Homework 4
Rule
● You’re encouraged to check book, notes, class materials, or google, for the scope of this homework
● Please keep your work independent. Please do not check with each other on solutions.
Problem 1: Costco Stock SMA
Objective
● list and string handling: split, indexing, len()
● list comprehension, with if and else
● if statement
● file reading, csv file handling (csv: comma separated values)
● nan: not a number. matplotlib will auto ignore all ‘nan’ entries.
● matplotlib: make line plots, line/dot style, label, saving figure
● self learning. (google and follow example)
Submission
● Please submit “hw4_costco_stock_sma_yourlastname.py”.
● Please also submit the image generated, to blackboard.
Description
For the given “hw4_stock_sma.ipynb” and “FB.csv” files from Blackboard, try to understand each step. This file will serve
as a starting point and code example for the problem below.
● printing of variables will help understand the code better.
● Start a new notebook file, then start coding the same functionality totally from scratch, may also help understand the
code.
Based on the example provided, write a new file, call it hw4_costco_stock_sma_yourlastname.py.
Download 1 year COST (costco) stock data from finance.yahoo.com. First go to ‘finance.yahoo.com’, search COST on top,
click “historical data”, choose “1 year” and “daily”, click “apply” then click “Download”. Now you have the 1 year stock in csv
format. Copy or move/drag this csv file to the same directory where you write and execute your python code. This file will be
used as input for the code below.
1. Write a function called “get_sma”, that takes two input arguments, similar to the example provided. First argument is
the original prices of type list, and the 2nd input argument being the number of days we want to calculate SMA, like a
http://finance.yahoo.com
8 day sma or 35 day sma. This function should return a new list of sma price, based on the input day range, and
should be able to handle any SMA calculation, like: sma200 for 200 days moving average.
2. Write a function called “read_data”, which will be used to open/read/close the csv file, plus some data processing.
We will be using the ‘Adj Close’ column as our ‘prices’. This function should return 2 lists: a list of dates, and a list of
original prices.
3. make another function called “make_plot”, which will take 4 input list arguments. The 4 input lists are: dates, original
prices, sma10 prices, sma50 prices (for 10 and 50 days moving average respectively). This function should use
matplotlib to make plots and save the image to harddisk.
○ To check your curves look right: After you make the plots, you can compare your plot to finance.yahoo.com
plot of COST using 1 year and the two SMA curve added (please google on how to), or use any website
you’re familiar with that can make 1 year stock curve with sma10 and sma50, to see that your 3 curves have
similar shape as on the website.
4. Write a function called “main”, that will:
○ call read_data to read in original price as a list
○ call get_sma to get sma10 and sma50 of costco stock prices, as 2 lists. “sma10” means the 10 day SMA data
as a list.
○ call make_plot, using the 4 lists we have
○ also make sure to write code that will call the ‘main’ function, so your python code can be executed.
○ Note: please make the code as clean as possible. No duplicated code. No unnecessary lines. Repeated code
will get points deducted. Only nice and clean code can get a full score.
Extra Credit (5 points)
● for costco stock price plot, if you can make the x axis use dates instead of numbers in my example, you’ll get the
extra points. Your plot may use something like: 01/2017, 02/2017, or : 2017.1, 2017.2, or Jan 2017, …
whatever way that can show clearly that it’s a ‘date’ format. Total score for this homework is up to 100, not
105.
{
“cells”: [
{
“cell_type”: “markdown”,
“metadata”: {},
“source”: [
“## Stock Simple Moving Average\n”,
“\n”,
“**SMA**\n”,
“\n”,
“In this exercise, we’ll learn abuot how to calculate Stock SMA, simple moving average. The method we use is: for the 9th day, the sma8 (8 day average) is calculated using day1-day8’s average stock price, day10 ‘s sma8 is calculated using day2-day9’s average price, and so on. There are other methods out there for calculating SMA, please google. \n”,
“\n”,
“**Notes**\n”,
“* please download csv file first from Blackboard, and put it in the same directory where you start jupyter\n”,
“* for all the commented out code below, feel free to uncomment and check the values of the variables.\n”,
“\n”,
“\n”,
“**Objective**\n”,
“* list and string handling: split, indexing, len()\n”,
“* list comprehension, with if and else\n”,
“* if statement\n”,
“* file reading, csv file handling\n”,
“* nan: not a number. \n”,
“* matplotlib: make line plots, line/dot style, label, saving figure (advanced for now, it’s good to start trying)\n”,
“\n”,
“**Reference**\n”,
“https://finance.yahoo.com/chart/FB#eyJpbnRlcnZhbCI6ImRheSIsInBlcmlvZGljaXR5IjoxLCJ0aW1lVW5pdCI6bnVsbCwiY2FuZGxlV2lkdGgiOjMuNTgxMDgxMDgxMDgxMDgxLCJ2b2x1bWVVbmRlcmxheSI6dHJ1ZSwiY3Jvc3NoYWlyIjp0cnVlLCJjaGFydFR5cGUiOiJsaW5lIiwiZXh0ZW5kZWQiOnRydWUsIm1hcmtldFNlc3Npb25zIjp7InByZSI6dHJ1ZSwicG9zdCI6dHJ1ZX0sImFnZ3JlZ2F0aW9uVHlwZSI6Im9obGMiLCJjaGFydFNjYWxlIjoibGluZWFyIiwicGFuZWxzIjp7ImNoYXJ0Ijp7InBlcmNlbnQiOjAuNzg4MDcwMTcwMDg0NjM1NCwiZGlzcGxheSI6IkZCIiwiY2hhcnROYW1lIjoiY2hhcnQiLCJpbmRleCI6MCwieUF4aXMiOnsibmFtZSI6ImNoYXJ0IiwicG9zaXRpb24iOm51bGx9LCJ5YXhpc0xIUyI6W10sInlheGlzUkhTIjpbImNoYXJ0Iiwidm9sIHVuZHIiXX0sIuKAjG1hY2TigIwgKDEyLDI2LDkpIjp7InBlcmNlbnQiOjAuMjExOTI5ODI5OTE1MzY0NTgsImRpc3BsYXkiOiLigIxtYWNk4oCMICgxMiwyNiw5KSIsImNoYXJ0TmFtZSI6ImNoYXJ0IiwiaW5kZXgiOjEsInlBeGlzIjp7Im5hbWUiOiJLR0hDWDNTVzFBIiwicG9zaXRpb24iOm51bGx9LCJ5YXhpc0xIUyI6W10sInlheGlzUkhTIjpbIktHSENYM1NXMUEiXX19LCJzZXRTcGFuIjpudWxsLCJsaW5lV2lkdGgiOjIsInN0cmlwZWRCYWNrZ3JvdW5kIjp0cnVlLCJldmVudHMiOnRydWUsImNvbG9yIjoiIzAwODFmMiIsInN0cmlwZWRCYWNrZ3JvdWQiOnRydWUsInJhbmdlIjpudWxsLCJjdXN0b21SYW5nZSI6bnVsbCwic3ltYm9scyI6W3sic3ltYm9sIjoiRkIiLCJzeW1ib2xPYmplY3QiOnsic3ltYm9sIjoiRkIiLCJxdW90ZVR5cGUiOiJFUVVJVFkiLCJleGNoYW5nZVRpbWVab25lIjoiQW1lcmljYS9OZXdfWW9yayJ9LCJwZXJpb2RpY2l0eSI6MSwiaW50ZXJ2YWwiOiJkYXkiLCJ0aW1lVW5pdCI6bnVsbCwic2V0U3BhbiI6bnVsbH1dLCJldmVudE1hcCI6eyJjb3Jwb3JhdGUiOnsiZGl2cyI6dHJ1ZSwic3BsaXRzIjp0cnVlfSwic2lnRGV2Ijp7fX0sInN0dWRpZXMiOnsidm9sIHVuZHIiOnsidHlwZSI6InZvbCB1bmRyIiwiaW5wdXRzIjp7ImlkIjoidm9sIHVuZHIiLCJkaXNwbGF5Ijoidm9sIHVuZHIifSwib3V0cHV0cyI6eyJVcCBWb2x1bWUiOiIjMDBiMDYxIiwiRG93biBWb2x1bWUiOiIjRkYzMzNBIn0sInBhbmVsIjoiY2hhcnQiLCJwYXJhbWV0ZXJzIjp7ImhlaWdodFBlcmNlbnRhZ2UiOjAuMjUsIndpZHRoRmFjdG9yIjowLjQ1LCJjaGFydE5hbWUiOiJjaGFydCIsInBhbmVsTmFtZSI6ImNoYXJ0In19LCLigIxtYWNk4oCMICgxMiwyNiw5KSI6eyJ0eXBlIjoibWFjZCIsImlucHV0cyI6eyJGYXN0IE1BIFBlcmlvZCI6MTIsIlNsb3cgTUEgUGVyaW9kIjoyNiwiU2lnbmFsIFBlcmlvZCI6OSwiaWQiOiLigIxtYWNk4oCMICgxMiwyNiw5KSIsImRpc3BsYXkiOiLigIxtYWNk4oCMICgxMiwyNiw5KSJ9LCJvdXRwdXRzIjp7Ik1BQ0QiOiIjYWQ2ZWZmIiwiU2lnbmFsIjoiI2ZmYTMzZiIsIkluY3JlYXNpbmcgQmFyIjoiIzc5ZjRiZCIsIkRlY3JlYXNpbmcgQmFyIjoiI2ZmODA4NCJ9LCJwYW5lbCI6IuKAjG1hY2TigIwgKDEyLDI2LDkpIiwicGFyYW1ldGVycyI6eyJjaGFydE5hbWUiOiJjaGFydCIsInBhbmVsTmFtZSI6IuKAjG1hY2TigIwgKDEyLDI2LDkpIn19LCLigIxtYeKAjCAoNixDLG1hLDAsbikiOnsidHlwZSI6Im1hIiwiaW5wdXRzIjp7IlBlcmlvZCI6IjYiLCJGaWVsZCI6IkNsb3NlIiwiVHlwZSI6InNpbXBsZSIsIk9mZnNldCI6MCwiVW5kZXJsYXkiOmZhbHNlLCJpZCI6IuKAjG1h4oCMICg2LEMsbWEsMCxuKSIsImRpc3BsYXkiOiLigIxtYeKAjCAoNixDLG1hLDAsbikifSwib3V0cHV0cyI6eyJNQSI6IiNhZDZlZmYifSwicGFuZWwiOiJjaGFydCIsInBhcmFtZXRlcnMiOnsiY2hhcnROYW1lIjoiY2hhcnQiLCJwYW5lbE5hbWUiOiJjaGFydCJ9fSwi4oCMbWHigIwgKDM1LEMsbWEsMCxuKSI6eyJ0eXBlIjoibWEiLCJpbnB1dHMiOnsiUGVyaW9kIjoiMzUiLCJGaWVsZCI6IkNsb3NlIiwiVHlwZSI6InNpbXBsZSIsIk9mZnNldCI6MCwiVW5kZXJsYXkiOmZhbHNlLCJpZCI6IuKAjG1h4oCMICgzNSxDLG1hLDAsbikiLCJkaXNwbGF5Ijoi4oCMbWHigIwgKDM1LEMsbWEsMCxuKSJ9LCJvdXRwdXRzIjp7Ik1BIjoiI2FkNmVmZiJ9LCJwYW5lbCI6ImNoYXJ0IiwicGFyYW1ldGVycyI6eyJjaGFydE5hbWUiOiJjaGFydCIsInBhbmVsTmFtZSI6ImNoYXJ0In19fX0-\n”,
“Try to plot sma8 and sma35 on Yahoo finance. We’re trying to use data downloaded from yahoo finance to make a similar graph. ”
]
},
{
“cell_type”: “code”,
“execution_count”: 1,
“metadata”: {},
“outputs”: [],
“source”: [
“f = open(‘FB.csv’)\n”,
“f.seek(0) # optional, move the ‘pointer’ to beginning of file\n”,
“all_data = f.read()\n”,
“# all_data”
]
},
{
“cell_type”: “code”,
“execution_count”: 2,
“metadata”: {},
“outputs”: [
{
“data”: {
“text/plain”: [
“[‘Date’, ‘Open’, ‘High’, ‘Low’, ‘Close’, ‘Adj Close’, ‘Volume’]”
]
},
“execution_count”: 2,
“metadata”: {},
“output_type”: “execute_result”
}
],
“source”: [
“all_data_list = all_data.split(‘\\n’)\n”,
“\n”,
“# for the scope of this practice, we don’t really need headers. \n”,
“# It’s nice to know how to calculate headers for later usage\n”,
“headers = all_data_list[0].split(‘,’)\n”,
“headers”
]
},
{
“cell_type”: “code”,
“execution_count”: 3,
“metadata”: {
“scrolled”: true
},
“outputs”: [
{
“data”: {
“text/plain”: [
“[‘Date,Open,High,Low,Close,Adj Close,Volume’,\n”,
” ‘2019-10-21,187.039993,189.910004,186.750000,189.759995,189.759995,8122600’,\n”,
” ‘2019-10-22,190.000000,190.649994,181.500000,182.339996,182.339996,19537600’,\n”,
” ‘2019-10-23,182.009995,186.380005,182.000000,186.149994,186.149994,12300400’,\n”,
” ‘2019-10-24,184.619995,186.729996,182.800003,186.380005,186.380005,11413500’,\n”,
” ‘2019-10-25,185.830002,189.000000,185.089996,187.889999,187.889999,8061200’,\n”,
” ‘2019-10-28,187.199997,189.529999,185.080002,189.399994,189.399994,13657900’,\n”,
” ‘2019-10-29,191.690002,192.529999,188.470001,189.309998,189.309998,13574900’,\n”,
” ‘2019-10-30,189.559998,190.449997,185.979996,188.250000,188.250000,28734600’,\n”,
” ‘2019-10-31,196.699997,198.089996,188.250000,191.649994,191.649994,42286500’]”
]
},
“execution_count”: 3,
“metadata”: {},
“output_type”: “execute_result”
}
],
“source”: [
“# peek into the data\n”,
“all_data_list[:10]”
]
},
{
“cell_type”: “code”,
“execution_count”: 4,
“metadata”: {},
“outputs”: [],
“source”: [
“data = [x.split(‘,’) for x in all_data_list[1:] if x != ”]\n”,
“dates = [d[0] for d in data] # list comprehension\n”,
“prices = [float(d[5]) for d in data] # convert string price to float price\n”,
“# print(dates[:10])\n”,
“# len(prices)\n”,
“# prices”
]
},
{
“cell_type”: “code”,
“execution_count”: 5,
“metadata”: {},
“outputs”: [],
“source”: [
“# here, the n-th day’s SMA is defined as the average price of the 8 days before the n-th day, not including itself. \n”,
“# so later we’ll see in the plot, in the beginning we’re missing some SMA data, that’s due to the way we do calculation.\n”,
“def sma(prices, nday):\n”,
” sma_data = [0] * len(prices)\n”,
” for i in range(nday, len(prices)):\n”,
” sma_data[i] = sum(prices[i-nday:i]) / nday\n”,
” return sma_data”
]
},
{
“cell_type”: “code”,
“execution_count”: 6,
“metadata”: {},
“outputs”: [],
“source”: [
“# we’re calculating sma8 (8 day moving averatma35 for this practice\n”,
“period1, period2, = 8, 35\n”,
“data_sma1, data_sma2 = sma(prices, period1), sma(prices, period2)\n”,
“labels = [‘FB_SMA_%s’ % x for x in (period1, period2)]\n”,
“# print(‘Labels: ‘, labels)\n”,
“# print(data_sma1[:10])\n”,
“# print(data_sma2[:10])”
]
},
{
“cell_type”: “code”,
“execution_count”: 7,
“metadata”: {},
“outputs”: [],
“source”: [
“# ‘nan’: not a number. usually ‘nan’ is used for extremely large number, extremely small number, or missing data\n”,
“def zero_to_nan(values):\n”,
” \”\”\”Replace every 0 with ‘nan’ and return a copy.\”\”\”\n”,
” return [float(‘nan’) if x==0 else x for x in values] # list comprehension, with if/else\n”,
“\n”,
“# matplotlib skips ‘nan’ when plotting, this is a good way to ‘drop’ some invalid data\n”,
“data_sma1 = zero_to_nan(data_sma1)\n”,
“data_sma2 = zero_to_nan(data_sma2)\n”,
“# data_sma2”
]
},
{
“cell_type”: “code”,
“execution_count”: 11,
“metadata”: {
“scrolled”: false
},
“outputs”: [
{
“data”: {
“image/png”: “iVBORw0KGgoAAAANSUhEUgAAAzUAAAE/CAYAAAB/6O2jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACTkElEQVR4nOzdd3hURRfA4d+kQKih9947AUKVpvQiCNIRBUGKgERQ7IKoCCqKlE8pIoo0AemK0pu00DsECL0FSAgtJNn5/pjd7KYnpMN5n2efvWXuvXM3IdyzM3NGaa0RQgghhBBCiLTKKaUrIIQQQgghhBAJIUGNEEIIIYQQIk2ToEYIIYQQQgiRpklQI4QQQgghhEjTJKgRQgghhBBCpGkS1AghhBBCCCHSNAlqhBAikSilfJVSTZPgvJuUUv0S+7wJkVT3KhJHavydEUKIpCRBjRDiqWZ9+H6olLrn8CqQ0vVKKkqp+kqp/5RSAUqp20qp7UqpmtZ9vZVS21KgTp8rpQ4rpUKUUqNjKNdMKXVDKZXLYVt6pdRxpdTAJK6jVkrdt/5+3FJKrVdKdY3H8Y2VUpeSso6JRSmVTSk1Syl1TSkVqJQ6pZR632G/tv4cXBy2uVq3RZrcTik12/qzzZ9c9yCEEBFJUCOEeBa8qLXO7PC6ktIVSgpKqazAKmAykAMoCHwGBKVkvQAfYCSwOqZCWuu1wErgB4fNHwNXgWmJURHHB/UoVNVaZwbKArOBKUqpUYlx3VTmeyAzUB5wB9phfkaO7gCtHNZbWbeFo5TKBLwMBACvJEVlhRAiLiSoEUI8c5RS2ZVSq5RSN5VSd6zLhRz251BK/aKUumLdv8xhX1ul1AGllL+1RaRKhNPXVEodsx73i1LKzeHYN5RSPtYWlBWOLUZKqXpKqT3WFpY9Sql60dQ9v1LqkFLq3Sh2lwHQWs/XWodqrR9qrf/VWh9SSpUHfgLqWlsj/K3nc1dK/Wb9LM4rpT5WSjk5XO8Na0tJoPW+qkdRp/JKqXNKqe5R1Vlr/avW+m8gMKr9EQwHGiul2iilKgFDgH5AVqXUz0qpq0qpy0qpL5RSztbrl1RKbbC2sPgppeYqpbI51M9XKfWeUuoQcD+WwAattZ/Weg4wCPhAKZXTep4+Dp/FWaXUAOv2TMDfQAHH1kClVC2l1A7r78pVpdQUpVS66K6rlFpkbT0JUEptUUpVdNg3Wyk1VSm12nr9XUqpkg77mymlTliPnQKoGG6xJjBPa31Ha23RWp/QWi+OUGYO8KrD+qvAb1Gc62XAHxgDvBbDNYUQIklJUCOEeBY5Ab8ARYEiwENgisP+OUBGoCKQB/PNNkqpasAsYACQE9N6sEIpld7h2J5AC6AkJsj42HrsC8BXQBcgP3AeWGDdlwPTijHJet7vgNW2h2kbpVRxYDMwRWv9TRT3dQoIVUr9qpRqpZTKbtuhtT4ODAR2WFursll3TcZ8W18CaIR5eO1jvV5nYLR1W1bMN/q3ItSpOvAPMFRrPT+KOsWL1jrAWs+fMJ/1Z1rrs5iWkxCgFFANaI4JdsA8wH8FFMC0PhS21ttRd6ANkE1rHRLH6iwHXIBa1vUbQFvMZ9EH+F4pVV1rfR/TknElQmtgKPA2kAuoCzQB3ozhen8DpTG/c/uAuRH2d8O0vGXHtKx8CaBMd70/Mb9ruYAzwHMxXGcn8KU1SCsdTZllQENluqplBxpYP4+IXgPmY36XyymlasRwXSGESDpaa3nJS17yempfgC9wD/Ntsj+wLIoyHsAd63J+wAJkj6Lcj8DnEbadBBo5XGugw77WwBnr8s/A1w77MgPBQDGgF7A7wnl3AL2ty5swgY4v0D2W+y2PCQAuYYKAFUBe677ewDaHss7AY6CCw7YBwCbr8j/AsBg+18+s12kcx5/F78DoOJZdBHhjAtC8mC50GRz2dwc2RnPsS8D+CHV9PZbraaBUFNuvAT2jOWaZ7fMBGgOXYrmGF7A0jvefzVond+v6bGBmhN+tE9blV4GdDvuU9efSL5pzZwA+BPZafwd9gFYRPwtgpvX3YSAww7pNO5Qrgvm34uHw+/JDXO5PXvKSl7wS+yUtNUKIZ8FLWuts1tdLSqmMSqlp1u5Wd4EtQDZrd6bCwG2tdaTxA5iWnRHW7kT+1i5chTEtBDYXHZbPO+wrYF0HQGt9D9PqUTDiPodjCzqs9wQuAxG7CYWjtT6ute6ttS4EVLKee2I0xXMBrhGu7Xjdwphv/aMzEPhPa70ppjo9oaOYh3YL5nN3Ba46fO7TMC0aKKXyKqUWWLul3cUET7kinO8i8aSUcgVyA7et662UUjut3Qf9MYFFxOs4Hl9Gma6N16z1GhtdeaWUs1JqnFLqjLWsr3WXY/lrDssPMIExmJ9x2P1prTUx3K823RLHaq1rYFoG/wAWWVsMHf2GCZii63rWCziutT5gXZ8L9LB+bkIIkawkqBFCPItGYAaD19ZaZwUaWrcrzMNgDscxGQ4uAl86BEjZtNYZdfhuV4UdlosAtqQEVzAP5+ZCZhxGTkygEm6fw7GXHdZHA37APNtYkthorU9gvuGvZNsUoYgf5pt6x2s7XvciphtddAYCRZRS38elPglwEdNSk8vhc8+qtbaNORmLubfK1p/nK0QeUxIpa1cctMe0du22djFcAnyLafnKBvzlcJ2ozv8jcAIoba3Xh1HUy6aH9XpNMd0Bi1m3xzQ2xuYqDr93SilF+N/DaGmtbcFWJqB4hN1bMS2XeYGosua9CpSwBm3XMK2JuTDBnhBCJCsJaoQQz6IsmHE0/tZvp8MyXGmtr2LGNvxPmYQCrkopW9AzAxiolKqtjEzWAe1ZHM49WClVyHrej4CF1u3zgT5KKQ/rA/JYYJfW2hfzcFxGKdVDKeWiTCrhCphMZjbBQGfMw+dvymEwv41SqpxSaoSyJj1QShXGdNPaaS1yHShkG6yutQ7FfEv/pVIqi1KqKGag/u/W8jOBd5RSNaz3W8paxiYQaIkZezEuug/b+hm6Yf7PcVFKucU1MLPW8yrwLzBBKZVVKeWkTHKARtYiWTBdDAOUUgWBqJIoxJkyiSJ6AlOB8VrrW0A6ID1wEwhRSrXCjOuxuQ7kVEq5O2zLAtwF7imlymESD0QnCyZwu4UZzzU2HlVeDVRUSnVUJgnCW0C+GO7vE6VUTaVUOuvPZRima+ZJx3LWFp8XgXbWZcdz1MUEvLUw3Tc9MMHzPMInGBBCiGQhQY0Q4lk0ETOuwA/zwL8mwv5emCDiBGZwuBeA1tobeAOTVOAOZixC7wjHzsM8gJ/FdN36wnrsOuATzLf9VzEPhN2s+25hBqCPwDzUjgTaaq39HE+stX4MdMR8cz4risAmEKgN7FJK3bfe2xHreQE2YLp1XVNK2c49FLhvre82a/1nWa+3CDMYfZ713MswqaId6+QPNANaKaU+J2ozMEFkd0yg9xDzGcfHq5jA4hjms1+MaUUAM7anOiat8GrMoPkncVApdQ/zc+0HvK21/hRAax2ICRb+sF6/B2a8Etb9JzCB61lrF7kCwDvWcoGYz2Ah0fsN0/XvsvUed8ZQNhzr70lnYBzm96c0sD2mQzCJMvwwrYTNgDbWLpERz31Ua300inO8BizXWh/WWl+zvTDpuNtG0ZVNCCGSlIrw5YsQQgghhBBCpCnSUiOEEEIIIYRI0ySoEUIIIYQQQqRpEtQIIYQQQggh0jQJaoQQQgghhBBpmgQ1QgghhBBCiDTNJaUrAJArVy5drFixlK6GEEIIIYQQIhXbu3evn9Y6d8TtqSKoKVasGN7e3ildDSGEEEIIIUQqppQ6H9V26X4mhBBCCCGESNMkqBFCCCGEEEKkaRLUCCGEEEIIIdK0VDGmRgghhBBCiNQsODiYS5cu8ejRo5SuyjPBzc2NQoUK4erqGqfyEtQIIYQQQggRi0uXLpElSxaKFSuGUiqlq/NU01pz69YtLl26RPHixeN0jHQ/E0IIIYQQIhaPHj0iZ86cEtAkA6UUOXPmjFermAQ1QgghhBBCxIEENMknvp+1dD8TQgghhBAiDXB2dqZy5cph68uWLcPX15f27dtTvHhxLBYLefLkYd68eeTJkycFa5r8pKVGCCGEEEKINCBDhgwcOHAg7FWsWDEAGjRowIEDBzh06BA1a9Zk6tSpKVvRFCBBjRBCCCGEEE8BrTWBgYFkz549pauS7KT7mRBCCCGEEGnAw4cP8fDwAKB48eIsXboUgK1bt+Lh4cGtW7fIlCkTY8eOTcFapgxpqRFCCCGEECK+lIr+NX26vdz06TGXjQfH7me2gAbs3c8uXrxInz59GDlyZGLdZZohQY0QQgghhBBPiXbt2rFly5aUrkayk+5nQgghhBBCxJfWcSvXv795JZNt27ZRsmTJZLteaiFBjRBCCCGEEGmYbUyN1hp3d3dmzpyZ0lVKdhLUCCGEEEIIkQbcu3cv0rbGjRsTEBCQArVJXWRMjRBCCCGEECJNk6BGCCGEEEIIkaZJUCOEEEIIIYRI0ySoEUIIIYQQQqRpEtQIIYQQQojk5+8P69fHPTWyEDGQoEYIIYQQQiS/Tp2gaVOYOzelayKeAhLUCCGEEEKI5Ld+vXmfMSNl6yGeChLUCCGEEEKIlHP1akrXIM1wdnbGw8Mj7OXr68umTZtwd3fHw8ODKlWq0LRpU27cuBHtOa5fv07btm2pWrUqFSpUoHXr1gD4+vqilOLjjz8OK+vn54erqytDhgwJdw4PDw+6desWa30PHDhAnTp18PDwwNPTk927dz/hnccu1qBGKeWmlNqtlDqolDqqlPrMur24UmqXUspHKbVQKZXOuj29dd3Hur9YktVeCCGEEEKkbY8epXQN0owMGTJw4MCBsFexYsUAaNCgAQcOHODQoUPUrFmTqVOnRnuOTz/9lGbNmnHw4EGOHTvGuHHjwvYVL16c1atXh60vWrSIihUrhjv++PHjhIaGsnXrVu7fvx9jfUeOHMmoUaM4cOAAY8aMYeTIkU9w13ETl5aaIOAFrXVVwANoqZSqA4wHvtdalwLuAH2t5fsCd6zbv7eWE0IIIYQQwu7tt82YmjNn4n7MnTvg6gpKQceOSVe3NEprTWBgINmzZ4+2zNWrVylUqFDYepUqVcKWM2bMSPny5fH29gZg4cKFdOnSJdzx8+fPp1evXjRv3pzly5fHWB+lFHfv3gUgICCAAgUKxPue4soltgJaaw3cs666Wl8aeAHoYd3+KzAa+BFob10GWAxMUUop63mEEEIIIYSA776L/zEbNkBIiFn+5x+wWMApZUZTjN40ms82f5Yo52pbpi0ru6+MtdzDhw/x8PAATKvK0qVLAdi6dSseHh7cunWLTJkyMXbs2GjPMXjwYLp27cqUKVNo2rQpffr0CRdsdOvWjQULFpA3b16cnZ0pUKAAV65cCdu/cOFC1q5dy4kTJ5g8eTI9evSI6jIATJw4kRYtWvDOO+9gsVj477//Yr3HJxWn3wKllLNS6gBwA1gLnAH8tdbW3youAQWtywWBiwDW/QFAzijO2V8p5a2U8r5582aCbkIIIYQQQqRhcf3u+99/7csPHsD580lTn1TKsfuZLaABe/ezixcv0qdPnxi7ebVo0YKzZ8/yxhtvcOLECapVq4bjs3jLli1Zu3YtCxYsoGvXruGO9fb2JleuXBQpUoQmTZqwf/9+bt++He21fvzxR77//nsuXrzI999/T9++faMtm1BxCmq01qFaaw+gEFALKJfQC2utp2utPbXWnrlz507o6YQQQgghRFpx4wZs2QJTpkDFiqYrWmy0tgc17u7m/ejRpKtjGtWuXTu2bNkSY5kcOXLQo0cP5syZQ82aNcOVT5cuHTVq1GDChAl06tQp3HHz58/nxIkTFCtWjJIlS3L37l2WLFkS7XV+/fVXOlq7CXbu3DlJEwXE2v3MkdbaXym1EagLZFNKuVhbYwoBl63FLgOFgUtKKRfAHbiViHUWQgghhBBp2aZN0LUrZM4M9+5BzkideiI7cwZ8fU3Z7t1NQHT0KLRtm9S1jdLoxqMZ3Xh0ilw7Jtu2baNkyZLR7t+wYQN16tQhY8aMBAYGcubMGYoUKRKuzIgRI2jUqBE5cuQI22axWPjjjz84fPhwWHe1jRs38vnnn/PGG29Eea0CBQqwefNmGjduzIYNGyhdunQi3GHUYg1qlFK5gWBrQJMBaIYZ/L8R6AQsAF4DbCOFVljXd1j3b5DxNEIIIYQQIoytu1OTJrB8ORw6ZFpilIr+GFsrTdOmYBvcfuRI0tYzjbCNqdFa4+7uzsyZM6Mtu3fvXoYMGYKLiwsWi4V+/fpRs2ZNfH19w8pUrFgxUtazrVu3UrBgwXDjbxo2bMixY8e4evUq+fPnj3StGTNmMGzYMEJCQnBzc2P69OkJv9loqNjiDaVUFUwiAGdMd7U/tNZjlFIlMAFNDmA/8IrWOkgp5QbMAaoBt4FuWuuzMV3D09NT27IsCCGEEEKIp9yoUTBmDHz8MUybZoKc8+chQotBOC+9ZAKgn3+GcuXgueegWjXYty9Zqnz8+HHKly+fLNcSRlSfuVJqr9baM2LZuGQ/O4QJUCJuP4sZXxNx+yOgc3wqLIQQQgghniG2lpo8eUyry/r1prUmpqDmnXegfHlo0cJ0W+vZE2rUSJ76ilQvXmNqhBBCCCGESLCogpqDB2MeH1O/vnnZ/P570tYxjfvll1/44Ycfwm177rnnYpyY80kNHjyY7du3h9s2bNgw+vTpk+jXio4ENUIIIYQQInnZgprcue3jYw4dirrs+fPg5gZ580Z7Oou28OuBX1lyfAm+/r5cCLhAqRylWNl9JQWzFoz2uKdZnz59ki2oSIpAKb4kqBFCCCGEEMnrxg3znju36XL2ySemFSYoCA4cAGdnqFoV7t+H1q3NnDRr10KpUvZz+PnBnj2QLRuhtTzxvuLN6tOrw3bvv7afTzZ+wqz2s5L33kSKSJkpWIUQQgghxLNrwwYTvJQubQKVMWOgeXPo0AHq1IGaNSF7dhPYHDsGmTKZAMjRypUm4Jk0CVdnV6a2mcqvL/2Kwp5B7fdDv3Mx4GLy3ptIERLUCCGEEEKI5JUvnwlY3NzCb69d2yQDKF3atNJcuGC6na1ebZ9w08aWcthhAs6mJZqy5409PFf4OQCCLcF8t+O7pLwTkUpIUCOEEEIIIVKHTz81LTOnTsHVqyaF865dULRo5LIVKpj3EycgOBiAAlkKUKNADT5s8GFYsen7pnPrgcwD/7SToEYIIYQQQiSfs2ehfXszV01EjpNv5ssH7dpFHdAAq69s5uu22bntEgw+PuH2tSrViip5TQKCB8EPmLx7cqJVPyU5Ozvj4eER9vL19WXTpk24u7vj4eFBlSpVaNq0KTdsY5aicP36ddq2bUvVqlWpUKECrVu3BsDX1xelFB9//HFYWT8/P1xdXRkyZEi4c3h4eNCtW7dY6/vJJ59QpUoVPDw8aN68OVeuXAEIV2cPDw/GjBnzJB9HOBLUCCGEEEKI5HPhAqxYARs3Jug0X2z9gvc871BoOKzaFj4ZgFKK9597P2x90q5JBDwKSND1UoMMGTJw4MCBsFexYsUAaNCgAQcOHODQoUPUrFkzxmxkn376Kc2aNePgwYMcO3aMcePGhe0rXrw4q1fbky0sWrSIirZuflbHjx8nNDSUrVu3cv/+/Rjr++6773Lo0CEOHDhA27ZtwwUvtjofOHCATz/9ND4fQ5QkqBFCCCGEEMnHMfPZE9p9eTc7L+0EIFRBzcO3I5XpXLEzJbKXAODOozu8tuw1LNryxNd8Ej4+MGRIpIakJKO1JjAwkOzZs0db5urVqxQqVChsvYotpTaQMWNGypcvj7e3NwALFy6kS5cu4Y6fP38+vXr1onnz5ixfvjzG+mTNmjVs+f79+yjHlrhEJkGNEEIIIYRIPo4Tbz6hKnmrMKvdLKpmKkm3I5D3sn+kMi5OLoxvOj5sffnJ5YzbNi5SuaQ0cSJMnWreE8PDhw/Dumx16NAhbPvWrVvx8PCgSJEirFu3jtdffz3acwwePJi+ffvy/PPP8+WXX4Z1CbPp1q0bCxYs4OLFizg7O1OgQIFw+xcuXEi3bt3o3r078+fPj7XOH330EYULF2bu3LnhWmp27NhB1apVadWqFUcdkj08KQlqhBBCCCFE8kmElho3Fzf6VOvD/qFH+d//fGHJkijLdarQibfrvB22/vGGj/nH558nvm58eXnB4MHmPTE4dj9bunRp2HZbV66LFy/Sp08fRo4cGe05WrRowdmzZ3njjTc4ceIE1apV46Yt0ARatmzJ2rVrWbBgAV27dg13rLe3N7ly5aJIkSI0adKE/fv3c/t25FYyR19++SUXL16kZ8+eTJkyBYDq1atz/vx5Dh48yNChQ3nppZee4NMIT4IaIYQQQgiRfGwP0AkIamxU+vRkyh91IgGb8U3H06hoIwA0mh5/9uDm/ZsxHpNYSpWCKVPCzxma1Nq1a8eWLVtiLJMjRw569OjBnDlzqFmzZrjy6dKlo0aNGkyYMIFOnTqFO27+/PmcOHGCYsWKUbJkSe7evcuSaALKiHr27BlWNmvWrGTOnBmA1q1bExwcjJ+fX3xuMxIJaoQQQgghRPJJhJaaKD14EOVmV2dXFnZaSMEsBQG4/fA2H234KHGvnYps27aNkiVLRrt/w4YNPLB+VoGBgZw5c4YiRYqEKzNixAjGjx9Pjhw5wrZZLBb++OMPDh8+jK+vL76+vixfvjzGLminT58OW16+fDnlypUD4Nq1a2itAdi9ezcWi4WcOXPG/2YduCToaCGEEEIIIeKjShW4cweKF4/3oeO2jaNk9pJ0qtDJPuh81y7o0gXKlYN/ou5aljdzXn5q+xMvzn8RgJn7ZtK/Rn88C3g+8W2kJrYxNVpr3N3dmTlzZrRl9+7dy5AhQ3BxccFisdCvXz9q1qyJr69vWJmKFStGynq2detWChYsGG6MTcOGDTl27BhXr14lf/78ka71/vvvc/LkSZycnChatCg//fQTAIsXL+bHH3/ExcWFDBkysGDBggQnEVC2KCkleXp6aluWBSGEEEIIISI6fvM4VX6qQoglhMbFGrO061KyuWWDK1egYEHIksUES87O0Z6j7by2rD5tUhbXKVSH7a9vx0nFrePS8ePHKV++fGLcioijqD5zpdRerXWkaFS6nwkhhBBCiFRNa43XP16EWELC1t3Tu5udBQpAsWIQGAhHjsR4noktJ5LOOR1g0kLvubwnKastkpEENUIIIYQQInlYLHDmDNy9G6/DVp5ayb9n/gXASTkxqdWk8N2VnnvOvP/3X4znKZWjFCPqjqBh0YbsH7Cf2oVqx6seackvv/wSlv7Z9ho8eHCSXGvw4MGRrvXLL78kybWiI2NqhBBCCCFE8vDzM6nAcuY0y3EQYgnh3bXvhq0PqDGAKnmrhC9Urx7MnQvbt8OgQTGe77PGn+Hi5JKkE0GmBn369KFPnz7Jcq2pU6cmy3ViIi01QgghhBAieTxB5rP5h+dz6tYpANzTu/P5859HLmRrqdm+PdbzuTq7PnFAkxrGoj8r4vtZS1AjhBBCCCGSRzznqAmxhDBmi30W+rfrvE3OjFGk/q1UySQK8PWFq1fjXS2/B36xPkS7ublx69YtCWySgdaaW7du4ebmFudjpPuZEEIIIYRIHragJk+eOBWfd3gePrd9AMjmlg2vOl5RF3R2hhkzIHt2cHePc3WCQ4OZvHsyozeNZlb7WXSq0CnasoUKFeLSpUvcvJk8E3c+69zc3ChUqFCcy0tQI4QQQgghkkc8WmpCLCF8vsXe1Wx4neG4u8UQsHTtGu/qjNs2jk83fQrAe+veo13ZdmHZ0SJydXWl+BPMrSOSh3Q/E0IIIYQQyePyZfMeh5aa3w/9HtZKk90tO8PqDEv06gypNYQcGXKErfv6+yb6NUTykJYaIYQQQgiRPPbvN+9VqsRYLMQSwpdbvwxbH1F3BFnTZ4353DdvwrRpEBwMn30Wp+pkz5CdcU3GEWwJpl/1ftG20ojUT6WGwU6enp7a29s7pashhBBCCCGS0qVLsHs3NGwIuXJFW2ze4Xn0/LMnYFppfL18Yw9qrl2D/PkhWza4fRue8pTNzyql1F6ttWfE7dJSI4QQQgghkkehQuYVA4u2hGulGVZ7WOwBDUDevCZRwJ07JgNagQIJra1IQ2RMjRBCCCGESDWWHl/KsZvHAMiSLgtv1X4rbgcqBRUrmuWjR5/4+lrrsLE8Iu2INahRShVWSm1USh1TSh1VSg2zbl+olDpgffkqpQ5YtxdTSj102PdTEt+DEEIIIYRI7SZPhtdfh127oi2iteaLrV+ErQ+pNYTsGbLH/Rq2oObYsSeq4s5LO3nhtxeo/GNlLt299ETnECkjLt3PQoARWut9SqkswF6l1FqtdVjePKXUBCDA4ZgzWmuPxK2qEEIIIYRIs5Yvh/Xr4aWXoi2y+vRqDlw7AEBG14y8Xeft+F2jQgXz/gQtNVpr3vr7LfZc2QPAmM1jmP7i9HifJ1XSGs6cAW9vOH4cunSxB4BPiVhbarTWV7XW+6zLgcBxoKBtv1JKAV2A+UlVSSGEEEIIkYZZLOaBGsAz0hhvwAQVjvPSDKwxkNyZYp/PJpwEtNQopRjbZGzY+qz9szjpdzLe50l1Hj40wV7p0tC9O4wZY95TQbKwxBSvMTVKqWJANcCx3bABcF1rfdphW3Gl1H6l1GalVIOEV1MIIYQQQqRZZ85AQIAZvB/NAP77wfcpnLUwAOmd0/NOvXfif52KFaFUKShZ8omq2bREU5oUbwJAqA7lk42fPNF5UpVjx8DHOkaobVuTde7wYdNq9hSJc1CjlMoMLAG8tNZ3HXZ1J3wrzVWgiNa6GjAcmKeUipSyQinVXynlrZTyvmmbXVYIIYQQQjx9YmmlAcicLjOLuyzmyKAjTH9xOvmz5I//dfLlg9On4ddfn7Ci8FWTr8KWFx1bhPeVND7tSI0acP++mfh05Urw8jLbv/suRauV2OIU1CilXDEBzVyt9Z8O212AjsBC2zatdZDW+pZ1eS9wBigT8Zxa6+laa0+ttWfu3PFsWhRCCCGEEGlHHIIam4p5KvJq1VcT57pnz8KVK/E6pGbBmnSq0Cls/cP1HyZOXVJSunT2FrIBA0x3tObNn6ouaHHJfqaAn4HjWuuIIV1T4ITW+pJD+dxKKWfrcgmgNHA28aoshBBCCCHSlD1m8D01aybP9W7fhnPnoGNH8PCAvXvjdpzFAlrzxfNf4GweZ1l7di3rzz5FXbVy5YIjR0yLzVM0QWlcWmqeA3oBLzikaW5t3deNyAkCGgKHrCmeFwMDtda3E6vCQgghhBAijWnWDJo2NV2hIggMCsSiLYl3renTIWdO0xpx8CBkzWrG2cTFiy9CiRKUzVCIPh59wjZ/sP4DdFpt1ShfHho2BH9/+7anKJixUanhB+Tp6am9vdN4f0UhhBBCCBFvg1cPZsWpFfSs3JOBngMplq1Ywk64fr0JoADSp4cdO6BoUdi9G1q2jP44rcHJ+n3/v/9yqXZ5Sk0qRVBoEABLuiyhY/mOCatbcrtxA/LmhSxZTKIGx2Dm5k2YMgVy54YhQ1KujvGklNqrtY7UjzFe2c+EEEIIIYRILI9DH7Pw6EIu3b3E+O3j8fX3TfhJHedfmTjRtNIUKmRaYW7H0HlIKXjrLbO8ezeFshZiaK2hYbs/XP8hIZaQhNcvOdnm66lYMXLrzL59Jr3z99+bbndpnAQ1QgghhBAiaQQHw3vvwcmo53s5desUyvqwXThrYRoWbZjwa+bLB6NGmQf2AQNMK0X9+hASAkuXxnxsnTrmfedOAN6v/z5Z05skvidvneSX/b+EFfXxMQ0cPj7xX042tqCmUqXI+5o2xSdffYacfRufBWm/x5RLSldACCGEEEI8pZYsga+/NqmEjx6N1FpQKU8lrgy/wr9n/iXwcSBOKpG+bx89Ovx6t26wdi0sWAB9+0Yu7+8PH3xgkgqACWq0JmfGnIysN5KPN34MwCcbP6FWhh7M+F8mAgLg99/tp5g6Ne7LXl6mEalDBxNn2bIsT5wY/+UYz/FTRbwoCXmfY+KQiGWcmVjwa6Zeq4v/J9vJ9p/ZH9fhR6mNBDVCCCGEEE87reHECShTBpydk++6Eyea97feinZwuquzK23KtEnaenToAAMHwoYNZpxJnjzh9//1F/z0Ezz/vNl344ZJB12yJG/XfZvJa/7m+rpuXK8zkTc+OsKeZbXp2RMGD7YHChD35YkTTYCzebNJRGYTn8DIthzjOY4+D3jB4ReYuiJyGa+v8kHzKQScz8nUqc+Fq19aC3AkqBFCCCGEeNrt2QONGsGnn5oWiaRw6hQcOmTmP8maFbZtg127IEcOeDWR5p15UtmzQ4sWsGoV/Pxz5M9ghfWJv317011txQp8lh1h4rmSeHllpOLZGVzfUx6Aww360fuNHXw0MnO4h/4pU+K+bAtyIrayOO6L63K059AaZszE6/FEeL8rFI5cplSp4kx5bgE+26/h/oIHXl7lwwKuiHVP7ST7mRBCCCHE0273btMK4ewcOQtWYvnkE/jiC9N80aSJmSMGTAAxdmziXy++liyBTtZJNf/800QDAI8fmwxgd+/CmTOm69nBgww5/w5TF+Zm8GAY+lYoz/X/g1tVPoGcZ+hbrS8z281MuXuJi5AQk97axwcmTIj+Z/7zz1je6MfRljXwmfARfpeycXD585G6s6WWVpvosp9JS40QQgghxNOuRg3Ilg2uXDEP7XXrJv41Vq40761bw0cf2bcPHhyp6MZzG5m4ayKvVnmVtmXakt4lfeLXJ6KOHc0T+uLF0Mba3S0kBP74wwQ0lSrhYynBxP9K4OXVAy+AXLYHemfm/5yL5r+fAeDn/T/TunTrpEvxvHq1GefTs+eTn8PFBd58M/ZynTvzq/cMXs+3C/7oiHt6dy5MuEDW9FkZMiTttNpI9jMhhBBCiKfVmjXwyy/mW/ru3c22uXMT/zoXLpiJLjNlghdeMNdt3Rq++goKFgxX9NLdS3Rd3JUVJ1fQaVEnei/vnfj1iYpSMGwYbNoE6dKZbfv349NrNEOYjE+DPmFdr2yZoKdMsbdQNCvZjBfLvAiAi5MLtx8m0dzyN29C27bwyitmXE9Sy5qV3v/bQYdypuUqICiAH7/tBlrj5RV53FBqJS01QgghhBBPowcPzOD48+fBzc186z9hAixcaOYmcXVNvGutWmXemzc313JzM60NEQSFBPHyHy9z88FNAPJkysO3zb5NvHrEhWOihPPnmej6LlODB4D/bbzGmM1ebX3gx7Wmy165cmHFZ780m9ZzW/NVk694vvjzSVO/X+xpoxPUTfDPP03XuiZNTPc6B1rrsFTa5jKKn9r+RKgOpfDO4xRZ/zdUXU2ptm1TfQuNjbTUCCGEEEI8jTZsMAFNxYrQubNJV1yuHPj5wbp1iXstW1Dz4ovRFnkQ/IDey3uz+/JuAJyVM4s6L6Jg1oLRHpNUwuaM8eiE16G+DB4QgteYHPbWmaXfmK5bEQKzHBlysKPvjqQLaCwWmDbNLK9eDcWL2/c9fAjvvgtbt8Z+ntBQ+PJL0zp3/HjYZq01cw7OodbMWtx7fC/cIXky5WF5t+VMSd+B7keAyZMT4YaSjwQ1QgghhBBPo3PnzHuDBmZ8hVL2MRqJ2QXt/n0TQCllH6sSwaHrh/Cc7smCIwvCtk1oPiFxJtuMB1sw89lnDt3Myrkw5SeX8APhI0zC6UglRZIFm7VrTZezokVNtjZH48fDt99Cwxg+s2vXYORIc/y+fWZbxYqAaSXr8WcPXl32Kt5XvBmzeUzU53jvPciQAf79N9pJU1MjCWqEEEIIIZ5G58+b9yJF7Nt69IChQ83YksRy6ZKZsb5OnUjzv2itmbp7KrVm1OK4n73FoH/1/rxV+63Eq0MMwlplfOzzw2gdy1iRGIKaiC7fvcyAlQMIeBSQ8Mr+9JN579/ftKjNng3795sKO870GV2w0bEjfPMNXL5sWnkmTYKcObkbdJfW81qHCyoXHVvEw+CHkc+RI4c9+E0rfc+QoEYIIYQQ4ul04YJ5L1rUvq1ECfOgW7Nmws597x4sWwb79mEpUxq8vU1rjQO/B368tPAlhvw9hKDQIAAyumbk53Y/81Pbn5K0xSOqQMaWmnjwYBg9OnwSgEjKlgV3dxOwXboU7XV+3vcz5aaWY/q+6YzaNCphlb53DzZuNK1qr79uun/16WMCm7t3oXJle9k//4×8/KlTsGOHmSNo+3ZuHNrBXy1L8vX2r6k/qz4bztl/Pm9Uf4PDgw6TwTVD1HUZOtS8266dBkhQI4QQQgjxNLK11DgGNQmltUmJXLasmeflt98oN6UcdWbW4YcD0/B74MfN+zf5bsd3VP2pKitO2qex98jnwd7+e3m92utJ24WLqAMZ21wrMQYzNk5OULu2Wd61K9pimdNlDhubMmX3FC4EXIhfRa9dg3Hj4MAByJzZBKIrV0K+fNCqlSnz998mwFq6FObPN9uiCmrOnYN8+djXtSE9r02l4PeFaDOvDe+te4/DNw6HFfvyhS+Z1nYamdNljr5eVaqYbm737sFvv8XvnlKIZD8TQgghhHga5c8PhQqF734GEBxsBqPv3Alz5kTOsHX9upnTJr117hhvb5g8meAM6XDxOYtab/3G38ODW+WLcvraaQB2Xd7Fu2vfNZewBIc75bDawxjfdHySzkdja5Xx8rJ3K3MMZOKtTh0zrmTnTnj55SiLdKnYhRn7ZnD13lWmtp5KEfciUZaLlpeXyUaXPbtJ5JA1K7RsafbVrm22nz5tXqVLQ/v2JsBxd4dHj8DNDb8Hfqw+tZrdIbvZMTo/+6+tgsORL+WsnJnx4gz6VOsTt7oNG2Z+D6pXj989pRAJaoQQQgghnkbLlkW93cXFzB9z5YrJplW1qn3fP//Aq69Ct27www9m25kznF35G106w8A70C9bNnP8G29w9NJ2mG0/PGIwkztjbma1n0XbMm0T886iZGudARPEJHg4SJ06JsgIDY22iFKKeS/PI7tbdlyd45ki28/P3uKSL1/k/S4uJlnAggXw9tuwYoUZwH/lCmTMSHBoMFN3TmTUplHcDYq6i1jNAjWpWaAmlfJUonnJ5pTMUTLu9evY0bzSCAlqhBBCCCGeJUqZ1oBZs8wkmbagZswYGGUdF3L0qGnRcXXFu4QbTb0yEKAfMqSdC56dFuNRsQkADYs25Oa7N/nz+J/8cuAXdl4yA+vrFqpLv+r96FKxS8zdnBIoutaZRNGsGdy5Y7qixSBPpjxRbn8U8gg3F7foD/z9d/MZt25tWmCi0qqVCWpWrzaThr7wAmTMyK5Lu+i7oi9Hbx6NdIizcqZLxS6MqDuCGgVqxFj3p4nSWqd0HfD09NTe3t4pXQ0hhBBCiKfDo0fmYTxduqj3L1oEXbpA48ZmcPr+/aabkbOzCW7eey9sksoHwQ+oM7MOh28cxtXJlZ/b/Uyvqr2iPO2lu2ZQfaGshZLiriIZMsS0zgwenLoSde24uINOizoxr+M8GhVrFLmA1mbcypEjsGRJ9C0ifn6m/1yxYiZFs5MTJ/xOUGN6DR4EPwgrVuauK6/sC6X2+5Op1agH2dyyJcl9pQZKqb1aa8+I2yVRgBBCCCHE02b+fHBzM0/9UWna1AQ927dDYCB8+qnZPmwY+oMPwgIaMBnLFnVeRKU8ldjaZ2u0AQ2YYCa5AhoInwQgyQQFwc2bcS6+xmcNL/z2AlcCr/DSwpc4dvNY5EJ79piAJnduaBtD17xcuUz65s2bw1qMyuQsQ0+/AgBkDnXma9WCwz8E88mxXDRv0v+pDmhiIkGNEEIIIcTT5vx50xrg7h71/uzZzUD04GCTfWvVKi7my8Anz2vKTS1HYFBguOJlc5Xl4MCD1C5UOxkqHzPHdM1xzmb2pBYvNuNqhg+P8yHlc5UPCyz8H/nTam4rrgReCV9o5kzz/uqr0bem2eTNi86aNWzVSTnx03Nf8eEW8P5fKO+O+od0oUDnzmYczjNKghohhBBCiKdNVHPURGTLsjV2LFuKQvkBIXyx93tO3TrF/CPzIxV3UqnjsdExXXOSK1kSHj+O0yScNkWzFWV1j9Vkcs0EwIWAC7T4vQW3H962F+rRA7p2hb59YzyXr78vzeY044stX4Tb7vRyJ76c7kPZ0ZOhTRszh41tbplnVOr47RRCCCGEEInHNkdNxHTOjtq0gTZtuD37R3q8kYP7yp65bOmJpUlcwfiztdB06JAMXc5sKleGjBnNxf384nxY9fzVWdR5Ec7KdOM7cuMIbea14f7j+6ZA48YmAUD58tGew9bKs+7sOuYfmU+kcfAlS5oPZNUqOHTIzB30DJOgRgghhBDiaROXlpoaNdArVzIg43ouh5hWhJwZcrKkyxJWdFsR/XEpxNZCs3RpEnc5c+TiAjVrmuUYJuGMSqvSrfj1pV/D1nde2knHyc/x+EFgDEfZ7bm8h7N3zgJw3O84vv6+8br+s0aCGiGEEEKIp4nFYg9qYmqpAWYfmM3iY4vD1n9u9zMdy3eM/5wrScRx/EyyJAWISp065j2mLmgWCzx8GGlzzyo9mdxqctj6v/cO0n9kebTFEutlm5VsxsbXNpInUx7mdpxL8ezF4131Z4kENUIIIYQQT5MbN8w4kJw5IVOmaItdCLjA0L/t4zAG1BhA+3LRzJeSQhzHzyR5UoDo2IKaxYvh3r2oywwZYjKZnTwZeVetIYwq1S9s/dfcl/lsy5g4Xbpe4XqcHnqaHpV7xLvazxoJaoQQQggh0ooLF2DCBLh9O/oyWbKYB/Dvv4/xVGM2j+F+sBnjUTZnWSY0n5CYNX1iqaJ1xlGzZlC6NFy+bCYljSgoCH78Ee7fN+NbojBqqxOv77Ovf7b5M77Z/g2PQh4BcP3edT5Y9wET/ov8M8iaPmukbSIymXxTCCGEECKtGDQIfvoJypWDNWtiHjMTg9O3TlN+anlCdSgA619dzwvFX0jMmj6xVDmh5qlTpvWrUqXI+9atM4FPkSL2BA2OgoIgf36CA+7Qdko9/r3xX9iu3Blz07BoQ1adWkVQaBAZXDJwbPAximUrlnT3ksbJ5JtCCCGEEGmdr695P3HCdIs6cOCJTjN68+iwgOaF4i+keECT6lpnIipTJuqABmD1avPevXv0++/cwbVyVRa9/jfV8lUL23XzwU2WHF9CUGgQAA9DHvK/Pf9LzJo/M2INapRShZVSG5VSx5RSR5VSw6zbRyulLiulDlhfrR2O+UAp5aOUOqmUapGUNyCEEEII8cwoVsw8XFeoANeuQcOGZnZ6R4sXwzffRDm+A0x64fmH7fPQfPnCl0lY4bhJFWNn4uLBA/jsM2jUyCQHAPjrL/Pepo2ZzNTHJ/wxc+aY9169yJo+K1v6bGF80/EUzlo4XLGaBWqysNNCxjUdl8Q38XSKy7SjIcAIrfU+pVQWYK9Saq113/da628dCyulKgDdgIpAAWCdUqqM1tavA4QQQgghxJP58UfzHhQEvXrBokWwYYM97TCYh+gVK6BEiSjnLvlk4ydozPCDtmXaUqdQneSoeYxsrTKpqnUmKunSwaxZZmzT33+bz/fUKcieHfLkgfz5zZims2dBKXNM584mwUAPM9g/c7rMjHxuJMPrDmfZiWXsubyHNmXa0KBIA5TtGBFvsbbUaK2vaq33WZcDgeNAwRgOaQ8s0FoHaa3PAT5ArcSorBBCCCGEANKnh7lzYdkyeO+98PtiSOd8wu8Ey04sC1v//PnPk66OsXDscpaqW2ccubjAUGvGuO+/N61lFSpAixam8unSmS6Ce/faj+nRA9auNQGP46mcXOhUoRPjm42nYdGGEtAkULzG1CiligHVANvsQ0OUUoeUUrOUUtmt2woCFx0Ou0TMQZAQQgghhIhNcDD4+4MtyZOrK7R3SME8Zw589x2cO2fWo0giMM17Wthy+7Lt8cjnkXT1jYVjl7M0pV8/kyp7/XpwdzcZ0WbPBmdn6NTJlPnjD/Nz2LIlRav6LIlzUKOUygwsAby01neBH4GSgAdwFYhXHkClVH+llLdSyvvmzZvxOVQIIYQQ4tmzd6/p5lS/fuR9WsO4cTBiBAQEgJubmTfFwcPgh/x60D7D/SDPQUld40hSfUKAuMiWDfr0Mcu2iCx9evPepYt5nzDBdP/r1csehIokFaegRinliglo5mqt/wTQWl/XWodqrS3ADOxdzC4DjiOfClm3haO1nq619tRae+aO8I9OCCGEEEJEcPWqec+ZM/I+reHzz6FdO9NF6oUX7GM6rBYfW8ydR3cAKJ6tOM1KNkvqGoexBTOffZZGEgLE5q23zPusWWayU5t69cycNhaLCX48PU1yAZHk4pL9TAE/A8e11t85bHfsGNgBOGJdXgF0U0qlV0oVB0oDuxOvykIIIYQQz6ArV8x7gQKR9zk5QceOsHw5BAbCypWRikzba+969kb1N3BSSTuzh2OrjK2rmdZptHUmotKl7SmeZ82yb3dygm3bYP9+8PODJUtMVzWR5OKS/ew5oBdwWCl1wLrtQ6C7UsoD0IAvMABAa31UKfUHcAyTOW2wZD4TQgghhEigmIIaR25ukTY9CnlE9gzZcVJOOCkn+lTrkwQVDM8WyED47GZpsmUmKv/+C7/+ak8cYJMnj3mJZBVrUKO13gZElY7hrxiO+RJI+aTnQgghhBBPC1v3s9iCmii4ubixsvtKLgRc4L+L/5Evc75Erpxha5Xx8oocyEyZkiSXTDn588P776d0LYRVXFpqhBBCCCFEbLZvN3OUVKmSNOe3tdRESA0cH0Xci1DEPXKq54RwDGQcW2emTHkKAxmRaklQI4QQQohnU2go7NwJa9bAqFFmgP2T2r8fGjY04yfOnoVcuRKvnjZx7X6WzKLrZiZEcpKgRgghhBDPlkeP4Jdf4OuvzUSJAM2bQ4MGT3Y+reHtt03Gq8BA+Oork9I3sU2aZOpbsmScD3kQ/ICgkCCyZ8gee+F4eKa6mYk0IWnTXgghhBBCpCYrV0Lx4vDmmyZAKFbMPI0nZGD3smWweTNkzWrWp06FS5cSXteIGjeG3r3t14mDH/f8SLEfivHR+o/we+CXaFVxnDgzTadmFk8NaakRQgghxLPBxwe6d4f798HDAz76CDp0MDPB37hh8g9fvw6LFsXvvHfvmpnlv/wStmxBb9vKvZOHyVggP85OzklyK3HxMPgh3+74lrtBdxm7bSxF3IswwHNAgs5pa6Hp0MGsSzczkVpIUCOEEEKIlKG1mY0xXTr48MOkv97y5Sag6dIFFiwIPzllxowwcyY8fmyyjMUwGH/f1X1sv7Ad/0f+BAQFEJA9gIApjQjQy7lS/yLnPe4RuK01GXZmoGKeilTOU5mmJZryYpkXyZI+y5PV3ccHfvvNBGMdO8bpkAsBF8jmlo1r965RMEtBenv0fuJLR5cIQIjUQoIaIYQQQqSMBQtMUAPw+uuQL2nSDIcZMQLKloXnngsf0ABkzmzG1axcaYKfgQPD7X4Q/IB/fP7hu53fse3Ctjhd7mHIQ7yveON9xZtfDvxCeuf07Oy3E498HvGv+6FD8Pnn0L59nIOasrnKcmTQEf48/icWbSG9S/o4Xy66QEYSAYjUSoIaIYQQQiS/W7dg2DD7+vbt8PLLiXsNrU0wsGsX9O9vtrVtG335Dh1MULN0aVhQE2oJpdTkUvj6+8br0umc0/E49HG4bZnTZaZi7orxOk+YJ8x85uzkTOeKnaPd7xi8QOyBjCQCEKmVBDVCCCGESH4jRsDNm2Z53jyTDjkx+fhAy5Zw5oxZb9s29oDgxRfByQk2bAB/f8iWDWcNTvfuhyvmEgodj0PJQpVxb/Yi7nkK457eHXc3d/JkykNR96LkunmfWw1qcNjlNtufL8Fiz0zUKlwHV2fXcOc673+ezec380qVV3BSMeRviuMcNcGhwbg4uaAitkQ5iK4VBiSQEWmXBDVCCCGESF7r1sGvv0L69HD4MJQunfjX+O03E9Dkzm26bD1+HPsxuXKZ4GrTJli9Gnr2BCcnSp0P5Hx+KHEHXr6ZmyEVelNw7Bsx1ztTbnKt2cLzTZrw/C9n+Tj3SB4P+DxSsXfWvsPiY4v5357/Ma3tNKrmqxr1+a5eNe8xBGYhlhA6L+pMvsz5mNxqcqQAyia27mQSyIi0SIIaIYQQQiQ9re3jWLJkgXLloFevpAlowEyoCTB7NrRuHccqaq61f4H8mzbBgwdmo1LMqzyarKGuuPZsC2XKxL0OFSvC779Ds2awahXpxo8Pt3vjuY0sPrYYgN2Xd5MpXabozxVL9zOtNYNXD2b5yeUAnL59mr96/BVuHE1UmcsiBi8SyIi0SuapEUIIIURkoaGJd66bN6FuXdi40azXrg0HDsC775r1v/+GN96AnTsT73re3qYlqFGjOB+28OhCSt3/igntcxPiak/FnHPoe7h6DY9fQGPTsKHJrHbsmL21xapmwZp8UP8D0jmn48WyL1IqRwwTvcTS/ezzLZ8zfd/0sPUa+WuQ3iU9Pj4mU7UtoJk61QwZknllxNNGghohhBBCGH5+pkXlyBHTyrBvX8LPqbWZ6HLXLvjiC7MOJuBwtXaP+vdfk075n3+sh2iO3TyGtpWNr7VrzXUaNoRMMbR+OLjz8A7D1gzjQchD3ql2k29KXn+ya0eULp09sFq/PtyuzOkyM7bJWHyG+vBNs28iHbry5EpmH5iNRVsgWzbInj1SUBMcGsyIf0YwaslvsHoy3CpJu1zDub98fLhAxjaGZvBgyVwmnk7S/UwIIYQQRp06ZuxJmTJw8iQ0bQr//We6ij2phQth8WKTMvnnnyOnUgaoXx8mTuS097/M3aSZd3gep2+f5uxbZymevXj8rxkaCiVKmEQBcXTj/g3yZsrLjfs3KJilIINrDY7/daPTtKkZOxQUFOXuwu6FI227GniVPsv7cOvhLX7y/onv531P3cJ1w5XZcfAmLw/fytWKy2GnF+wZQiH3whQIbcv//qdQyIB/8exQT/wtSCLy9PTU3t7eKV0NIYQQ4tnl6wvFi4O7u+km1bmzGSw/dChMmhT/8129arqT9esHt2/DtGn2tMoRXbvG/9rlZ2grsDj0IVnYaSFdKnYJV/RB8AMyuma0bzh0yAzsd3IyLU2jR9v3hYSAS9y/vw0ODWbCjgmUz1We9uXax/m42E8cbOoRTUayqNIq36z8EX8cXWiClToTIecZXqv6GpNaTSJr+qxsu7CNFt1P8eC/16HmFKgzkaInJrJsYmMyp8scdj7pYiaeNkqpvVprz4jbpaVGCCGEEPauUS+8ABkywKBBJqg5fjz2Yy9fhhs3oFo1s37smOm+ZtOihRkzE41l/jsZ0hq0wzN/lmAn7i+ZD9ag5lHII4b8NYQTfifY8NoG0jmnMwVXr4YPP7Qf2L69vR7xCGgAXJ1deb/++/E6JjrhAxXXsAH6S5fGPCcMmOX+A0dR7Uob9u+pZzbWmcivYz1Z8+8gCl4ezMHi/QitEQLBD6DOD3zRqQ8fNGgdlhZaWmTEs0aCGiGEECI1uX8/zuNAEtW6dea9aVPzbutyduJE7Md6ecGff5pxMX36QNmyULCgOUe9ejB8eLStFHsu76HHkh5hAU0150J8WLI3bcYvJUMWP/jUpCpuPLsxuy7vAmDAqgHMajfLzMVy8KA5MHt2uHPHZFT79994T1KZGGKb/2Xz+hCOnHAJtw2iS6ucDqjHZ7kDuJlnE/+s84I9Q7h+viHXb1SBmkOgzVBydhrNvJfn0bxk86S8NSFSPQlqhBBCiNQiNNQEAaVLw//+B3nyJM91LRZ7S02TJua9WDEzyP3SJQgMNGmYo7JmjRkzkymTPSBydoaLF8MCmVBLKDsubOPgtYOEWEKwaAt+D/w47necjb4beRjyEICSt+HfwOfI1fZlOPhFWGuPi5MLHcp1CAtqCmctbJ9c0hbUzJ4NL78MR4+agOrvv2MdUxMcGsy6s+toWapljJNVRhRVd7GIgUykQOXMGTqs6c/S4iPw8rKnmI4trfKcLrtg0H5+cDrASE8nHpdfAic6QJ2JeBbwZHHnxRTNVjTOdRfiaSVBjRBCCJFa/P67GSNy544JIh4/NgGHm1vSXvfwYZMGuVAhe9piZ2ezfOQInDoFNWpEPu7hQ5NOC2DUKChsH/B+93Eg//j8w8pTK/nr9F/cengrxirkSJeNv+bfJdf7teytLA4pkEc+N5ITt06QK0MuPmv8mdn44IGpm7MzNG9u+nctWmT21akT623P2DeDwX8Npn6R+nzT7BvqFDLHRBW0OHYdi6oVBmIelD9lmisU3UCT23uhmB+4uJj9Fgv06Wvuddky+886KMh02ZszB4BhlSvT4ddqDNy/ik1lR/J6tdf5tvm3uLkk8e+GEGmEBDVCCCFEavDwIXz8sVn+8kvTQtK9u3k4j88AicBAkyo5PoGQY9czxxaLqVPRGTLwm2U/3n/NZlKrSeFbNMaNg7NnTYuKQ9+pzb6baTanGcGW4DhdPn/m/PzR+Q/KtM4C+fJBrlxmPMzt2+bhPn16lFL83O5nFMpehyNHwGLhgmdpCqdPj/rsMzPGpmlTkwI5Bnsu7+GzzSY42nZhG0u3H+b3rXWi7zq22VwOousuFkt2sSJFTAEfH9izx8zbYzv57Nlm+Ycf4L33zPK4cSagcXMzyQ+GD6eIqyt/VfiLUEsozk7OUV1FiGeWBDVCCCFEajBpkglkqlaFnj1Nt6pDh2DvXmjbNvb0xBaLCYqmToVvv41xYH4kQ4dCzZom85mDgFpV6beyH4uPLebD+h+GD2iuXoXx483yjz/a55wBquWvFukS+TPnp1nJZrind8dJOZHJNRPlcpWjfO7yVMpTybQ4FHE4IG9ek4Dg2jUoarpX2QbBhzl4kDtuUL3VBfL8ryJlc5Ul9+yXqV6oJl0e3iZHhhyR6rHv6j4+2/wZK06ugFslYecn5Gu6kIDNfZj2oykTVdDi2FITU3exGLVsaQr36QMbNpgWqTx5TADm72+C2ddeM+OqvvrKHPP339C4cbjTSEAjRGSS0lkIIYRIaUeOmLlaAgLMIPdmzcz2r78239wXLWrGisSUQGDJEujUySz36wczZsCtW/D99+ab/qgygV28aFpDqlaNtOvAtQN0+qMTZ+6cIaNrRnyH+ZI7U+6w/Xr427x0dSIu+QrwXJcRDK87PNzxLX5vwY37N2hXph0vln2R6vmrRw5KYlKzJnh7w44d0XclmzwZrw0j+cHjUaRd6ZzT8VK5l2hctDHFsxfnYfBDJu2exKa9F+1pkq1zu7TpeY6Jo4snfRpkPz/TinTwoLnIhg2my97t29C7N6xcaX52334Ln3wC9+7BrFlJVBkh0qboUjpLUCOEEEKkpKtXzQPugwfQurXpPmUTEgK1asH+/fDOO/BN5Fnnw/Ttax6AR48241u0hnr10Dt30uLT4riWLU+ujLkonq04/ar3o9CIz0y2ssaNYePGcKdacXIF3Zd050HwAwDSa2febfgBHzf8mPQu6QE4svdvKq8yA95blWrFXz3/CneOoJCgsLJPpF0785C/dCm89FKURbTWDP/nbSbtnoxFW+J23tWTYc8QqDmF1r1Ok+3AKD77IEfyzedy65YJWvfvhyFDYPJks/3UKdONLzQU9u0DDw/zM4xHAgMhngUS1AghhBCp1bvvmm/rJ02K3Brj7Q21a5uH2z177HOwONLaDPK/cgUOHLC3vGzeDC+8QK2+FvYUtBfP4JSeERuDeG+3K5nbdIB588DZGYu2MHnXZN7+52005vkgcxDM/MuZrt6PwrX2fL/je4b/a1pnSmQvwZm3ziTmJ2LmvXFzMwkTYnmwv3bvGif8TnDz/k3OB5xn4dGFeF9xeK64VTKsdcZJOVPi1CQmjipGmzplE7fOcXXnjum6N2aMyTBn8/bb8NtvJjhtn4iTfwrxFJGgRgghhEitLBZwiqFrlpeXGUReowbs2mWyfTk6dAiqVsWvWB4eH9xHgawOEcynn9Lv4Of8XD3yaTNoFwrmLEbeTHnxf+SPz20fgkKDwvYXz1ac1TMfUv7INTh92rQoBQVBunT4PbzFxnMbuR98n7I5y1K3cN2EfQbxFRRkPrcMGaLcffj6YX5Zv5W/fy/Lbf9QbuxojseL21kxpwiF3QtHeUyKCwgw95Q9e0rXRIhUK7qgJh6dW4UQQgiRaC5cgLVrTetKTAENwOefmxaa7t1N96SI1qzheiZ4oUcwL/zWhGv3rtn3vfsunxx0Z8U8mF5qONVyVgrb9VCF4HPbh+0Xt3P05tFwAU3dQnXZ2W8n5fNXNhtsk3COGQPVq5Nr3wk6V+xMb4/eyR/QgBlAnyWLGYPiwMfH9OrKEFiZx/+9yYm/m9CsRHMGD4ZF3z2XegMaMIkaJKAR4olIUCOEEEKkhFWrzNwqn34ae9ksWUwWtBEjwndXsrLkzkXL/hk4nO4OJ2+dpPmc5gSHBocdW7T/SF48BW9M24P3zQ78uhSKPc4Y5aVyZ8zN0FpDWf/qevJkygPlypkdJ07A3bsmu9qBA7EHYgm1f78ZVD9oUNT7Dx40AV727GGBjG1+malT7fPMDB5shhlNmZKECQCEEClOUjoLIYQQKeHUKfNeunTcyjuOK4nQXc2pz+uM8ylIq7mtUEox8rmRuDrbUywzZIjJqLV1K05bt/Iq0GviavxrV+X6/etcu3eNTK6ZKJ2zNNncsoW/rmNQM22a6SLVqBHUqxfvW46X0FBYvx6fKxmZOCT8RJheXsD260xkMl75CoWbVyamCTCFEE+vWIMapVRh4DcgL6CB6VrrH5RS3wAvAo+BM0AfrbW/UqoYcBw4aT3FTq31wKSovBBCCJFmnT5t3suUifsxISHw3XdmssY9e8IlFWhRqgXfNPuGCrkr0Kp0q/DHZc1qApKiRSF/fli0CNWoEdmVInuG7JTLVS76a9qCmoMH4S9rhrORI+Ne5yeVPz8AE31fijQRJmj4ryZT6QPet/D63OyTQEaIZ1esiQKUUvmB/FrrfUqpLMBe4CWgELBBax2ilBoPoLV+zxrUrNJaV4runBFJogAhhBDPnNKlTX+pI0dMKt+40Brq1CHEezd+n39Avg/Hwvr1ZhLHcuWSJv3v1avQsaOZJycwECpXNgFOEqca9jkRwsTyP9GBpSwdtBav4aZlauJE8Gp+DNq3Y2KGD/E60JtSZaQ3vRDPiidOFKC1vqq13mddDsS0whTUWv+rtQ6xFtuJCXKEEEIIEZvgYDh3zgQGJUvG/TilCP78M7p2gvrXv+JqlRIm4KhQwcxtkhTy54ft203gBKaVJokCmnBjY6a4MJUhLKUDUz66SqlS9laYUof+pBRnmNJzhwQ0QgggnokCrK0w1YBdEXa9DvztsF5cKbVfKbVZKdUgYVUUQgghnjLnzpkxI0WKmLlY4mG08xb+rABnckCzBue4G3TXBB5RzV+TWHx8wM/P1Ldr10Q/dbSD/HPOx4uJprXIka0b3IsvJmpdhBBpV5wTBSilMgNLAC+t9V2H7R8BIcBc66arQBGt9S2lVA1gmVKqouMx1uP6A/0BihQpkrC7EEIIIdKSM9aJKuMzngbYcXEH47aPD1tvVqcnWWo1g+rVkzYbWZkycP68iTxcXWMvHw8xDvKvNQf+PhM5qFm5EtasgSZNErUuQoi0K06TbyqlXIFVwD9a6+8ctvcGBgBNtNYPojl2E/CO1jraQTMypkaIVOK338zDwpw58f72WAgRT3fumBTJRYvGqfj9x/fxmOaBz20fAJ4v9jzrXl2Hk0p73a9srTIRM5pFSrk8aZKZWHTgQPCM1IVeCPEMim5MTVyynyngZ+B4hICmJTASaOQY0CilcgO3tdahSqkSQGngbCLcgxAiojt34PJlKF8+8gzj8fX4Mbz2mlnu0gU6d054/YQQ0cuePV4TLb7z7zthAU3W9FmZ/dLsNBXQOAYyjq0zU6bEkK3srbcib9M6yZMUCCHSnrh0P3sO6AUcVkodsG77EJgEpAfWmrgnLHVzQ2CMUioYsAADtda3E7viQjy13nnHzAexdGnkbh5+fpA5s70V5YMPTJrWggWhRw/o0MH0rc+WzaRwdeiO8ijkETfu3yB3xtxkcM0Q+brBwfbla9ci7xdCpJit57fy096fwtYntZxEEfe01XU7um5m8fLokcm+1rgx/PgjuMh0e0III9a/BlrrbUBUX4n8FU35JZixN0KI+NqzByZMgN69w/9nffMm9Olj+pAvXAgvv2y2160LS5aY1ppvvjEv4EQu2FIrL/veaMt+v8Ocu3OOmw9uAuDq5ErtQrVpXLQxzUo2o2HRhuZcmTKZ49991z5/hhAiaTRuDFmywK+/Qo4cMRa1aAtv//N22PpL5V7i1aqvJnEFE4+thaZDB7Mer7lkHj40f49CQsy4oU2bzAkzZ5aARggRjvxFECI1+ewz8543r717RWAgtGoFe/ea/8QdA47XXoNXX4X//uPRnF9YfOlffipyg+15g4DrcPDnSJcItgSz7cI2tl3Yxu4ru+1BDUCpUvi7wZXL+7l2bgMlspegWLZiSXa7QjyTHjyAzZvNv+esWWMtPufgHPZe3QuAm4sbP7T8AZWGul9F7GoWLwcOQL16ZjzNnj2wfLnZLlnPhBARSFAjRGqxZw+sXm1aTEaMMNvWrTNdzPbuhRIlzINQofBTQmlgftbzvFvmb67kvxLt6Z2VM7ky5uL6/eth2xoXbWwWVq8216hRgw+bwI9VtsFvTWhYtCEbXt2As1MCx+sIIex8zLgYSpaMtbXh3uN7fLD+g7D1EXVHpIluZ47jZ564qxmY7rRgsp/duwfz5pl1W2u1EEJYSVAjRGpha6UZMgRy5zZZf4YNM9vy5YO1ayMFNIeuH2Lo30PZcn5LuO0uTi60Lt2aeoXqUT04FxX6vEu+Zh1w/mk6Nx7dYsv5LWzy3USr0q3MAVOmmK5t333HZmsipqLuRVncebEENEIkNltraxzSOX+9/Wuu3jPpjPNlzsf79d9PypolmjgnAohNvnzm/fp1k53x7l2oXx+qVk2MagohniIS1AiRGixbFrmVpkkTyJAB0qWDf/4xLTVWdx7eYdSmUUzdMxWLtoRtz5spL8NqD6NPtT7ky2x9GFi7Fq4/hJmzIPA+eebMoVOFTnSq0Mnsv3HDlHFx4Xbntlyd8xllMudlSK0h5MgQc19/IcQTOHXKvJcuHWOxs3fO8s1/34Stj31hLJnTZU7KmiVIorXOOHJzM2OObt+G0aPNtiFDEnhSIcTTSIIaIVKCxQJBQSZoAdi/37zbWmkAKlaEkydNmVy5wg4NsYRQY3oNzvmfC9vm4uTCW7XeYlTjUWRNH6GPfrNmJihq29YkGXBzg9mz7fvnzzczm7dtS45Cpbn9gX+01T5y4whlcpYhnXO6BNx8PGht5qc4eBDKlTOpq3v0gMKFk+f6QiQFW1ATQ0uN1po3V7/Jo5BHAFTPX53XPF5Ljto9sURrnYkof34T1Ny8aZZtGQeEEMJB2klwL8TTZPp0qFQJNm4060WLmj7i770XvlzhwuECGjABzIAaA8LWmxRvwsGBB5nQYkLkgMamYUNYv94ESL/+aoIcMKmbx4wxy717x1jlX/b/gud0T4b/Mzyud5lwK1eaz2rXLlPv99+HmjXNA44QaVUcup8tOraIf86Yf6cKxY9tfkyVc9L4+JjvYnx8TKvM4MGJ0DoTkW1czdix8NNPpvVaCCEiSH1/IYV42l29ah7Oz56FW7fMttdfh8WL4zwRn1cdL5qWaMrizotZ22stFXJXiP2gmjVh1CizPGiQycA0eLAJEFq0gI4dzb6VK6F2bXtZYO2Ztby+4nWCQoOYumcqvx74NT53/GRCQ+HDD83yO++Yh5nq1c1g4b17k/76QiSVUaPMv8dy5aLcHfAogGFrhoWtv1nzTWoVrJVctYsXW+vMxIn2NM2lSiXyRWxBTd680K5dIp9cCPG0UFrrlK4Dnp6e2tvbO6WrIUTy6NbNdANr08YEEDGkZrVoC7/s/4Xq+atTLX+1hF87ONikRj1yBL74Aj76yMz3cOQIFLFmVFqyBDp1MilTV6wATFeYrou7sujYIgDSO6dnba+1NCjaIOF1is6dO9CvH+zbZyYjTZ8ezp0zXdIcxhcJkSZpHe2//QErBzB933QA8mfOz/HBx3F3c0/O2sXIcewM2JcTPZixOXPG/O0qUgQyZkyiiwgh0gql1F6ttWfE7TKmRojktHCheWXMaL7ejCGguXT3El0WdWHHpR3UKVSH7a9vT3j3E1dXM57GYoEaNcwEgJcu2QMaMGlmwZ52FlBKMav9LI7ePMqxm8cICg2i3YJ2bOuzjYp5KiasTtHJnt0EWAEBJqABKF48aa4lRHKwWMDJ+m84mn/7fx7/MyygAfih5Q+pKqCBJBw7Ex3b3yQhhIiBdD8TIrls2mQmygQYP96Mo4nBGp817Li0A4Cdl3Yy99DcxKlHtWomoAGoWxc6dw6/3/YAceaM6QJmlTldZlZ2X0neTHkB8H/kT8u5LbkYcDFx6mWjtUmQYOMexQOdxYLPmHkMqf4fp09rDh9/yJAhmvXr7f37Hfv6C5EqDB5sEl2cPx9tkRfLvEjfan0B6Fyhsz1LYQpLlrEzQgiRANL9TIjkEBhoWhlu3YKhQ+GHH2JspbGZsXcGQ/4ewjt13+Gjhh+R0TWZul7ky2fmhTh/PnwrDrD/6n4azW5E4ONAAApnLcy0ttPsc94kxI4dJlnCnj1mMHWhQpG6unw/UVOj7iLGf3KDU+eG4FpnGsGhwbBnCJkKneX+pRJ07eNHroy5mDrV/vCVrN1lhIjIx8dk77NY4OjRaMfTgOnuOfvAbLpV6kYG1wzJWMnoDRlC2L+nJG+ZEUKIGEj3MyGS282bJilAlSqQJYvJ3vXHH/D993EKaADeqPEGbcq0oUCWAklc2QhKlTJBjY9PpKCmWv5q/Nn1T1rPbU2wJZiLdy/Sel5relbuyYTmE8ibOW/4c928CXPn4vPbf0x0HoHX/NpA5CCjQ8Bslv5+Dy+uQLZKTHzTgtd39q4uIZZgjt08ztbFVWD3DWg7EXZCcM2JYZe6X24pnOjAwswT8SxQkxbdxjBsWCkmTlRh3WXA3nXGMdiRAEfE6M4dM/njoEHxz75lscDw4RASAn36xBjQgOnu2adanwRUNvHYvlSwZVGW1hkhRGolQY0QSeHOHTPjdaVK8O+/ZlubNuYVDb8HfoRaQiMFBcke0IB5wt++3TzRvPBCpN1NSzTlz65/0md5H/we+AEw9/Bc/jz+J0NqDeHdeu+S2+KGT58vmfhnYbz0FCbixVRqw7hH4OYWKcjYTHWOUMV0jatWnakz00MRGDD4IQeunWBx1kHccvGDml5QZyLkPANthgLgpJywWJcpuQEA76Az5PPcRKZ8e/HyMp+h4wOZLaCZOhX8/SFbNgluRBT8/eHLL+F//zMZA3PnNl3I4uPTT01SEHd3+wSSVoFBgcw5NIdBnoNQcfyyIzlFHD8jhBCplQQ1QiSFH34wrTRx/Eb3zO0ztJrbiizps7C59+aUnzW8TRszP07lytEWaVumLccHH8drjRdzN+2EnV48rDORb1b+yXefFKdesR8J3d6f//RgKFoELz0RitTHa0gpsN6elxemK85PW+kQuoilDb7Da1Zdbj+8zfHAs5wr+xMNV/yGf2V/c0AGoM1Q3NO707fa27Qf+ydl9p0n97TfONuiFgeuHWDJ8SUsOb6EjK4ZWdNzjQkKs4R/ILMt24KcgABpvRERhIbCtGkm/bKfCdxp1szecrlpk2lxbdQo5vPMm2eCImdn01Lr0PJ57/E9Xlr4EhvObWDHpR3MfHEm6V3SJ839PCHbvxFpoRFCpHpa6xR/1ahRQwvx1PD319rdXWvQesuWGItaLBb9+8HfdY7xOTSj0YxGt57bWlssluSpawxOn9Z68GDzHtvyC+0ua9CampPNy7Y8tKSm5mRdalRLvfLkysgXefxY61KlzGfVp4/WFovec3mPzvhlxrDPw/FVcEJBPWnnJB0YFGiOnzbNHFuzptYOn9mVu1f0viv7nuheBw82p3RcP306oZ+mSHPeesv8IoDWDRtq7e1t37dqldlevLjW9+9Hf47du7VOn96UnTw50u6ARwHa7Qu3sN/v5SeWJ8GNxJ/83gshUjPAW0cRT0hLjRCJbcoU89V/o0bQIPp5XC7fvcybf73JipMrwra5ubjRt1rfFOuG4jgo37HbCUSzfPcuU+dkpWd1f95sfo+Kb5dh8u7JnIBwXcR8gPTOwyNf0NUVfv4ZJkyAH38EpfDI50HxbMU5evNoWLGi7kUZ+dxI+lbrG/6b7F69zASde/aYJAP16gGQP0t+8mfJH+lyx24eI3/m/GTPEH6SU9ukgRD+m2npevOM2rIFJk0yv59z55p5mxz/TTZvbloxDx+GMWNg3Lioz1OiBPqD9znx4CKbajtR5cJ2nivyXNjurOmz0qFcB+Yfmc+H9T+kXdnUMbGk/N4LIdIiyX4mREIdPGjGzjg7myxnxYrB7duwfn2U41GuBl5l/PbxTNs7jUchj8K2F3EvwvyX51OvcL1krHzUgczgwRqvRgeYOD0DXv8rC0pFzh5W9i946y0m4oUXEylV+LGZHNPZmbN3zrL+7HrWnl3L6tOryZIuC5eHX8b56DGTMKFhQ3wbVsGiLRTMUjBSl5v1Z9fj9Y8Xvar0omWpllTOUzn6QO/PP+HhQ/NZ548cyNjsu7qPZnOaUSpHKdb2WkvW9Fnj9dmE3beXdEt76j1+bMa+ZM0K778fdZmdO01K9PTp4coVHmbJwJEbRzh4/SBHbxzlcuBlrgRe4dStU9x8cBOAXlV68VuH38KdZvuF7Rz3O56iX2aA/K4LIdKO6LKfSVAjRELcvg2FCpkUyAcPwowZ8PHHZi6YbdvCfbt7JfAK47eNZ/q+6eGCGYBBnoMY33Q8WdJnSdLqRvXgEhAAv/8eOfVxqfrWtM4nT0KZMpFP1rw5rF0LNWuCp6dJV9uvH2QIn4L23uN7nPQ7SY0CNUzENGQItG9Pv07p+PnMIsrmLMvxwccjPdBZtCXhk41a3X54m1KTSnHn0R0A6hepz7pe6+I1fsExpa2MuxEAD1o2YeWlDczrWZk1oSd5HPo4xvI5MuTg+jvXcXFKfZ0kJGWzECKtkJTOQjyJn3+GEyegVasoW12YNcu0EpQqZdI2d+1quqN8+mlYQHP2zlkm7pzI9L3TCQoNCnd4jfw1+KbZNzxf/Pkku4XYupT17Gl/UHfshkWDBrB4sRkQHTGouXEDNmwAFxdYswZy5Ij2+pnTZTYBDZi8sEOHwqpVnMwRCkXh5K2TLDiygO6Vu4c7LrECGjAPk1+88AWD/xpM7oy5GVBjAOmc45eWV7qlPeWCguCTT6BvXyhbNtbi/138j5fqe3MzFHh8OMay2d2y07BoQxoXa8zj0MepJqhx/NsgCQGEEGld6vjLKkRqNW6c+Z9/5kzTtSpbNvu+0FCT5hXMgzqAnx/BEydwrkYxDh1bzC8HfuHv03+jCd8i6lnAk9GNRtO6dOsk6XISXSAT1YNLtK0Nzz9vD2r69w+/b8kSc/+tW8cY0ERSoAA89xxs20ae+5BXZ+KOSzCbfDdFCmri5c8/TXe/4cOhZMkoi7xZ800KZilIg6INyJEhHnW2im7cjeNnLa02adTJk9CtGxw4YH7fd+2KcS6pCwEXeGnBS9wMvRtue+kcpfHI50GVzScoseUw+Zt2oOBH4yiVo1SiBumJJWJwLgG6ECItk6BGCEdam4nynJ3N+pAh8MsvpmvZt9/CF1/Yy/71lwl0iheH1q3ZfXk3/Xf05+jNo4RMDYny9DUL1GR049G0KtUq0YOZuAQy4VpiiOUhpnFj875xo/lcHOubLZuZVLRr1/hXtFMn2LaNJRtzw8wzWDJnSvgD37x5JtCqVSvaoAagfbn2CbuOlePnaOu2A/JQmCatXw8vvQT37kGJEuaHGMO/zQfBD0xAYx0nk5OMvBXqSffuX1K6fH04cgS6VQUnF1g1EXIWifZcKUFaZ4QQTysJasSz4eFD+OorE7A4BibVq5vJ9EaMMGNEJk2CZcvMIJOCBWHYMPOgXK+eeRJ46y2uZ9SsP7eeHpNnm3MMHgzOzuTOmJuD1w9GefmWpVryVq23aFmqZaIGM08SyMRZ+fKQNy9cuwanToXvktO9u3k9yZi8118334h37w5ZspAo3197epqgxtsbXnstMc4YZ7bPukMHE+BIi00asnw5dOliEgN06WLGxGWNPoGE1pp+K/qx/9p+AFycXFj66hoaFLVmOdy1C9q2NX9nevcONydNaiGtM0KIp5UENeLZYEu7WqaMPagJCoL95uGEf/813a22bzcPOHv2mKAGTIajtm25vHkVQ3+ox0q384RYQqjtDSUzZjQP6UCxbMUolLUQl+5eolDWQpTNWZaaBWrSr3o/SuaIvvXgSdiCGdsgf0ikQMaRUqa1ZuFC01oT1TiDJwnQsmQxrV+JydM6XjCeCUe2nN/C6E2jWdJlSaQ0z3Fl+6ylxSaN+f13E3iEhpruoxMnglPMIfbCowuZf2R+2PqUVlPsAc2qVSYwevgQWrQwE/CmQtI6I4R4WqW+Tr5CJLbLl80DC8BHH9m3u7iYeSbGjwd3d/Pg/vgxDBhguqM4+uIL8tyHc7fPEmIxXctmNckOr7wC2c3DsFKK1T1WE/B+ABffvsi6V9fxVdOvEi2g8fExD862gGbqVNNQEnGQf6K2EjRubIIQf3/7tpkzTctNalLDmojgwAEIDo7TIR+u/5BGsxux0XcjH67/MMFV8PKy/ywcf1YihR04YNIzBwaG337kiPkH9PHHJgCJJaAJDg3mk42fhK2/Uf0NBngOMCuBgbB6tQloeveGlSshc+ZEvY2EcPx9TJK/E0IIkQpISmfx9OvXz2Qxe/llM/A9KrdumeDm5k0TLWTMGLnMoEEcKORMTcs06hSqw9tujenY3Aty5kyyqkc9h0wyphR+9MgEfy7WRt2TJ6FcOfP5+PlFSt+cokqVgjNnzENs1aqxFv/z+J+8/MfLACgU//X9jzqF6iRKVSQ9birywgvmC4tatczcMo6ti+fPQ9GicTrN/qv7aTS7EYGPA8nmlo2zb521t+7du2cmgq1TB0aOfLIWzCQkv49CiKeJpHQWz6Zjx0xXJ2dnGDs2+nI5c8LXX4fbdCXwCgWyFLBv+PFHPIAr90eRO1PuRK1mdBPfJfo4mfhyc7MvBwRAx45muUuX1BXQgOmCduaM6YIWh6CmQ7kOtCndhtWnV6PRDFg1AO83vHF1dk1wVSQ7WirSrZsJanbvNl9cjBxpb5WJY0ADUC1/Nc4NO8f47ePJnzl/+O6KmTPD0qWJXPGEs/3udehg1qXLmRDiaSZBjXi6ffCBGbQ7cGDUE0hGY/GxxfRa2osZL87glSqvhNuXWAFNbPPHQAoFMlG5dw8aNjRBYoUK9u58qUmDBnDpkukuFwdKKaa0nsKGqRt4GPKQQ9cP8cOuH3in3jsJropkR0tF+vc3qcRffBE+/NDMLfX999CmTbxPlTNjTr5u9nXsBVMJmU9JCPEskaBGJMzatSaDUJUqkecySQxam65jo0ebDGVvvx33YwMDzXiajBlh1Kg4HXLuzjk+3vgx8w7PA6DP8j7kz5yfJiWaPEHloxbbIH+bFA9kbFauhHbtzHLu3GZAtLt7ytYpKoMHm1c8FMtWjFGNRvH++vcB+GTjJ7Qs1ZJKeSolWrVkYHYq0Lat+Rvw2Wdw+jQsWPBEQU1aICmbhRDPqljH1CilCgO/AXkBDUzXWv+glMoBLASKAb5AF631HWXy1f4AtAYeAL211vtiuoaMqUmjLl82aX8DA01QczDqdMaxunfPdA85dcq8mjaFzp3h/n2TnnfJElMuVy64cgVc49E9SGs4ezbGuUtu3L/BJt9N/OPzD3MOzSHYYh9oXiZnGdb0XEPx7MWf7N6somqV6dnTTPeS6rslOX5+27eb9NZPkeDQYGpMr8HhG2ZW+Iq5K7L7jd1kdI1iXFUCSVe0ZPbXX3D0qAlgypWDQYNMgoDly83fkzg4euMoFfNUTOKKJh4ZPyOEeNolZExNCDBCa71PKZUF2KuUWgv0BtZrrccppd4H3gfeA1oBpa2v2sCP1nfxtBkyxAQ09epBnz727f7+cONG3Lp7nTyJbtWSB5d8uZkJbmaEczUzcnLzCU75nUTn2UbOdq50vpCF+gf8zER5LVsCcN7/PDky5CBL+hi6GykVZUBz7d41Fh5ZyLwj89h9eXeUh3Yo14HpL04nV8a4PfzAk42NSfVKlDBz9+TJY9Jbp2YhIXDihKlrnjxxOsTV2ZX5L8+n5oyaPAx5yNGbRxn+z3B+avtToldPugMls3nzYO5c8+1BhQowbVq8Dt9wbgNNfmtCryq9+L7F9+TMmHRJQRKLtM4IIZ5VsQY1WuurwFXrcqBS6jhQEGgPNLYW+xXYhAlq2gO/adMEtFMplU0pld96HvG0WLrUPOhmzmy6chQubLb7+0OzZnDxIj//PJgLGUMICg0i4FEAdx7d4c6jO9x+eJs7D+8QcM+PBw8CeNQLLI7ZVC9PhMvW5bzmVbFGfeofWGEeUqxBTd8Vfdnou5F6hevxddOvqVvY4YH7119NJiLr3CqPQx9z9s5ZVp9azYpTK9h2YRsWbYny1uoWqss3zb7huSLPxemjSFNjY55U+/YpXYO4GTLEPLgOHWomUo2jinkq8kPLH+i/ynShnLZ3Gs1KNOPlCi8navUkgUAys7UexyFxRET3H9/njZVvADDn0BxcnFyY1X5WYtYu0UT8XUpzf1+EECIRxGtMjVKqGFAN2AXkdQhUrmEeP8EEPBcdDrtk3RYuqFFK9Qf6AxRJhbMuPxOWLTMtH6NHR5+W+NYt83Do7W3GUigVPgvWV1/ZAxqAdOnMeAtvb6atGMWeArGkDI9jT7Ic9ZsCK0ydHz1Cp0/P/mv7sWgL2y5sI3M6hzkhLl3i2Af9eO7VELLkLsj90Ifcfng72nO7OLlQu2Btni/2PM1KNqNBkQaoaFKyOmYTWro05lYYG3nQSEaDB5ugZsYMMyg8X744H9qvej/WnVvHH0f/AGDo30NpVbpVonZDkwQCySgoyLTaKQWV4j9G6nHoY+oUqsPZO2fJ5paNL1/4MgkqmTikBVAIIeIR1CilMgNLAC+t9V3Hhz6ttVZKxWvCG631dGA6mDE18TlWJIJffoG+fc2Yk02bYNu28IO/r12D776D//3PjG0B2LPHzPVw1cSnuk5tNrcqz6SFHfGq40XDog3NoPwVK2DAANKH/B7n6ri5uJErYy5yZ8xNwawFKZuzLGVzliWdczpuPbxFtbKt4UdXeP55cHMj4JE/BbMU5M7DOxTNVtQ+sPvRI/jyS/xdQvDPAP73Lkd5PYWiYdGG9Kzck5crvEyODDmirVtULTGbN5uu+RBzK4w8YCSzypXNxKnLlsG335pXHCmlmN52OlvPb+XqvatcvXeVSbsm8X7995OkqtJNKIkdO2a6I5YpE/W8U7HIniE7czvOpXul7jwIfkD+LPmToJJPThICCCFEeHEKapRSrpiAZq7W+k/r5uu2bmVKqfzADev2y4DDV/cUwt6ZSKQGs2aZCSm1hrx5oX59yJrVpD7+7TfYsgXmzzcBAkCLFvDRRyagARPwNG/O14Mq8/7vTQEI1aEmqAHzADFnDq+tKU+TDctIt/cA7oHBZM+ci+zTfiN7huzkyJCDbBdukLFCVTK4ZsTZyTn2eg+0j43J5paNQ4MOcfP+Tc7eOYtatw6++AJ27YKgIAIidOdxUk7kzZQXzwKetC/bnrZl2pI3c95wZeIzHsaxpUZaYVKZjz82Qc2PP8J775mMbXHk7ubOqEajGLh6IADjto2jf43+MQa9T8rx90a6oiWBBHQ9c9S2TNtEqEzii9g6I3+DhBDPPK11jC9AYbKfTYyw/Rvgfevy+8DX1uU2wN/W4+oAu2O7Ro0aNbRIJr//rrVSWoPW48ZpfeeO1qGh9v2FC5t9oPVLL2m9e7fWWmuLxaItFku4U53yO6UZjWY02ukzJ30p4FLU13z8WOsbN7S+cCHx7sOxLrduaZ0li73elSvrkCmT9a0Ht/TZ22f19XvXdUhoSFjx06e1HjzYvDsuDx5sDh88OPyyYxmRRrRubX6A778f70MfhzzWpSeVDvvdfuefd5KgguE5/r6JROLlZT7UL76I8yG3HtwK97ciNZO/S0KIZxXgraOIJ+LSUvMc0As4rJQ6YN32ITAO+EMp1Rc4D3Sx7vsLk87ZB5PSuQ8idTh9Gl5/3Tz6jxtnvsWOyMvLtNi0akVwuTKsPLWSv1ZMY43PGpZ3W06NAjXCipbOWZoXy7xIoayFGFxzMAWzFoz6uq6u8fq2PEaLFsHYsfDGG/Dmm2ZbunTw7rtw4ABMnw45c+IM5IBw37BHNT8MyHiYp9Inn5h0vr/9Zn5fohkjFeb+fZM6vFMnXDNmZGyTsXRe1BmAybsnM7T2UIq4J93YP+k+lAQyZoRCheLcUhNiCaHtvLbkzpSbuR3nhh+nl0pIQgAhhIhBVJFOcr+kpSaZWCxaT5ig9bBhsRSz6D+O/KFLTSoV9m01o9FfbI77N55JZu5c8+1r1qxanz0btjm61peoWmJ69ox6v3jKdOumdaVKZnnKFK0rV9Z6xYqoy9p+OT7/XGtt/g3UnF4z7He/ya9N9OOQx0leZfl9TAIRWpijM3bL2LCfd41pNXRwaHASVyz+pEVPCCES1lIjnhZKwfDh0e4OsYSw9PhSvv7va7yvRJ4MdeuFrUlZu7jp3h2f2duYuLYCHVpPYGnjH/Aa4RxtKmXH5ejmh5FvO59S8+ebVkkw8yYdPmyy/b34YuSytWubX5Tly+Hjj1FK8XWzr3n+1+cBWH9uPW//8zZTWiftL4tksUoCsbXSAQevHWTUplFh6x3Ld8TFKfX99ygtekIIEb3U91f7WXL4MLz/Phw/Dh4eULMmdO6cuCOFAwNNUoAvv4z2vA+DHzJ1z1R+2PUDl+5eCrcvm1s2BnkOom2ZttQqWCvx6hVP9m4XiolFvmMqbmw+cYgjJ5zhyEG8ZlUBVKSuY47L0l3jGWR7oH3hBRgzBjZsiLqcrYuSv3/YpsbFGjO60WhGbx5NBpcMNCraKGnrijy0Jhp/f3B2hiwxTMxrFRQSRK+lvQi2BANQp1AdRj43MokrGHfS5UwIIeIoquab5H49c93P/Py0HjhQaycn++B2MAP4R4+O37nu39fa39++7tjVIjBQ6wYNzLnr1o3UDcNisejFRxfrYhOLhetmxmh0+s/T63f/fVffenArATeaMNEN4j99WuvBHS7rdbygBzNZn67fO8XqKNKIR4+0dnMzv0TXr9u3X72q9d69WgcFae3qav4NBgaG7bZYLPqtv97Sey7vSfYqS1e0BPjqK/OzHjUq1qLvrX0v7O9ehi8y6FN+p5K+fvEgXc6EECI8pPtZKhEcDI0awdGj5pvEoUOhd28z6Ym7e/xnbv/9d3j7bTOB5rvvEvpKD5xv3oLs2eHkSZPWtGBBmDMn7Fvru0F3+ePoH8zcN5Ndl3eFO13ujLkZ6DmQQZ6DUnxehugmtSxVCqb8WQB+aEeTSd/DTytSqIYizUif3qQuX7cONm6Erl3N9q+/hu+/N5PIli8Phw6ZFtS6dQEzd80PrX5IkSpLV7QEsE0iVahQjMW2XdjG19u/Dlv/ptk3lM5ZOilrFm/SeieEEHEjQU1yc3U1c7588w3MnWsepACqVw9fLiQEXML/eIJCgvB74EeBLAXsM97PmMF51we8rf7g4LeTqBp6iT/XOhxUoADeiycxfEsfgjcFczfoLufunONhyMNw586ZISdjnh/D69Vex83FLZFv+snENKklAMOGmZcQcfHCCyao2bDBBDU3bsBPP5l9rVqZyRoPHTIva1ATHV9/X07fOk2zks2SrLryMJsAtqCmUqVoi9x7fI/Xlr2Gxoy7alqiKYNqDkqO2sWJY7czCWqFECJ2EtSkhO7dzdgZl2g+/vXrOflObzaNeo2tFl/2XNnDtXvXuBt0F4C7798lS/ossG8feHsTXCwrS++bgf2WGgWhyyTTIhQaCs2a4XN9fbSD/F2cXHjT801GNx5N9gzZk+R2n5T0HxeJqkkT875hg+nw+eab8PChSRxQtap5zZljn7QRYNMm83TZr1/YprN3zvL8r89z/d51lndbTotSLZKkujI55xMKCTHjFAEqVIi22Lv/vsvZO2cBcE/vzqx2s3BSTslRwziRljohhIgfCWqSy9ix5qGqdm2zHk1Ac+j6IT5Y/zp/vXQJDn4ZZZmbD26aoGbGDADytusBmG+cLz+6wb22zcPNsXDV52qkc1TKU4k+Hn14pcor5MmUJwE3JkQaUb266arZsCHMnm3mpcmSxTw9AnTqBJ6eUKWKWQ8OhudN9jMqVYI6dQDos7wPFwIuANBtSTfODTtHNrdsSVp1ecCNBx8fePwYihaFrFmjLLL+7Hp+2vtT2PrkVpMp7F44uWoYJ9JSJ4QQ8SNBTXLYvdt0Ofv8c7h0CXLmjFTE19+XTzd+yu+Hfken11GextkCuTLl5t7je2aywLlzAcjc701+s9SjUp5KVMhdgfQu6cMd161SNzzyeZDeJT1Z0mUhR4Yc4buwCfEscHGB774zD73VqpltU6ZAiRJmuWhR87LZtMm+vGZNWFDz20u/0Wh2I67fv87CTguTPKCB8A+40moTi6NHzXvFilHu1lrz0YaPwtY7lu/IK1VeSY6axUoynQkhxJOToCaxPH4Mfn6QP3/4eRG0Nt8Og3mPENDcvH+TL7d+yY/eP/I49HHYdoWijbsnz284S/19tyh1G7JZ0uG07k/IWwVmzTLpmuvWRVWuTC8qR1u1/Fnyp/igfyFSjQ8/hHv3zLiaXr2iL7d4sX159WqTjAMomq0oG1/biK+/L88Xfz5p62rl+IA7ZIi02sQolvE0686uC0uQkt45PZNaTko1X/BIi5wQQjw5CWocPXgAH3xgn6Qvrv/Rbdxoxslcvw5BQZAundl+7555GPrvP8iTx8xJ42DxscW8sfIN/B/5h9vepnQbxjYZS5W8VWBQEKxdC3nzmj7/tnPnzWve+/dPwA0L8QyaMQMKFIBRoyL/G//9dxPMDBwIS5eabQ0awHvvhStWPHtximcvnkwVDk9abaxOnYLp003SFcef44ABphuhY6ubldaaMVvGhK33rdaXglkLJkdt40S6nAkhxJNTWkfd1Sk5eXp6am/vyDPYJzutTfrjq1dNF4YYBpmGlZ8wwTzwWCyQKZMJZMC03FSqBFeumK5i06fDG28A8CD4AcP/Gc60vdPCna5uobqMbzqeBkUbxF7XXbvA29s8fDk7P8ndCiEiGjnSPCR/+KEZW7NtG0yaFKcvOIJCgvB/5E/ezHmToaKGrdVm8OBn6Jv9xYtNdrrnnoPz583P65134nToJt9NPP+raV1zdXLF5y0firgXScraxuqZDkyFEOIJKKX2aq09I25PPaleUgOlTNpXiH7mcZvAQNN95d13TUDzwQcQEGDf7+0NFy6YgKZKFXj9dT5c/yFFJxYl61dZwwU0xbIVY1nXZWx/fXvcAhowCQcGD5aARojEVLWqeT9+3Pz7njw51oBGa83iY4up8L8K9F7eO+nr6MDLy/wZsLXaDBli3p9aly6Zn0vZsmZuITAt4P/9F6fDx2y2t9L09uid4gEN2Luc2fJVCCGEeDIS1ERkC2rWr4++zIkTJqhYtMhkT1q61GQ3cwww6tUz3SPGjoU//wRnZ+4/vs+FgAuE6tCwYl0qdmH/gP20L9c+1fTrFuKZZQtqHNM6aw2//mrG3wQHRzrk9O3TdF3clbN3zrLGZw3/nvk3mSprH2tTqtQz8nA8e7b5Eql1a9Pld/hwk7q+Xz/zczp1Cl591Yw5jGCz72Y2+m4EwFk583799yOVSS6OAahjYCqEEOLJSVATkW0ui02bzH+WAI8ewd9/28ucPWsCmwoVYM8eeOmlqM9VpIhpwSlZEjAtMjbFsxVn5oszWfDygmTJniSEiIOyZc372bOwcqVZVgrGjzfjbbZti3RImZxl6OPRJ2y997LebLsQuVxSsz0cd+jwlLbYWCzw889m2TZv0FdfmfFRx4+b1nVvbzPX0KpV4Q4NtYQybI19ot5XqrxCiewlkqvmkTgGoI6BqRBCiCcnQU1ERYuaFK/+/rB/v9n28cfQrZu9TOvWppVm1y77Q1Ac9KzSk5NDTvLwo4ecHXaWvtX7SuuMEKmJq6t92ZaGCqBNG/O+enWUh33+/Odhc0NdvXeVxrMbM27bOCzaklQ1jcT2cLx06VPaYrNxI/j6mr/RTZuabenSmcQAYG46mnTOtx/ext3NHYAMLhn4/PnPk6nSdtI6I4QQSUuCmqg4jqu5etX8Z3n3rhkjY/Pyy5A5c9THRyNPpjyUyVkGNxe3RKysECJRTZhgvv2fNMm+zRbUrFplujlFkD9LfpZ2XUrODCZle6gO5YP1HzDs72GRyia1p3aczU/WyTL79AEnh/+6+vc3wehff8GWLWZbhHTOuTPlZtNrm1jw8gK+bf5tiky0Ka0zQgiRtCT7WVT++cdMtte1K8yfbx5uOnQwY2OEEM+e4GAoVAhu3DAp1m0tBRFcDLhItyXd+O+ifeD66h6raV26dXLVNJynJjvamjXQqpVpmfHxgcIRgpJFi0w2tAYNTNfBI0einXwzOTlmNgPJciaEEIkhuuxnEtTE5PJlMx4mKMgMHK5SJaVrJIRIKWPHwkcfmZbcGBKJBIcG02VxF5adWAZA3kx5OfLmEXJlzJVMFbV7atIF+/rC669Dy5Ym7XZU7t83reeuria1frp0hFhCcHFKuenYnpqgUgghUhFJ6fwkvvrKBDSdOklAI8Sz7s03TbbDDRtg9+5oi7k6uzLjxRnkzWTmq7l+/zoDVw0kJb5AcuzmlKa7ohUrBuvWwYgR0Zc5fty8Z80K6dIxY+8M6s+qT8CjgOiPSSK2z7pDBxk7I4QQyUWCmuicPGkfKDxqVMrWRQiR8rJlg9Gjzdw1EcZsRJQrYy5+bvdz2PqS40v44+gfSVu/WKTJlM++vibrGZhxNDHNyxUUZN5btGDxscX0X9WfXZd30XpeawKDApO8qo5sn/XSpTJ2RgghkosENdG5ds28v/ZarA8wQohnxPDh5iv4jBljLdqmTBsG1BgQtv7Drh+SsmaxSpMJBIYMMeOXbH+PY1KvnkkWMGkSVfNWRWEySwaFBBFsiTy/UGKT7GZCCJGyZExNTHx8TPpQxzSvQggRR34P/Mg/IT8hlhAATg05RemcpVO4VuHHenh5peJxN8WKwfnzpmtZuXJRFrH9HxYxPX7beW3xf+TP6h6rw9I5JyUZPyOEEMlDxtQ8iVKlJKARQoQXEAC9e8OLL8ZaNFfGXLQp3SZsfc6hOUlYsbhzbElItd3S7t0zAY2ra7TR1tXAq7Sa24rZB2ZH2jez3Uw29d6ULAENSOuMEEKkNGmpEUKI+AgJgUyZ4PFjM39VliwxFv/z+J+8/MfLABTLVowzb53BSaWe75NSbdrhPXugVi3T/ffw4Ui7N/tupuvirly/f50s6bJweNBhimYrmqxVfGqyywkhRBoiLTVCCJEYXFzsXaGOHYu1eJvSbcjulh0AX39ftl3YlpS1izfHDGnJ2mpz5AjMmxflZKYAHD1q3iPMN2PRFr7Z/g1NfmvC9fvXAbj3+B5rz65NytpGKdW2cgkhxDNIghohhIivChXMexyCmvQu6elWqVvY+m8Hf0uqWiVYonahOnYMPvjATIYZUWgo9OsHPXvas0zevQvbHAK+KIIaX39fmv7WlJHrRhKqQwHInTE3a3utpV/1folQ6fiRLmdCCJF6SFAjhBDxZXvQtj14x+LVqq+GLf9x9A8eBj9MilolmK3VBhKYHS04GDp2hHHjYOPGyPsnT4Zdu6BAAejVy4xT+u678BNrOgQ1QSFBTNk9hco/Vmajr/18dQvVZd+AfTQp0eQJKxp/jlnOHFu5hBBCpKxYp1pWSs0C2gI3tNaVrNsWAmWtRbIB/lprD6VUMeA4cNK6b6fWemBiV1oIIVJUVC01f/9txn+EhpqsXQ5qF6xNgyINqFmgJq9WfZUMrhmSr65PwNatCp4wk9ePP5q5vgBeecW+/Y8/zGfz0Uf2cu7uppVm7FgeOFsYt+Y9/rm0ibxNLdSt1gCL6w6m/DCYa/fsaZ2dlBPv1nuXMc+PIZ1zuie5xSeW4M9GCCFEkog1UYBSqiFwD/jNFtRE2D8BCNBaj7EGNauiKhcTSRQghEhTTp4042qKFDEZugICzOScNg8eQIbUHbjEJEHJA27dgtKl4c4dWLHCniXuwgUT0Nj+z+nSBRYuDDtsZbuyDC15ivPZYj59uVzlmN1+NrUL1Y7PLSVIqk2mIIQQz6DoEgXE2lKjtd5iDVaiOqkCugAvJLiGQgiRVpQsCW3aQPnyZsb73bvD79+9Gxo1Spm6JYKI3dDi1TLx2WcmoGnaFNq2tW+/f98EOKtXQ65cMGkSAMGhwby5+k1m1jgV42kLZCmAV20vhtQakuwtXRFbZ6SFRgghUp9Yg5pYNACua61PO2wrrpTaD9wFPtZab03gNYQQInVxcYFVq+zrO3aE379lS5yCmqM3jpIpXSaKZSuWuPVLRLbWCS+vCCmMS1hMS4yTE7RrZwqdPGnGyzg5mTEyjhNili8Py5fD7dtmv7Vl658z/zBz/8ywYjmDnPmi2gjSXb3Bjhz3uZPOQtsybelRuUeydzWzcfwMhBBCpE4JTRTQHZjvsH4VKKK1rgYMB+YppbJGdaBSqr9Sylsp5X3z5s0EVkMIIVKQLajp3Nm8b9kSY/GVJ1dS8X8VqfRjJX7Y+UMSVy5hokz5/G0INGgAHTrAiBFmHBHYM50NGACVK0d9whw5wnXVa1umLR/W/xCAbsecODkxlIGrr/P6sNnMOF+VxV0W09ujd7IHNJIQQAgh0pYnDmqUUi5ARyCsU7TWOkhrfcu6vBc4A5SJ6nit9XSttafW2jN37txPWg0hhEgZDx6YDF67d5t3sGfv+u8/kwEsGuld0nPspkkysOjYIizaktS1TRRhKYwr/ovPf9cZ4jYTn+6f2IOaGjXgr7/iPXHLFy98waLOi5h3syE5HwK//mp2RJijJjnJHDRCCJG2JKT7WVPghNb6km2DUio3cFtrHaqUKgGUBqKYpEAIIdK4NWvg5ZehRAkzhqRAAfNQX64cnDgB+/ZB7agHsz9f7HlyZsjJw5CHPFfkOQIeBZA9Q/ZkvoH4Cxtr02EGQ/Bi6qO+cBum2BpR8uSBVq3ifV6lFJ0qdIK3XKBHTxg0CEJCUiSosXWx69DBrEuXMyGESBtibalRSs0HdgBllVKXlFJ9rbu6Eb7rGUBD4JBS6gCwGBiotb6diPUVQojUwZbW+exZcHaGunXNGJKGDc32GLqguTq7suaVNdx45wYLOy1MEwFNmDt34K+/8FKTGNz7fthYm7jOa3P85nE+3fgpj0MfR9750kumC19ICLi5mYAxmdlaaJYulS5nQgiRlsQl+1n3aLb3jmLbEmBJwqslhBCpXKlS4OpqupldvmwexAGGDYO+faFatRgP9ywQKRtl2rBkCTx+TKmmRZnySyYg7hnSHoc+5pWlr7Dv6j5Wn17NvI7zKJurbPhCtrl/ypUzwWIyk6QAQgiRNiU0UYAQQjybXFygrPWB/MIFKFjQLFeoALVqmYAnIq3t87SkVX/9Zd579gzbFDbWxivmVpvFxxaz7+o+AI7cOEKwJYpxR7NmmfcrVxK33jGQpABCCJH2SVAjhBBPqnx5825rXYhJaCh4etrTH0cQ20TIqcYff8A//0DHjmGbosqQNnp05OCme6XuTGwxESflxFdNvqJSnijmaa5f37x/802S3oZjICNJAYQQIu1L6Dw1Qgjx7Lp717z37g2vvWbfPmOG6aY1dKiZpBPgzBmTPGDfPjNhp5MToZZQ1p1dxx9H/2DHpR0cGnQIF6dU/mfZxQWaN492t63bVkCAvUual5dtfhvFsDrDaFi0IR75PKI+wWuvmfPny5eIlY7McUJN6XImhBBpXyr/31MIIVKxsWNh3Tr49tvw20+dMq0ZjRrZg5rLl+37/f3NfC1A7+W9uXbvGgArTq6gY/mOpEpaw+nTUCbKLP1hbK02Pj7g7m4PaBwDiJ8nVjMTeEbXxSt//sSrtwPHyUMdA5mwrG5CCCHSLOl+JoQQT6p6dXj82CQHcFS0qHk/f96+zXHZzw8AZydn+lbrG7Z50q5JSVXThJs/34wXGj06TsVLlYKxE+7ys+8HDBz8KGzMjWNXL8cuYPHJoPakHK8tY2eEEOLpIi01QgiREE5RfDdkC2p8fe3bbluz29eoYea0sRrkOYhx28YRqkPZfH4zB64diL5rVkq5dw/efdeMC7LdWyxCLaH0/LMnq06tYn2B9Sz7ahkFshQI10Li2IIDUXVXe7Kgw7FFBqJunRFCCPF0kaBGCCESW7Fi5t2xdWb4cDPG5vFjyJQpbHPBrAXpVKETC48uBGDyrsn83P7npKnXgwfw++8mw1j9+pG7zUXnyy9NNrKaNcOPHYrG/cf3Gbl2JKtOrQJgz5U9bDm/hW6VuoXr6hVVkOEY7Pj7Q7ZskYOT2JYDAsxt2jimm5ZuZkII8XSSoEYIIRKbY/czrc2knGDSPEeR6nlY7WFhQc3cw3MZ32w8uTLmStw6zZkDb78Nt26Z9T174LPPwgVYUTp9Gr77zixPnhx1y5TVo5BHTPOexthtY7lx/0bY9pH1RtKtUrdI5SOOZYkY7DgmG4C4L/fsaU8xbSOtM0II8XSToEYIIRJb1qymicHfH27ehDx5zPatW00CgQYNoEWLsOJ1CtXBs4An3le8CQoNYsbeGXzQ4IPEq8/jx9C/Pzx6ZFpbateGMWNiD2gAPvnEHN+7tzkuGqtPrWbYmmGcuXMm3Pb2ZdsztsnYeFU3qmQDNnFdduy2Jq0zQgjx9FOpYW4ET09P7e3tndLVEEKIxNO/P4SEmK5befNC8eJmkk6AESMidf36/dDv9FraC4CCWQpydthZ0jmnS5y6eHubYKZMGThxwt5yFBcFCsDVq3DyZJSZz64GXmXg6oGsOLki3PZCWQvxacNP6VOtT+pPUy2EECLNUErt1Vp7Rtwu2c+EECIpTJ9uxq7kz2+CAltAA2HZzxx1rtCZfJnN3CyXAy/zx9E/Eq8ue/aY99q1wwc0FkvMxz1+DLVqQaVKUY7Yv/3wNs//+ny4gCabWza+b/E9p4ee5o0ab0hAI4QQIllIUCOEEEnNMWEAmC5pEaR3Sc+QmkPC1r/971ueqCV9yxZo1gzOnbNvq10bPvoIOnWyb+vXD3LnDh9sRZQuHSxbBocPRxpL8yjkEe0XtOfkrZNh2/pW68upIafwquOFm4tb/OsuhBBCPCEJaoQQIik8egTHjsHx4/agxpbKOYqWGoCBngPJ6JoRgIPXD7L+3Pr4X/e778yEoAMH2rdVrw5ffAHt2tm33bxp0kyvWxfvSzwOfcxry15j24VtYdsWvLyAme1mkjtT7vjXWQghhEggCWqEECIprF4NFSvCe+/Z56vxtHYBjiaoyZkxJ308+oStT9gxIf7XHT7cvJ89G3O5Zs3M+9q10Zc5e9Y+vw6w89JOBqwcQL5v84XrHjeh+QS6Vuoa/7oKIYQQiUSCGiGESAqOc9XYWmpq1DDvUXQ/s3m7ztsozLiXNT5rOHLjSPTX+O+/yAFSvXom85qPj3kdO2bSfx2JcJ6mTc37+vXhxtbcDbrL5buXzUrfvpAzJ1dWL6Dr4q7U/bku0/dN586jO2Hl36r1Fm/XeTv6OgohhBDJQIIaIYRICo5z1diCmqpVTRe0IkVMZrQolMxRkg7lO4StD/9nOI9DH0cuuH8/PPccVKtm33bggAlybOmiV6+GVavMpJ8//hj++LJloVAhE2AdOmSKn1pNxf9V5JWlr5jxPNZA6EbBbCw+tjj87bkXZXzT8XzX4jtUfLKpCSGEEElAghohhEgKOXNCxoxmBsk2bczEl1WqwOXLJlhwiT4r2Lv13g1bXnt2La8ufZVQS2j4Qlu3mvdLl8KCEvr2NdnWsmY166tXw+7dZrlWrfDHK2Vvrfn3X87dOUf7Be25dPcSm3w3MXPzdyZAypoVj6otGFprKADdKnVja5+tnB12lpHPjcTZyfmJPh4hhBAiMUlQI4QQSUEpexe0Bg3MAP7ixeN0aJ1CdfiowUdh6wuPLmTQ6kHhs6FdumRfnjbNBCD790P69PDxx+b6mzaZ7mUQOagB+7ia//6jePbijKg7AoDcGXOT8+Y9s69CBVCKMc+PYdNrm5j/8nzqF6mPk5L/PoQQQqQe8r+SEEIkFccuaI60jnWOmM+f/zxciudfD/7Kfxf/sxe4eNG+/PvvppuZ1lC/vune1qWLyXbm7w9ZspjuZhG9/DL07Ak//QTA6MajeafuOxwffJyO13KYMpUqAZA1fVYaFWsUp9sWQgghkpsENUIIkVRsQc348fYuYgMHmm5pixdHfxyglOKHVj/Q26M3var04tSQUzxX5Dl7gXnzzHiYUaNg82bYZk2vbGt9WbAAXn3VLHt6hptnJjAokLf+fosA/cgERPnMpJ8ZXNz4pnh/cmbMCUePmsIVKyboIxBCCCGSg0z1LIQQSeWdd8wYl1GjTJewFStMt7BHj2LMgGbjpJyY1W5W1APxlYJcuWD0aNNCY0vNbAtqAPbsMe8OXc9u3L9By99bsv/afo7ePMrfPf8mnXM6ePAAGjc2wcz58xLUCCGESFOkpUYIIZJKyZKQObNZtrXa5Mpl3qOZqyaiOGUWO30aLlwAd3fw8LBvz5ABcuc2k28CQSFBdFjYgf3X9gOw4dwGVp9abcpmzGjKPngAEyfCH3/Av/9GPRZHCCGESGUkqBFCiKRkG09jC2py5zbvcQxqohLw11IzgH/UKLPB1rWtXLlw3cwoUwZat4Z27dBaM+SvIWHjcpyUEzNfnBkufTQfWZMTTJligpxmzUygJIQQQqRyEtQIIURSefAAJk0yy7ZMaLaWmjh0P4vozsM7jFw7kgJ7unHw9nH7OZo0gffeg7lzwx/QqRPMng1ubvzo/SMz988M2/V106/pW71v+PL16pkuaAEBMHVqvOsnhBBCpBQJaoQQIqm4udmXbS008ex+5mjAqgF88983POAxr3aAoNIlzI7s2WHcONPdLYITfifovaw3Q/8eGrbtlSqvMLzu8KgvYmut+eijWJMZCCGEEKmFBDVCCJFUnJzCUiJTtap5T0D3szHPj8HNxQRKhe7C/VJFADNWZv/V/QSFBIWVfRz6+P/t3X+oVvUdwPH3p7w1q5FJZVa2XDpCKZxdVtjoB4p1nWLRGir9wBYWGmxtBBVhEUT7px80SjIynVQirFL6sc1KkAVb6nCVRWWZpDhtCGu0SNLP/jjndh/1Ptq95j3P8b5f8PCc8z3Pefwc/PB97ofz/X4PNyy7gVGPjmLRPxexO4slpM8beh7zJ89vPldn/Piu7Y8/7nGMkiRVwaJGkg6l1auLAmbQoGL/zDOLJZ7vvHP/5y1eDFOm7DFM7ewTz+bhyx5m3l8H8eIzMHjUeezctZORvx/J2PljOWfeOXy04yN2525uWHYDT617iqTrgZ3jh49n+fTlDGwb2PzfjYAPPijimzOn99ctSVIfij2eUF2R9vb2XLNmTdVhSFJryOya8L9iBUyY0HXsiy+KFdXa2oo5OwMGcM1z1/D028V8miHHDqFjZAcL1y385pSOER3cddFdjBs2rg8vQpKk715ErM3M9r3bD3inJiIWRMT2iHinoe2eiNgSEevK16SGY3dExIaIeD8iLvvuLkGS+om1a4v3k0/eczgYFMs3A4wYAQOKR43NOGfGN4e3fbFtj4Jm1thZvDTjJQsaSdJh7dsMP1sIXN5N+0OZOaZ8vQwQEaOAacDo8pzHIuLI7ypYSTosvPIKzJsHO3Z0f/yFF4r3q68uhoM1Gjy4eODmjTd+09QxooPXr3ud44/ec/nlKT+awqM/e/TbPetGkqQaO2BRk5mrgCa/vPuYCizJzK8ycyOwAfDJbZLUaO5cmD0bNmzo/nhnUXPFFcWcmtmz4cUXi7YzziieT/ObrtXLIoJLh1/KqpmrGHrcUADGDRvHkp8vYcARAw7ddUiS1CIOZqGAWyLirXJ42gll22nApw2f2Vy2SZI6NS7rvHs3LF8On39etH34IaxfXzz08uKLYcmS4q7OrbfCtm37/dpzh5zLe3PeY8W1K1h5/UqOaTvmEF+IJEmtobdFzTzgLGAMsBV4oKdfEBGzImJNRKz5rBcPoZOk2mp8AOf998PUqTBpEuzcCcuWFccmTy4WA7j5Zhg9urirc/75xV2aFSvgyy+7/erjv3c8E344gaOOPKqPLkaSpOr1qqjJzG2ZuSszdwNP0DXEbAswrOGjp5dt3X3H/Mxsz8z2kzqf2yBJ/UFnn/fWW0VRA/DGG3DbbXDhhTBrFswoJ/+3tcGrrxYFzaZNcO+9MHFi150dSZLUu6ImIoY27F4JdK6MthyYFhFHR8RwYCTw5sGFKEmHmc47NQ8+WCzR3N5eFC+PPAIbN8Ljjxd3bjqdcgqsXAlXXVXsDx5crIwmSZIAOOAM0oh4FrgEODEiNgN3A5dExBgggU+AmwAyc31ELAXeBb4G5mTmrkMSuSTVVWdRM3FiUZzMnVvcjZk9u5hfM2PGvucMHAhLl8KiRXD66fuuiiZJUj92wKImM6d30/zkfj5/H3DfwQQlSYe1zuFngwfD4sXF9ogRcOqpMGVK8/OOOAJmzjz08UmSVDOu9SlJfW3y5GJRgLa2rraIYsEASZLUYxY1ktTXGosZSZJ00A7mOTWSJEmSVDmLGkmSJEm1ZlEjSZIkqdYsaiRJkiTVmkWNJEmSpFqzqJEkSZJUaxY1kiRJkmrNokaSJElSrVnUSJIkSao1ixpJkiRJtWZRI0mSJKnWLGokSZIk1ZpFjSRJkqRas6iRJEmSVGsWNZIkSZJqLTKz6hiIiM+ATVXH0eBE4N9VB6FaMWfUG+aNesqcUW+YN+qpVs6ZH2TmSXs3tkRR02oiYk1mtlcdh+rDnFFvmDfqKXNGvWHeqKfqmDMOP5MkSZJUaxY1kiRJkmrNoqZ786sOQLVjzqg3zBv1lDmj3jBv1FO1yxnn1EiSJEmqNe/USJIkSao1i5oGEXF5RLwfERsi4vaq41HriohPIuLtiFgXEWvKtsERsSIiPizfT6g6TlUnIhZExPaIeKehrdscicIjZd/zVkSMrS5yValJ3twTEVvK/mZdRExqOHZHmTfvR8Rl1UStKkXEsIhYGRHvRsT6iPhV2W5/o27tJ2dq3ddY1JQi4kjgUaADGAVMj4hR1UalFndpZo5pWPLwduC1zBwJvFbuq/9aCFy+V1uzHOkARpavWcC8PopRrWch++YNwENlfzMmM18GKH+jpgGjy3MeK3/L1L98Dfw2M0cBFwBzytywv1EzzXIGatzXWNR0+QmwITM/zsydwBJgasUxqV6mAovK7UXAFdWFoqpl5ipgx17NzXJkKvCHLPwNGBQRQ/skULWUJnnTzFRgSWZ+lZkbgQ0Uv2XqRzJza2b+o9z+L/AecBr2N2piPznTTC36GouaLqcBnzbsb2b//8Hq3xL4S0SsjYhZZduQzNxabv8LGFJNaGphzXLE/kcHcks5VGhBw9BW80Z7iIgzgR8Df8f+Rt/CXjkDNe5rLGqk3vlpZo6luI0/JyIuajyYxbKCLi2opswR9cA84CxgDLAVeKDSaNSSIuI44I/ArzPz88Zj9jfqTjc5U+u+xqKmyxZgWMP+6WWbtI/M3FK+bweep7gNu63zFn75vr26CNWimuWI/Y+aysxtmbkrM3cDT9A17MO8EQAR0Ubxx+nTmflc2Wx/o6a6y5m69zUWNV1WAyMjYnhEHEUxIWp5xTGpBUXEsRHx/c5tYCLwDkW+XF9+7HpgWTURqoU1y5HlwHXlqkQXAP9pGDaifm6v+Q5XUvQ3UOTNtIg4OiKGU0z8frOv41O1IiKAJ4H3MvPBhkP2N+pWs5ype18zoOoAWkVmfh0RtwB/Bo4EFmTm+orDUmsaAjxf9AkMAJ7JzD9FxGpgaUT8EtgE/KLCGFWxiHgWuAQ4MSI2A3cDv6P7HHkZmEQx+fJ/wMw+D1gtoUneXBIRYyiGD30C3ASQmesjYinwLsVqRnMyc1cFYataFwLXAm9HxLqy7U7sb9Rcs5yZXue+JophlpIkSZJUTw4/kyRJklRrFjWSJEmSas2iRpIkSVKtWdRIkiRJqjWLGkmSJEm1ZlEjSZIkqdYsaiRJkiTVmkWNJEmSpFr7P61blZiy8s0VAAAAAElFTkSuQmCC\n”,
“text/plain”: [
“
]
},
“metadata”: {
“needs_background”: “light”
},
“output_type”: “display_data”
}
],
“source”: [
“import matplotlib.pyplot as plt\n”,
“plt.figure(figsize=(14,5)) # 14 inches wide, 5 inches height\n”,
“plt.title(‘Facebook Stock 1 Year Data and SMA’)\n”,
“plt.plot(prices, linestyle=’–‘, color=’red’, linewidth=2.0, label=’FB’) \n”,
“plt.plot(data_sma1, color=’green’, linestyle=’-.’, linewidth=3.0, label=labels[0]) \n”,
“plt.plot(data_sma2, ‘bo’, markersize=1.2, label=labels[1]) # bo: blue dots\n”,
“plt.ylim(135, 320) # set y limit(range)\n”,
“plt.legend() # show legend of ‘FB’ and ‘FB_SMA3’\n”,
“plt.savefig(‘facebook_sma8_sma35 ‘) # ‘savefig’ needs to happen before ‘plt.show’, move it below and check the image saved\n”,
“plt.show()”
]
},
{
“cell_type”: “code”,
“execution_count”: null,
“metadata”: {},
“outputs”: [],
“source”: []
}
],
“metadata”: {
“kernelspec”: {
“display_name”: “Python 3”,
“language”: “python”,
“name”: “python3”
},
“language_info”: {
“codemirror_mode”: {
“name”: “ipython”,
“version”: 3
},
“file_extension”: “.py”,
“mimetype”: “text/x-python”,
“name”: “python”,
“nbconvert_exporter”: “python”,
“pygments_lexer”: “ipython3”,
“version”: “3.8.5”
}
},
“nbformat”: 4,
“nbformat_minor”: 2
}
We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.
Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.
Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.
Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.
Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.
Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.
We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.
Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.
You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.
Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.
Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.
You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.
You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.
Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.
We create perfect papers according to the guidelines.
We seamlessly edit out errors from your papers.
We thoroughly read your final draft to identify errors.
Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!
Dedication. Quality. Commitment. Punctuality
Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.
We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.
We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.
We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.
We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.