHSuqL13Yvm3btqL6QbSx8DkiXDwI1tVGX3fRqVOniupnZmaKxxjgxhPnmrzwwxkcgLQIOABpEXAA0iLgAKRFwAFIi4ADkBYBByAtAg5AWgQcgLQIOABpEXAA0urExs+DKN3IudTi4mLxY0rX7LGJM9YqXZNZWj/IpsylYwzyb6cWzuAApEXAAUir6baBM7afs/2m7Uu2v1x7YkAb6O3cmj4H9zNJL0fE92xPS/p0xTkBbaK3E+sbcLY/K+krkuYkKSJuSbpVd1pAffR2fk0uUb8g6X1Jv7J93vbTtu9eW8T+kRhDfXubvh5vTQLuLklfkvSLiHhI0r8kPbm2iP0jMYb69jZ9Pd6aBNyypOWIeK33+XNaaQpg3NHbyTXZ+Pkfkq7a/mLvS1+TdLHqrIAW0Nv5NX0V9UeSnu29yvSOpB/WmxLQKno7sUYBFxGLkngOAunQ27mxkgFAWmO72L6LlpaWRj0FjLmDBw8W1Zcunh+kR+fn54vqjxw5UjxGLZzBAUiLgAOQFgEHIC0CDkBaBByAtAg4AGkRcADSIuAApEXAAUiLgAOQFgEHIC1HxPB/qP2+pCvrfOtzkj4Y+oDdN6rj3hYR945g3JTo6zuM8rgb9XaVgPvEweyzk3jr50k97kkxqb/fcThuLlEBpEXAAUir7YA72vJ4XTGpxz0pJvX32/njbvU5OABoE5eoANJqJeBsP2r7LduXbd+xaXRWtpds/8X2Ijuj50Rvd7u3q1+i2p6S9DdJX9fKRrtnJD0WEen3n7S9JGlnREzie6TSo7e739ttnME9LOlyRLwTEbcknZS0p4Vxgdro7Y5rI+Duk3R11efLva9NgpD0e9vnbO8f9WQwdPR2x3u7jW0Dvc7XJuWl20ci4prtTZJetf1mRPxp1JPC0NDbHe/tNs7gliVtXfX5FknXWhh35CLiWu+/70l6XiuXNMiD3u54b7cRcGckPWD7ftvTkvZJerGFcUfK9t22N/znY0nfkPTX0c4KQ0Zvd7y3q1+iRsRt209IekXSlKRnIuJC7XE74POSnrctrfw9n4iIl0c7JQwTvd393mYlA4C0WMkAIC0CDkBaBByAtAg4AGkRcADSIuAApEXAAUiLgAOQ1v8CRAOUsGhA8ukAAAAASUVORK5CYII=\n”,
“text/plain”: [
“
]
},
“metadata”: {
“needs_background”: “light”
},
“output_type”: “display_data”
}
],
“source”: [
“import matplotlib.pyplot as plt\n”,
“digits.images[0].shape\n”,
“list = [10,100,100,45]\n”,
“fig = plt.figure()\n”,
“for i,j in enumerate(list):\n”,
” plt.subplot(2,2,i+1)\n”,
” plt.imshow(digits.images[j],cmap=’gray’)”
]
},
{
“cell_type”: “code”,
“execution_count”: 2,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: [
“X = digits.data\n”,
“y = digits.target”
]
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“## Step 1. Split the dataset into training data and testing data (10 points)”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Step 2. Algorithm Analysis (80 points)”
]
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 1. KNN”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 2. Linear SVM”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 3. Gaussian Kernal SVM”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 4. Naive Bayes”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 5. Decision Tree”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Method 6. Random Forest”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“## Method 7. Voting Classifier”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“## Method 8. Bagging”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“## Step 3: Accuracy Results Table (8 points)”
]
},
{
“cell_type”: “markdown”,
“metadata”: {
“collapsed”: true
},
“source”: [
“
KNN | L_SVM | RBF_SVM | NB | DT | RF | Voting | Bagging | |
---|---|---|---|---|---|---|---|---|
Accuracy | ||||||||
Weighted Precision | ||||||||
Weighted Recall |
”
]
},
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Step 4: Conclusion (2 Points)”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {
“collapsed”: true
},
“outputs”: [],
“source”: []
}
],
“metadata”: {
“kernelspec”: {
“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”
},
“language_info”: {
“codemirror_mode”: {
“name”: “ipython”,
“version”: 3
},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.7.4”
}
},
“nbformat”: 4,
“nbformat_minor”: 2
}
We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.
Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.
Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.
Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.
Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.
Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.
We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.
Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.
You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.
Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.
Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.
You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.
You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.
Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.
We create perfect papers according to the guidelines.
We seamlessly edit out errors from your papers.
We thoroughly read your final draft to identify errors.
Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!
Dedication. Quality. Commitment. Punctuality
Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.
We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.
We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.
We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.
We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.