INTRODUCTION
Unitary matrix
In mathematics, a unitary matrix is an n by n complex matrix U satisfying the condition where , is the identity matrix in n dimensions and , is the conjugate transpose (also called the Hermitian adjoint) of U. Note this condition says that a matrix U is unitary if and only if it has an inverse which is equal to its conjugate transpose
A unitary matrix in which all entries are real is an orthogonal matrix. Just as an orthogonal matrix G preserves the (real) inner product of two real vectors,
so also a unitary matrix U satisfies
for all complex vectors x and y, where stands now for the standard inner product on
If is an n by n matrix then the following are all equivalent conditions:
is unitary
is unitary
the columns of form an orthonormal basis of with respect to this inner product
the rows of form an orthonormal basis of with respect to this inner product
is an isometry with respect to the norm from this inner product
U is a normal matrix with eigenvalues lying on the unit circle.
A square matrix is a unitary matrix if
where denotes the conjugate transpose and is the matrix inverse. For example,
is a unitary matrix.
Unitary matrices leave the length of a complex vector unchanged.
For real matrices, unitary is the same as orthogonal. In fact, there are some similarities between orthogonal matrices and unitary matrices. The rows of a
unitary matrix are a unitary basis. That is, each row has length one, and their Hermitian inner product is zero. Similarly, the columns are also a unitary basis. In fact, given any unitary basis, the matrix whose rows are that basis is a unitary matrix. It is automatically the case that the columns are another unitary basis.
The definition of a unitary matrix guarantees that
where is the identity matrix. In particular, a unitary matrix is always invertible, and . Note that transpose is a much simpler computation than inverse. A similarity transformation of a Hermitian matrix with a unitary matrix gives
Unitary matrices are normal matrices. If is a unitary matrix, then the permanen
The unitary matrices are precisely those matrices which preserve the Hermitian inner product
Also, the norm of the determinant of is . Unlike the orthogonal matrices, the unitary matrices are connected. If then is a special unitary matrix.
The product of two unitary matrices is another unitary matrix. The inverse of a unitary matrix is another unitary matrix, and identity matrices are unitary. Hence the set of unitary matrices form a group, called the unitary group.
Properties Of unitary matrix
All unitary matrices are normal, and the spectral theorem therefore applies to them. Thus every unitary matrix U has a decomposition of the form
Where V is unitary, and Σ is diagonal and unitary. That is, a unitary matrix is diagonalizable by a unitary matrix.
For any unitary matrix U, the following hold:
U is invertible.
| det (U) | = 1.
is unitary.
U preserves length
U has complex eigenvalues of modulus 1.
It follows from the isometry property that all eigenvalues of a unitary matrix are complex numbers of absolute value 1 (i.e., they lie on the unit circle centered at 0 in the complex plane).
For any n, the set of all n by n unitary matrices with matrix multiplication forms a group.
Any matrix is the average of two unitary matrices. As a consequence, every matrix M is a linear combination of two unitary matrices (depending on M, of course).
Unitary group
In mathematics, the unitary group of degree n, denoted U(n), is the group of n×n unitary matrices, with the group operation that of matrix multiplication. The unitary group is a subgroup of the general linear group GL (n, C).
In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group.
The unitary group U(n) is a real Lie group of dimension n2. The Lie algebra of U(n) consists of complex n×n skew-Hermitian matrices, with the Lie bracket given by the commutator.
The general unitary group (also called the group of unitary similitude) consists of all matrices A such that A * A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix.
We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.
Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.
Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.
Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.
Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.
Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.
We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.
Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.
You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.
From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.
Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.
Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.
You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.
You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.
Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.
We create perfect papers according to the guidelines.
We seamlessly edit out errors from your papers.
We thoroughly read your final draft to identify errors.
Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!
Dedication. Quality. Commitment. Punctuality
Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.
We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.
We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.
We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.
We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.