Experiment on Interface Patterns with Attention Division

Background

Don't use plagiarized sources. Get Your Custom Essay on
Experiment on Interface Patterns with Attention Division
Just from $13/Page
Order Essay

Attention has been the center of attention for scientists and thinkers across the centuries. It has been studied in great depths, but there remains a disagreement even as to the very definition of it. From a means for managing metaphysical representations (Descartes, 1641) to a means for sensory data management (Mole, 2017), it has assumed many different roles. For the purpose of this assignment, we will define it as a “set of processes that leads to the selection of behaviorally relevant information from our sensory environment” (Gazzaniga, Ivry, & Mangun, 2014). The world around us contains many sets of information and we choose from the transduced messages what we want to perceive.

Get Help With Your Essay
If you need assistance with writing your essay, our professional essay writing service is here to help!
Essay Writing Service

A great body of research has gone into determining the very nature of this selection, its underlying mechanisms, and how to control them for the optimal behavioural or cognitive outcome. One of the first models of divided attention in experimental psychology was generated by Broadbent (1958). In this model, the attention systems attribute a gain to each sensory feature which consists of all the bottom-up and top-down factors that contribute to focusing on the feature. Top-down processes can be active sampling of information and bottom-up processes can be salient features of the sensory information, strengthened by emotional/informational factors. The sensory information with the highest gain is transduced (1) through the attention filter and the rest are attenuated (0).

Newer models were presented afterwards, for instance by Treisman (1964), to explain the gaps left by this model. In Triesman’s model, the brain would integrate a separate attenuator which is tasked with keeping the gain scores. The sensory information that passes the gain threshold is then brought to active attention. Both of those models assume that there is a filter that includes or removes specific information based on a gain function. The models were critiqued for their hardships explaining certain phenomena such as the cocktail-party problem (Cherry, 1953). This problem points out that a person is more likely to respond to their own names being called in a party even though there is ample noise. A recent study by Mesgarani & Chang (2012) investigated selective hearing in a noisy situation, not for evolutionarily important salient stimuli such as a person’s own name but for more typical speech patterns, concluding that different areas in the auditory cortex are activated for each of the parallel sounds. By changing the attended speech of choice, the listener switched the activated area in the auditory cortex. This shows that processing for each of the attended stimuli are happening in separate locations and hence refutes models of selective attention that assume all perceptive processes similar.

Another issue that was brought up for these filter models of attention was by on the same experiment as Cherry 1953, but showing that some of the subjects had recall of the unattended stimuli when it connected contextually with the attended stimulus and was recalled for up to 15 seconds (Wood & Cowan, 1995, p. 195). This led to the popularity of some models of attention that were brought forward in the 1960s, postulating that attention is a matter of limited resources, and the sensory information will not interfere so long as they are using different banks of resources (Navon & Gopher, 1979; Wickens, 2002). The experimental support for the resource theory of attention includes Duncan, Martens, & Ward (1997) where presenting one auditory and one visual stimulus has much less interference effect than presenting two auditory or two visual stimuli. Later experiments also confirmed its result that the visual and auditory stimuli use separate attentional pools that are not shared (Arrighi, Lunardi, & Burr, 2011). Other similar experiments have been done with different combinations of sensory information such as Wahn & König (2016) where visual and tactile attention are shown to be separate in attentional resources. In this experiment, we seek to divide the attention between auditory language perception and mathematical perception to observe their interference patterns.

Methods:

71 undergraduate students (47 female + 24 male) at the University of Toronto took part in this experiment (mean age 20.13 ± 1.40 s.d., years in university 2.18 ± 0.81 s.d.). The informed consent was acquired through an online portal and the experiment was conducted using the TopHat portal (Top Hat Inc., Toronto, ON, CA) during a second-year cognitive psychology lecture. The experiment was conducted by the lecturer. They were then divided into a divided attention (DA) group (nDA = 31), and a Full Attention (FA) group (nFA = 42).

The students observed a sequence of 57 words on a Panasonic PT-RQ22K projector (Panasonic Corp., Kadoma, Osaka, Japan) using Microsoft Office 2010 PowerPoint (Microsoft Corp., Redmond, WA, USA). All the presented words were accompanied by a coloured dot. In 50 out of the 57 instances the dot was green and in the other 7 it was red (Spataro, Mulligan, & Rossi-Arnaud, 2013). Each word was presented for a period of 1 second. 500 milliseconds after the word appeared, the coloured dot was presented, which stayed on for 250 milliseconds. The FA group was only instructed to attend to the presented sequence of words whereas the DA group was instructed to think about the name of the colour of the accompanying dot.

After the encoding phase was finished, the participants were shown a string of words on the TopHat interface, where they answered yes/no to whether they have seen the word, on their personal device (phone, tablet, or laptop). The data was collected using TopHat and then analyzed using SPSS (IBM Inc. Armonk, NY, USA). An independent t-test was done for each set of trials (for green trials altogether and red trials altogether) to see the percentage of correct recall in each of the cases.

results

The independent sample t-tests were undertaken to compare the rate of correct recalls in DA and FA during the green and red trials. In the green trials, the DA showed a remarkably lower recall rate than the FA (meanDA = 3.45 ± 1.71, meanFA = 4.33 ± 1.59, p-value ≈ 0.03, df = 71, t-statistic = -2.27). But in the red trials the tables turned, and no significant difference was observed between the FA and DA groups (meanDA = 4.94 ± 1.81, meanFA= 4.79 ± 1.51; p-value ≈ 0.701, df = 71, t-statistic = 0.386).

discussion

This experiment shows a similar response to encoding the words in red trials between the DA and FA groups. This supports the limited resource models of attention that posit each sensory or cognitive system has a specific attention system which is limited in capacity. When there are several features competing for the same resource, we might see a decrease in the quality and quantity of performance (Wickens, 2002). Both remembering a word and recounting a word (the name of the colour in this case) need to engage the lexical representations of the brain. This causes a different outcome for the normal encoding during the green trials. But in the red trials, the oddball detection system is also engaged in the encoding. Extensive research has gone into oddball detection in the brain (since Donald & Goff, 1971). It has been demonstrated that the parietal regions of the brain respond positively to observing visual or hearing auditory stimuli with a surprising feature, about 300 milliseconds after the surprising stimulus (oddball) is presented. This brainwave is titled P3 or P300, and is robustly observed in many different experiments (reviewed by Huang, Chen, & Zhang, 2015) and even in nonhuman primates (Arthur & Starr, 1984; Paller, Zola-Morgan, Squire, & Hillyard, 1988). Hence we can draw the conclusion that the short-term memory system is separate than the region that codes for novelty (as previously demonstrated by Barbeau, Chauvel, Moulin, Regis, & Liégeois-Chauvel, 2017). Further research can be done on similar structures in auditory stimuli (e.g. where there are words accompanied by low- or high-pitched tones, where one of the tones is frequent ant the other is the oddball).

However, it is worth noting that the undertaking of such an experiment during a classroom has clear hinderances. It is possible that the students might be confused due to the division of attention with other collegiate commitments. We can observe this possible confusion by the fact that the DA and FA groups total to more population (nDA + nFA = 31 + 42 = 73) than the whole classroom (n = 71); possibly, more than one of the students had responded to both the DA and FA sections. It is nearly impossible to find out the anomalous entries for removal, as different combinations of the ground truths can give rise to this observation. Next experiments can attempt to control the populations taking part in the experiment and control the background activity or noise involved in the performance as well.

To recapitulate, this experiment demonstrates that the recall performance is worse when there is more than one factor competing for a similar resource. It further confirms the separation of oddball and normal memory encoding.

references:

Arrighi, R., Lunardi, R., & Burr, D. (2011). Vision and audition do not share attentional resources in sustained tasks. Frontiers in Psychology, 2, 56. https://doi.org/10.3389/fpsyg.2011.00056

Arthur, D. L., & Starr, A. (1984). Task-relevant late positive component of the auditory event-related potential in monkeys resembles P300 in humans. Science, 223(4632), 186–188. https://doi.org/10.1126/science.6691145

Barbeau, E. J., Chauvel, P., Moulin, C. J. A., Regis, J., & Liégeois-Chauvel, C. (2017). Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms. Hippocampus, 27(4), 405–416. https://doi.org/10.1002/hipo.22699

Broadbent, D. E. (1958). Perception and Communication. Oxford University Press.

Cherry, E. C. (1953). Some Experiments on the Recognition of Speech, with One and with Two Ears. The Journal of the Acoustical Society of America, 25(5), 975–979. https://doi.org/10.1121/1.1907229

Descartes, R. (1641). Meditations On First Philosophy (E. Haldane, Trans.).

Donald, M. W., & Goff, W. R. (1971). Attention-related increases in cortical responsivity dissociated from the contingent negative variation. Science (New York, N.Y.), 172(3988), 1163–1166. https://doi.org/10.1126/science.172.3988.1163

Duncan, J., Martens, S., & Ward, R. (1997). Restricted attentional capacity within but not between sensory modalities. Nature, 387(6635), 808–810. https://doi.org/10.1038/42947

Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2014). Cognitive neuroscience: The biology of the mind (Fourth edition). New York, N.Y: W. W. Norton & Company, Inc.

Huang, W.-J., Chen, W.-W., & Zhang, X. (2015). The neurophysiology of P 300—An integrated review. European Review for Medical and Pharmacological Sciences, 19(8), 1480–1488.

Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233–236. https://doi.org/10.1038/nature11020

Mole, C. (2017). Attention. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2017). Retrieved from https://plato.stanford.edu/archives/fall2017/entries/attention/

Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological Review, 86(3), 214–255. https://doi.org/10.1037/0033-295X.86.3.214

Paller, K. A., Zola-Morgan, S., Squire, L. R., & Hillyard, S. A. (1988). P3-like brain waves in normal monkeys and in monkeys with medial temporal lesions. Behavioral Neuroscience, 102(5), 714–725. https://doi.org/10.1037/0735-7044.102.5.714

Spataro, P., Mulligan, N. W., & Rossi-Arnaud, C. (2013). Divided attention can enhance memory encoding: The attentional boost effect in implicit memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1223–1231. https://doi.org/10.1037/a0030907

Treisman, Anne. M. (1964). SELECTIVE ATTENTION IN MAN. British Medical Bulletin, 20(1), 12–16. https://doi.org/10.1093/oxfordjournals.bmb.a070274

Wahn, B., & König, P. (2016). Attentional Resource Allocation in Visuotactile Processing Depends on the Task, But Optimal Visuotactile Integration Does Not Depend on Attentional Resources. Frontiers in Integrative Neuroscience, 10. https://doi.org/10.3389/fnint.2016.00013

Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177. https://doi.org/10.1080/14639220210123806

Wood, N. L., & Cowan, N. (1995). The cocktail party phenomenon revisited: Attention and memory in the classic selective listening procedure of Cherry (1953). Journal of Experimental Psychology: General, 124(3), 243–262. https://doi.org/10.1037/0096-3445.124.3.243

 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy