Determination of the Focal Length of a Convex Lens

AIM: To determine the focal length of converging lens and it’s radius of curvature.
HYPOTHESIS: The relationship between u and v and the focal length f for a convex lens is given by . Where f is the focal length, u is the distance between the object and the lens v is the distance between the image and the lens. Real and Virtual Images: Lenses produce images by refraction that are said to be either real or virtual.

Don't use plagiarized sources. Get Your Custom Essay on
Determination of the Focal Length of a Convex Lens
Just from $13/Page
Order Essay

Real images are created by the convergence of rays and can be projected onto a screen; real images form on the side of the lens that is opposite to the object and by convention have a positive image distance value;
Virtual images are formed by the apparent extrapolation of diverging rays and cannot be formed on a screen, whereas virtual images form on the same side of the lens as the object and have a negative image distance value.[1]

[2]
BACKGROUND: For a thin double convex lens,refractionacts to focus all parallel rays to a point referred to as the principal focal point. The distance from the lens to that point is the principal focal length f of the lens. Below is the derivation of the lens formula
Following graphic illustrates a simple lens model:
[3]
where,
h= height of the object
h’= height of the object projected in an image
G and C = focal points
f= focal distance
u= Distance between the object and the focal point
O= Centre of the lens
v= Distance between the centre of the lens and image plane
Assumptions

Lens is very thin
Optical axis is perpendicular to image plane

Proving is true.
Proof
In ΔAHO,
In ΔEDO,

—– (1)
In ΔBOC,
In ΔEDC,

—— (2)
Equating equations (1) and (2),

Dividing both sides by v,

Hence the formula is proved.
VARIABLES:
Independent: Distance between the candle and the lens
Dependent: Distance (v) from the image to the lens
Control:

This experiment was conducted in an almost dark room.
Same sheet of paper used as the screen.
A stable candle flame
The time taken for a sharp and focused image to settle
The size of the candle.

METHOD FOR CONTROLLING VARIABLES: Made sure that the room was sufficiently dark enough to carry out this experiment as smoothly as possible without any entrance of light from the outside. So I pulled down the blinds of the windows and also made sure that there was no draught present in the room that can make the candle flame unstable. Moreover, I waited for around 6-7 seconds for the image to be seen as sharp and focused. And throughout this experiment I used candles of the same make and size.
APPARATUS REQUIRED:

2 meter rules
A white screen
Candle
Convex lens

PROCEDURE:
I divided this experiment in to 2 parts, A and B. In part A, I experimented using a single lens at a time, while in part B, I used 2 lens in contact at a time.
Part A:

Firstly I set up the apparatus as shown in Figure 1 above by making the distances v and u the same. So the image observed on a plain white screen was focused and clear
Recorded the value of the lengths u and v and thereby marking these original points using a chalk on the bench.
Then I adjusted the length of u by moving it away from the lens by 5cm. Consequently, I adjusted the length of v until a sharp and focused image was seen.
Recorded this distance of u and v
Repeated step 3 – 4 for 7 different values of u by increasing the distance by 5 cm in each step. And recorded the values of u and v for every increment.
Then I placed the candle and the screen back in their original marked positions.
Finally, repeated the steps 1-8 by using different convex lenses A, B, C, D and E.

Figure 1: Setup of the apparatus for Part A
Part B:

Firstly I set up the apparatus as shown in Figure 2 by making the distances v and u the same. So the image observed on a plain white screen was focused and clear
Recorded the value of the lengths u and v and thereby marking these original points using a chalk on the bench.
Then I adjusted the length of u by moving it away from the lens by 5cm. Consequently, I adjusted the length of v until a sharp and focused image was seen. Recorded this distance of u and v
Repeated step 3 – 4 for 4 different values of u by increasing the distance by 5 cm in each step. And recorded the values of u and v for every increment.
Repeated the above steps 1-5, thrice.

Figure 2: Setup of the apparatus for Part B
DATA COLLECTION AND PROCESSING:

Table 1: Data collected for convex lens A

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

25.1

20.0

21.5

25.0

17.0

30.0

14.7

35.0

14.2

40.0

13.6

45.0

13.0

Table 2: Data collected for convex lens B

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

28.9

20.0

24.2

25.0

19.2

30.0

15.8

35.0

13.9

40.0

13.2

45.0

12.7

Table 3: Data collected for convex lens C

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

24.6

20.0

21.1

25.0

16.5

30.0

14.3

35.0

13.9

40.0

13.4

45.0

12.9

Table 4: Data collected for convex lens D

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

28.7

20.0

23.6

25.0

17.4

30.0

14.9

35.0

14.0

40.0

13.4

45.0

13.0

Table 5: Data collected for convex lens E

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

15.0

25.8

20.0

20.1

25.0

15.4

30.0

14.3

35.0

13.9

40.0

13.1

45.0

12.5

Table 6: Data collected for Trial 1

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

30.0

60

40.0

38

50.0

33

60.0

30.1

Table 7: Data collected for Trial 2

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

30.0

58.7

40.0

37.8

50.0

32.6

60.0

30

Table 8: Data collected for Trial 3

u (distance between the lens and candle)+ 0.1cm

v (distance between the lens and screen)+ 0.1cm

30.0

61.5

40.0

38.7

50.0

33.2

60.0

29.6

Using the formula, R = 2f I can calculate the value for the radius of curvature. The value of f can be found using the equation.

Table 9:Data processing for convex lens A

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

25.1

9.39

18.78

-0.62

0.38603

20

21.5

10.36

20.72

0.35

0.12328

25

17.0

10.12

20.24

0.11

0.01182

30

14.7

9.87

19.73

-0.14

0.02090

35

14.2

10.10

20.20

0.09

0.00833

40

13.6

10.15

20.30

0.14

0.01930

45

13.0

10.09

20.17

0.08

0.00576

 
 

Mean(f) = 10.01

 
 

Standard deviation: δm = = = 0.30967
Therefore, the focal length is 10.01+ 0.31 cm
The % error = = 3.1%
Table 10:Data processing for convex lens B

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

28.9

9.87

19.75

-0.38

0.14761

20

24.2

10.95

21.90

0.69

0.47792

25

19.2

10.86

21.72

0.60

0.36098

30

15.8

10.35

20.70

0.09

0.00818

35

13.9

9.95

19.90

-0.31

0.09612

40

13.2

9.92

19.85

-0.33

0.11162

45

12.7

9.90

19.81

-0.35

0.12548

 
 

Mean(f) =
10.26

 
 

Standard deviation: δm = = = 0.47044
Therefore, the focal length is 10.26+ 0.47 cm
The % error = = 4.6%
Table 11:Data processing for convex lens C

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

24.6

9.32

18.64

-0.57

0.32564

20

21.1

10.27

20.54

0.38

0.14350

25

16.5

9.94

19.88

0.05

0.00259

30

14.3

9.68

19.37

-0.20

0.04197

35

13.9

9.95

19.90

0.06

0.00361

40

13.4

10.04

20.07

0.15

0.02209

45

12.9

10.03

20.05

0.14

0.01879

 
 

Mean(f) = 9.89

 
 

Standard deviation: δm = = = 0.30500
Therefore, the focal length is 9.89+ 0.31 cm
The % error = = 3.1%
Table 12:Data processing for convex lens D

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

28.7

9.85

19.70

-0.29

0.08633

20

23.6

10.83

21.65

0.68

0.46324

25

17.4

10.26

20.52

0.11

0.01308

30

14.9

9.96

19.91

-0.19

0.03595

35

14.0

10.00

20.00

-0.15

0.02105

40

13.4

10.04

20.07

-0.11

0.01158

45

13.0

10.09

20.17

-0.06

0.00346

 
 

Mean(f) = 10.15

 
 

Standard deviation: δm = = = 0.32524
Therefore, the focal length is 10.15+ 0.33 cm
The % error = = 3.2%
Table 13:Data processing for convex lens E

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

15

25.8

9.49

18.97

-0.28

0.07574

20

20.1

10.02

20.05

0.26

0.06992

25

15.4

9.53

19.06

-0.23

0.05327

30

14.3

9.68

19.37

-0.08

0.00586

35

13.9

9.95

19.90

0.19

0.03548

40

13.1

9.87

19.74

0.11

0.01159

45

12.5

9.78

19.57

0.02

0.00049

 
 

Mean(f) = 9.76

 
 

Standard deviation: δm = = = 0.20508
Therefore, the focal length is 9.76 + 0.20508 cm
The % error = = 2.1%

Table 14: Data processing for Trial 1

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

30

60.0

20.00

40.00

0.15

0.02168

40

38.0

19.49

38.97

-0.37

0.13366

50

33.0

19.88

39.76

0.03

0.00072

60

30.1

20.04

40.09

0.19

0.03672

 
 

Mean(f) = 19.85

 
 

Standard deviation: δm = = = 0.43905
Therefore, the focal length is 19.85 + 0.44cm
The % error = = 2.2%
Table 15: Data processing for Trial 2

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

30

58.7

19.85

39.71

0.10

0.00961

40

37.8

19.43

38.87

-0.32

0.10300

50

32.6

19.73

39.47

-0.02

0.00047

60

30.0

20.00

40.00

0.24

0.05984

 
 

Mean(f) = 19.76

 
 

Standard deviation: δm = = = 0.16976
Therefore, the focal length is 19.76 + 0.17 cm
The % error = = 0.9%
Table 16: Data processing for Trial 3

u (distance between the lens and candle) + 0.1cm

v (distance between the lens and screen) + 0.1cm

Focal length (f) (cm)

Radius of curvature (R) (cm)

(f-x)

(f-x)2

30

61.5

20.16

40.33

0.26

0.06875

40

38.7

19.67

39.34

-0.23

0.05387

50

33.2

19.95

39.90

0.05

0.00252

60

29.6

19.82

39.64

-0.08

0.00645

 
 

Mean(f) = 19.90

 
 

Standard deviation: δm = = = 0.14809
Therefore, the focal length is 19.90 + 0.15 cm
The % error = = 2.2%
CALCULATIONS AND DATA PRESENTATION:
Table 17: Data presentation for Convex lens A

 

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Our Services

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code Happy