Management Information Systems

I attached Part 9, part 10, part 11 questions in Project Paper. Need to answer those questions in 3-4 pages like a paragraph. 

Powered by TCPDF (

Don't use plagiarized sources. Get Your Custom Essay on
Management Information Systems
Just from $13/Page
Order Essay

Brief Contents
PART ONE Organizations, Management, and the Networked
Enterprise 29
Chapter 1 Information Systems in Global Business Today 30
Chapter 2 Global E-business and Collaboration 68
Chapter 3 Information Systems, Organizations, and Strategy 106
Chapter 4 Ethical and Social Issues in Information Systems 150
PART TWO Information Technology Infrastructure 191
Chapter 5 IT Infrastructure and Emerging Technologies 192
Chapter 6 Foundations of Business Intelligence: Databases and Information
Management 238
Chapter 7 Telecommunications, the Internet, and Wireless Technology 276
Chapter 8 Securing Information Systems 320
PART THREE Key System Applications for the Digital Age 363
Chapter 9 Achieving Operational Excellence and Customer Intimacy: Enterprise
Applications 364
Chapter 10 E-commerce: Digital Markets, Digital Goods 398
Chapter 11 Managing Knowledge 444
Chapter 12 Enhancing Decision Making 480
PART FOUR Building and Managing Systems 513
Chapter 13 Building Information Systems 514
Chapter 14 Managing Projects 554
Chapter 15 Managing Global Systems 588
Glossary 619
Indexes 631

Complete Contents
PART ONE Organizations, Management, and the Networked
Enterprise 29
Chapter 1 Information Systems in Global Business Today 30
Opening Case: Rugby Football Union Tries Big Data 31
1-1 How are information systems transforming business, and why are they so
essential for running and managing a business today? 33
How Information Systems Are Transforming Business 34 • What’s New in
Management Information Systems? 35
Interactive Session: Management The Mobile Pocket Office 37
Globalization Challenges and Opportunities: A Flattened World 39 • The
Emerging Digital Firm 40 • Strategic Business Objectives of Information
Systems 41
1-2 What is an information system? How does it work? What are its
management, organization, and technology components? Why are
complementary assets essential for ensuring that information systems
provide genuine value for organizations? 44
What Is an Information System? 44 • Dimensions of Information Systems 46
Interactive Session: Technology Digital Transformation of Healthcare at
Singapore’s JurongHealth Services 51
It Isn’t Just Technology: A Business Perspective on Information
Systems 52 • Complementary Assets: Organizational Capital and the Right
Business Model 54
1-3 What academic disciplines are used to study information systems,
and how does each contribute to an understanding of information
systems? 56
Technical Approach 56 • Behavioral Approach 57 • Approach of This Text:
Sociotechnical Systems 58
Review Summary 59 • Key Terms 60 • Review Questions 60 • Discussion
Questions 61
Hands-On MIS Projects 61
Collaboration and Teamwork Project 62
Case Study: Are Farms Becoming Digital Firms? 62
References: 66

6 Contents
Chapter 2 Global E-business and Collaboration 68
Opening Case: Enterprise Social Networking Helps ABB Innovate and Grow 69
2-1 What are business processes? How are they related to information
systems? 71
Business Processes 71 • How Information Technology Improves Business
Processes 73
2-2 How do systems serve the different management groups in a business,
and how do systems that link the enterprise improve organizational
performance? 74
Systems for Different Management Groups 74 • Systems for Linking the
Enterprise 79
Interactive Session: Organizations New Systems Help Plan International
Manage Its Human Resources 80
E-business, E-commerce, and E-government 84
2-3 Why are systems for collaboration and social business so important, and
what technologies do they use? 85
What Is Collaboration? 85 • What Is Social Business? 86 • Business Benefits
of Collaboration and Social Business 87 • Building a Collaborative Culture and
Business Processes 87 • Tools and Technologies for Collaboration and Social
Business 89
Interactive Session: Technology Collaborating the Glasscubes Way 91
2-4 What is the role of the information systems function in a business? 95
The Information Systems Department 96 • Organizing the Information Systems
Function 97
Review Summary 98 • Key Terms 99 • Review Questions 99 • Discussion
Questions 100
Hands-On MIS Projects 100
Collaboration and Teamwork Project 101
Case Study: Social Business: Full Speed Ahead or Proceed with Caution? 101
References: 104
Chapter 3 Information Systems, Organizations, and Strategy 106
Opening Case: Tate & Lyle Devise a Global IT Strategy 107
3-1 Which features of organizations do managers need to know about to
build and use information systems successfully? 109
What Is an Organization? 110 • Features of Organizations 112
3-2 What is the impact of information systems on organizations? 117
Economic Impacts 117 • Organizational and Behavioral Impacts 118
Interactive Session: Management Can Technology Replace Managers? 120
The Internet and Organizations 122 • Implications for the Design and
Understanding of Information Systems 122

Contents 7
3-3 How do Porter’s competitive forces model, the value chain model,
synergies, core competencies, and network economics help companies
develop competitive strategies using information systems? 123
Porter’s Competitive Forces Model 123 • Information System Strategies for
Dealing with Competitive Forces 125 • The Internet’s Impact on Competitive
Advantage 128 • The Business Value Chain Model 129
Interactive Session: Technology Smart Products, Smart Companies 130
Synergies, Core Competencies, and Network-Based Strategies 134
3-4 What are the challenges posed by strategic information systems, and
how should they be addressed? 138
Sustaining Competitive Advantage 138 • Aligning IT with Business
Objectives 139 • Managing Strategic Transitions 140
Review Summary 140 • Key Terms 141 • Review Questions 141 • Discussion
Questions 142
Hands-On MIS Projects 142
Collaboration and Teamwork Project 143
Case Study: Deutsche Bank: The Cost of Legacy Systems 144
References: 147
Chapter 4 Ethical and Social Issues in Information Systems 150
Opening Case: The Dark Side of Big Data 151
4-1 What ethical, social, and political issues are raised by information
systems? 153
A Model for Thinking About Ethical, Social, and Political Issues 155 • Five Moral
Dimensions of the Information Age 156 • Key Technology Trends that Raise
Ethical Issues 156
4-2 What specific principles for conduct can be used to guide ethical
decisions? 158
Basic Concepts: Responsibility, Accountability, and Liability 159 • Ethical
Analysis 160 • Candidate Ethical Principles 160 • Professional Codes of
Conduct 161 • Some Real-World Ethical Dilemmas 161
4-3 Why do contemporary information systems technology and the Internet
pose challenges to the protection of individual privacy and intellectual
property? 162
Information Rights: Privacy and Freedom in the Internet Age 162 • Property
Rights: Intellectual Property 169
4-4 How have information systems affected laws for establishing
accountability and liability and the quality of everyday life? 172
Computer-Related Liability Problems 173 • System Quality: Data Quality and
System Errors 174 • Quality of Life: Equity, Access, and Boundaries 174
Interactive Session: Technology Monitoring in the Workplace 178
Health Risks: RSI, CVS, and Cognitive Decline 180
Interactive Session: Organizations Are We Relying Too Much on Computers to
Think for Us? 181
Review Summary 183 • Key Terms 184 • Review Questions 184 • Discussion
Questions 185
Hands-On MIS Projects 185

8 Contents
Collaboration and Teamwork Project 186
Case Study: Facebook Privacy: What Privacy? 186
References: 190
PART TWO Information Technology Infrastructure 191
Chapter 5 IT Infrastructure and Emerging Technologies 192
Opening Case: EasyJet Flies High with Cloud Computing 193
5-1 What is IT infrastructure, and what are the stages and drivers of IT
infrastructure evolution? 195
Defining IT Infrastructure 195 • Evolution of IT Infrastructure 197 • Technology
Drivers of Infrastructure Evolution 201
5-2 What are the components of IT infrastructure? 206
Computer Hardware Platforms 207 • Operating System Platforms 208
• Enterprise Software Applications 208 • Data Management and Storage 209
• Networking/Telecommunications Platforms 209 • Internet Platforms 209
• Consulting and System Integration Services 210
5-3 What are the current trends in computer hardware platforms? 210
The Mobile Digital Platform 210
Interactive Session: Technology Wearable Computers Change How We Work 211
Consumerization of IT and BYOD 212 • Quantum Computing 213
• Virtualization 213 • Cloud Computing 213
Interactive Session: Organizations Glory Finds Solutions in the Cloud 216
Green Computing 219 • High-Performance and Power-Saving Processors 220
5-4 What are the current computer software platforms and trends? 220
Linux and Open Source Software 220 • Software for the Web: Java, HTML, and
HTML5 221 • Web Services and Service-Oriented Architecture 222 • Software
Outsourcing and Cloud Services 224
5-5 What are the challenges of managing IT infrastructure and management
solutions? 226
Dealing with Platform and Infrastructure Change 226 • Management and
Governance 227 • Making Wise Infrastructure Investments 227
Review Summary 230 • Key Terms 231 • Review Questions 232 • Discussion
Questions 232
Hands-On MIS Projects 232
Collaboration and Teamwork Project 233
Case Study: BYOD: Business Opportunity or Big Headache? 234
References: 237
Chapter 6 Foundations of Business Intelligence: Databases
and Information Management 238
Opening Case: BAE Systems 239
6-1 What are the problems of managing data resources in a traditional file
environment? 241

Contents 9
File Organization Terms and Concepts 242 • Problems with the Traditional File
Environment 243
6-2 What are the major capabilities of database management systems
(DBMS), and why is a relational DBMS so powerful? 245
Database Management Systems 245 • Capabilities of Database Management
Systems 248 • Designing Databases 250 • Non-relational Databases and
Databases in the Cloud 253
6-3 What are the principal tools and technologies for accessing information
from databases to improve business performance and decision
making? 254
The Challenge of Big Data 254 • Business Intelligence Infrastructure 255
Interactive Session: Organizations Data-Driven Crime Fighting Goes Global
Analytical Tools: Relationships, Patterns, Trends 260 • Databases and the Web 263
6-4 Why are information policy, data administration, and data quality
assurance essential for managing the firm’s data resources? 264
Establishing an Information Policy 264 • Ensuring Data Quality 265
Interactive Session: Management Societe Generale Builds an Intelligent
System to Manage Information Flow 267
Review Summary 268 • Key Terms 269 • Review Questions 270 • Discussion
Questions 270
Hands-On MIS Projects 270
Collaboration and Teamwork Project 272
Case Study: Lego’s Enterprise Software Spurs Growth 272
References: 275
Chapter 7 Telecommunications, the Internet, and Wireless
Technology 276
Opening Case: Wireless Technology Makes Dundee Precious Metals Good as
Gold 277
7-1 What are the principal components of telecommunications networks and
key networking technologies? 279
Networking and Communication Trends 279 • What is a Computer
Network? 280 • Key Digital Networking Technologies 282
7-2 What are the different types of networks? 285
Signals: Digital Versus Analog 285 • Types of Networks 285 • Transmission
Media and Transmission Speed 287
7-3 How do the Internet and Internet technology work, and how do they
support communication and e-business? 287
What is the Internet? 288 • Internet Addressing and Architecture 288
Interactive Session: Organizations The Battle over Net Neutrality 291
Internet Services and Communication Tools 293
Interactive Session: Management Monitoring Employees on Networks:
Unethical or Good Business? 296
The Web 298

10 Contents
7-4 What are the principal technologies and standards for wireless
networking, communication, and Internet access? 306
Cellular Systems 306 • Wireless Computer Networks and Internet
Access 307 • RFID and Wireless Sensor Networks 309
Review Summary 312 • Key Terms 313 • Review Questions 314 • Discussion
Questions 314
Hands-On MIS Projects 314
Collaboration and Teamwork Project 315
Case Study: RFID Propels the Angkasa Library Management System 316
References: 319
Chapter 8 Securing Information Systems 320
Opening Case: Hackers Attack Singapore’s Telecom Infrastructure 321
8-1 Why are information systems vulnerable to destruction, error, and
abuse? 323
Why Systems are Vulnerable 323 • Malicious Software: Viruses, Worms, Trojan
Horses, and Spyware 326 • Hackers and Computer Crime 329 • Internal
Threats: Employees 333 • Software Vulnerability 334
8-2 What is the business value of security and control? 335
Legal and Regulatory Requirements for Electronic Records Management 335
• Electronic Evidence and Computer Forensics 336
8-3 What are the components of an organizational framework for security
and control? 337
Information Systems Controls 337 • Risk Assessment 338
Interactive Session: Organizations Stuxnet and the Changing Face of
Cyberwarfare 339
Security Policy 341 • Disaster Recovery Planning and Business Continuity
Planning 342 • The Role of Auditing 343
8-4 What are the most important tools and technologies for safeguarding
information resources? 343
Identity Management and Authentication 344 • Firewalls, Intrusion
Detection Systems, and Antivirus Software 346 • Securing Wireless
Networks 348 • Encryption and Public Key Infrastructure 348 • Ensuring
System Availability 350 • Security Issues for Cloud Computing and the Mobile
Digital Platform 351 • Ensuring Software Quality 352
Interactive Session: Technology BYOD: A Security Nightmare? 353
Review Summary 354 • Key Terms 355 • Review Questions 356 • Discussion
Questions 357
Hands-On MIS Projects 357
Collaboration and Teamwork Project 358
Case Study: Information Security Threats and Policies in Europe 358
References: 361

Contents 11
PART THREE Key System Applications for the Digital Age 363
Chapter 9 Achieving Operational Excellence and Customer Intimacy:
Enterprise Applications 364
Opening Case: Alimentation Couche-Tard Competes Using Enterprise Systems
9-1 How do enterprise systems help businesses achieve operational
excellence? 367
What are Enterprise Systems? 368 • Enterprise Software 369 • Business Value
of Enterprise Systems 370
9-2 How do supply chain management systems coordinate planning,
production, and logistics with suppliers? 371
The Supply Chain 371 • Information Systems and Supply Chain
Management 372 • Supply Chain Management Software 373 • Global Supply
Chains and the Internet 375 • Business Value of Supply Chain Management
Systems 376
9-3 How do customer relationship management systems help firms achieve
customer intimacy? 377
What is Customer Relationship Management? 377
Interactive Session: Management Unilever Unifies Globally with Enhanced
ERP 378
Customer Relationship Management Software 381 • Operational and Analytical
CRM 383
Interactive Session: Organizations DP World Takes Port Management to the
Next Level with RFID 385
Business Value of Customer Relationship Management Systems 387
9-4 What are the challenges that enterprise applications pose, and how are
enterprise applications taking advantage of new technologies? 387
Enterprise Application Challenges 387 • Next-Generation Enterprise
Applications 388
Review Summary 390 • Key Terms 391 • Review Questions 391 • Discussion
Questions 392
Hands-On MIS Projects 392
Collaboration and Teamwork Project 393
Case Study: Customer Relationship Management Helps Celcom Become Number
One 394
References: 397
Chapter 10 E-commerce: Digital Markets, Digital Goods 398
Opening Case: Uber Storms Europe: Europe Strikes Back 399
10-1 What are the unique features of e-commerce, digital markets, and digital
goods? 401

12 Contents
E-commerce Today 402 • The New E-commerce: Social, Mobile, Local 403
• Why E-commerce is Different 405 • Key Concepts in E-commerce: Digital
Markets and Digital Goods in a Global Marketplace 408
10-2 What are the principal e-commerce business and revenue models? 412
Types of E-commerce 412 • E-commerce Business Models 412 • E-commerce
Revenue Models 415
10-3 How has e-commerce transformed marketing? 417
Behavioral Targeting 418 • Social E-Commerce and Social Network
Marketing 422
Interactive Session: Technology Getting Social with Customers 424
10-4 How has e-commerce affected business-to-business transactions? 426
Electronic Data Interchange (EDI) 426 • New Ways of B2B Buying and
Selling 427
10-5 What is the role of m-commerce in business, and what are the most
important m-commerce applications? 429
Location-Based Services and Applications 430
Interactive Session: Organizations Can Instacart Deliver? 431
Other Mobile Commerce Services 433
10-6 What issues must be addressed when building an e-commerce
presence? 433
Develop an E-Commerce Presence Map 434 • Develop a Timeline:
Milestones 435
Review Summary 435 • Key Terms 436 • Review Questions 437 • Discussion
Questions 437
Hands-On MIS Projects 437
Collaboration and Teamwork Project 438
Case Study: Walmart and Amazon Duke It Out for E-commerce Supremacy 439
References: 442
Chapter 11 Managing Knowledge 444
Opening Case: Fiat: Real Time Management with Business Intelligence 445
11-1 What is the role of knowledge management systems in business? 447
Important Dimensions of Knowledge 448 • The Knowledge Management Value
Chain 449 • Types of Knowledge Management Systems 452
11-2 What types of systems are used for enterprise-wide knowledgge
management, and how do they provide value for businesses? 453
Enterprise Content Management Systems 453
Interactive Session: Organizations ECM in the Cloud Empowers New Zealand
Department of Conservation 454
Locating and Sharing Expertise 456 • Learning Management Systems 456
11-3 What are the major types of knowledge work systems, and how do they
provide value for firms? 457
Knowledge Workers and Knowledge Work 457 • Requirements of Knowledge
Work Systems 457 • Examples of Knowledge Work Systems 458
11-4 What are the business benefits of using intelligent techniques for
knowledge management? 460

Contents 13
Capturing Knowledge: Expert Systems 460
Interactive Session: Technology Will Robots Replace People in Manufacturing?
Organizational Intelligence: Case-Based Reasoning 464 • Fuzzy Logic
Systems 465 • Machine Learning 467 • Intelligent Agents 470 • Hybrid AI
Systems 471
Review Summary 472 • Key Terms 473 • Review Questions 473 • Discussion
Questions 474
Hands-On MIS Projects 474
Collaboration and Teamwork Project 475
Case Study: Knowledge Management and Collaboration at Tata Consulting
Services 475
References: 479
Chapter 12 Enhancing Decision Making 480
Opening Case: Roche: Managing Diabetes with Big Data and Mobile Apps 481
12-1 What are the different types of decisions, and how does the decision-
making process work? 483
Business Value of Improved Decision Making 483 • Types of
Decisions 483 • The Decision-Making Process 485
12-2 How do information systems support the activities of managers and
management decision making? 486
Managerial Roles 486 • Real-World Decision Making 488 • High-Velocity
Automated Decision Making 489
12-3 How do business intelligence and business analytics support decision
making? 490
What is Business Intelligence? 490 • The Business Intelligence
Environment 491 • Business Intelligence and Analytics Capabilities 492
Interactive Session: Technology Singapore Sports Institute Uses Analytics for
SEA Games 495
Management Strategies for Developing BI and BA Capabilities 497
Interactive Session: Management Britain’s National Health Service Jettisons
Choose and Book System 498
12-4 How do different decision-making constituencies in an organization
use business intelligence, and what is the role of information
systems in helping people working in a group make decisions more
efficiently? 500
Decision Support for Operational And Middle Management 500 • Decision
Support for Senior Management: Balanced Scorecard and Enterprise
Performance Management Methods 503 • Group Decision-Support Systems
(GDSS) 504
Review Summary 505 • Key Terms 506 • Review Questions 506 • Discussion
Questions 507
Hands-On MIS Projects 507
Collaboration and Teamwork Project 507
Case Study: GE Bets on the Internet of Things and Big Data Analytics 508
References: 512

14 Contents
PART FOUR Building and Managing Systems 513
Chapter 13 Building Information Systems 514
Opening Case: Angostura Builds a Mobile Sales System 515
13-1 How does building new systems produce organizational change? 517
Systems Development and Organizational Change 517 • Business Process
Redesign 519
13-2 What are the core activities in the systems development process? 522
Systems Analysis 523 • Systems Design 524 • Completing the Systems
Development Process 525
13-3 What are the principal methodologies for modeling and designing
systems? 528
Structured Methodologies 528 • Object-Oriented Development 530
• Computer-Aided Software Engineering 532
13-4 What are alternative methods for building information systems? 532
Traditional Systems Life Cycle 533 • Prototyping 534 • End-User
Development 535 • Application Software Packages, Software Services, and
Outsourcing 536
Interactive Session: Organizations Fujitsu Selects a SaaS Solution to Simplify
the Sales Process 537
13-5 What are new approaches for system building in the digital firm era? 540
Rapid Application Development (RAD), Agile Development, and DevOps 541 •
Component-Based Development and Web Services 542 • Mobile Application
Development: Designing for A Multiscreen World 542
Interactive Session: Technology Developing Mobile Apps: What’s Different 544
Review Summary 545 • Key Terms 547 • Review Questions 547 • Discussion
Questions 548
Hands-On MIS Projects 548
Collaboration and Teamwork Project 549
Case Study: ConAgra’s Recipe for a Better Human Resources System 550
References: 553
Chapter 14 Managing Projects 554
Opening Case: Intuit Counts on Project Management 555
14-1 What are the objectives of project management, and why is it so
essential in developing information systems? 557
Runaway Projects and System Failure 557 • Project Management
Objectives 558
14-2 What methods can be used for selecting and evaluating information
systems projects and aligning them with the firm’s business goals? 559
Management Structure for Information Systems Projects 559 • Linking Systems
Projects to The Business Plan 560 • Information Requirements and Key
Performance Indicators 562 • Portfolio Analysis 562 • Scoring Models 563
14-3 How can firms assess the business value of information systems? 564
Information System Costs and Benefits 564 • Capital Budgeting for Information
Systems 565 • Limitations of Financial Models 566

Contents 15
14-4 What are the principal risk factors in information systems projects, and
how can they be managed? 566
Dimensions of Project Risk 566 • Change Management and the Concept of
Implementation 567
Interactive Session: Management Can the National Health Service Go
Paperless? 568
Controlling Risk Factors 571
Interactive Session: Technology Hilti AG: Putting Things Together with New
Project Management Tools 575
Designing for the Organization 577 • Project Management Software Tools 577
Review Summary 578 • Key Terms 579 • Review Questions 579 • Discussion
Questions 580
Hands-On MIS Projects 580
Collaboration and Teamwork Project 581
Case Study: A Shaky Start for 581
References: 585
Chapter 15 Managing Global Systems 588
Opening Case: The Bel Group: Laughing All the Way to Success 589
15-1 What major factors are driving the internationalization of business? 591
Developing an International Information Systems Architecture 592 • The Global
Environment: Business Drivers and Challenges 593 • State of the Art 596
15-2 What are the alternative strategies for developing global businesses? 597
Global Strategies and Business Organization 597 • Global Systems to Fit the
Strategy 598 • Reorganizing the Business 599
15-3 What are the challenges posed by global information systems and
management solutions for these challenges? 600
A Typical Scenario: Disorganization on a Global Scale 600 • Global Systems
Strategy 601 • The Management Solution: Implementation 603
15-4 What are the issues and technical alternatives to be considered when
developing international information systems? 604
Computing Platforms and Systems Integration 605 • Connectivity 605
Interactive Session: Organizations Indian E-commerce: Obstacles to
Opportunity 607
Software Localization 608
Interactive Session: Management Steelcase Designs Goes for Global Talent
Management 609
Review Summary 611 • Key Terms 612 • Review Questions 612 • Discussion
Questions 612
Hands-On MIS Projects 613
Collaboration and Teamwork Project 614
Case Study: Crocs Clambers to Global Efficiency 614
References: 618
Glossary 619
Indexes 631

Business Cases And Interactive Sessions
Here are some of the business firms you will find described in the cases and Interactive Sessions
of this book:
Chapter 1: Information Systems in Global Business Today
Rugby Football Union Tries Big Data
The Mobile Pocket Office
Digital Transformation of Healthcare at Singapore’s JurongHealth Services
Are Farms Becoming Digital Firms?
Chapter 2: Global E-Business and Collaboration
Enterprise Social Networking Helps ABB Innovate and Grow
New Systems Help Plan International Manage Its Human Resources
Collaborating the Glasscubes Way
Social Business: Full Speed Ahead or Proceed with Caution?
Chapter 3: Information Systems, Organizations, and Strategy
Tate & Lyle Devise a Global IT Strategy
Can Technology Replace Managers?
Smart Products, Smart Companies
Deutsche Bank: The Cost of Legacy Systems
Chapter 4: Ethical and Social Issues in Information Systems
The Dark Side of Big Data
Monitoring in the Workplace
Are We Relying Too Much on Computers to Think for Us?
Facebook Privacy: What Privacy?
Chapter 5: IT Infrastructure and Emerging Technologies
EasyJet Flies High with Cloud Computing
Wearable Computers Change How We Work
Glory Finds Solutions in the Cloud
BYOD: Business Opportunity or Big Headache?
Chapter 6: Foundations of Business Intelligence: Databases and Information Management
BAE Systems
Data-Driven Crime Fighting Goes Global
Societe Generale Builds an Intelligent System to Manage Information Flow
Lego’s Enterprise Software Spurs Growth
Chapter 7: Telecommunications, the Internet and Wireless Technology
Wireless Technology Makes Dundee Precious Metals Good as Gold
The Global Battle over Net Neutrality
Monitoring Employees on Networks: Unethical or Good Business?
RFID Propels the Angkasa Library Management System

Chapter 8: Securing Information Systems
Hackers Attack Singapore’s Telecom Infrastructure
Stuxnet and the Changing Face of Cyberwarfare
BYOD: A Security Nightmare?
Information Security Threats and Policies in Europe
Chapter 9: Achieving Operational Excellence and Customer Intimacy: Enterprise
Alimentation Couche-Tard Competes Using Enterprise Systems
Unilever Unifies Globally with Enhanced ERP
DP World Takes Port Management to the Next Level with RFID
Customer Relationship Management Helps Celcom Become Number One
Chapter 10: E-commerce: Digital Markets, Digital Goods
Uber Storms Europe: Europe Strikes Back
Getting Social with Customers
Can Instacart Deliver?
Walmart and Amazon Duke It Out for E-commerce Supremacy
Chapter 11: Managing Knowledge
Fiat: Real Time Management with Business Intelligence
ECM in the Cloud Empowers New Zealand Department of Conservation
Will Robots Replace People in Manufacturing?
Knowledge Management and Collaboration at Tata Consulting Services
Chapter 12: Enhancing Decision Making
Roche: Managing Diabetes with Big Data and Mobile Apps
Singapore Sports Institute Uses Analytics for SEA Games
Britain’s National Health Service Jettisons Choose and Book System
GE Bets on the Internet of Things and Big Data Analytics
Chapter 13: Building Information Systems
Angostura Builds a Mobile Sales System
Fujitsu Selects a SaaS Solution to Simplify the Sales Process
Developing Mobile Apps: What’s Different
ConAgra’s Recipe for a Better Human Resources System
Chapter 14: Managing Projects
Intuit Counts on Project Management
Can the National Health Service Go Paperless?
Hilti AG: Putting Things Together with New Project Management Tools
A Shaky Start for
Chapter 15: Managing Global Systems
The Bel Group: Laughing All the Way to Success
Indian E-commerce: Obstacles to Opportunity
Steelcase Designs Goes for Global Talent Management
Crocs Clambers to Global Efficiency
Business Cases and Interactive Sessions 17

The Global Edition is written for business school students in Europe, the
Middle East, South Africa, Australia, and the Pacific Asian region. Case studies
and examples focus on how firms in these regions use information systems.
We wrote this book for business school students who wanted an in-depth look
at how today’s business firms use information technologies and systems to
achieve corporate objectives. Information systems are one of the major tools
available to business managers for achieving operational excellence, developing
new products and services, improving decision making, and achieving competi-
tive advantage. Students will find here the most up-to-date and comprehensive
overview of information systems used by business firms today. After reading
this book, we expect students will be able to participate in, and even lead, man-
agement discussions of information systems for their firms.
When interviewing potential employees, business firms often look for new
hires who know how to use information systems and technologies for achiev-
ing bottom-line business results. Regardless of whether you are an accounting,
finance, management, operations management, marketing, or information sys-
tems major, the knowledge and information you find in this book will be valu-
able throughout your business career.
What’s New in This Edition
The 15th edition features all new opening, closing, and Interactive Session
cases. The text, figures, tables, and cases have been updated through September
2016 with the latest sources from industry and MIS research.
New Features
• New Conceptual Videos collection includes 45 conceptual videos of 3
to 5 minutes in length. Ken Laudon walks students through three of the
most important concepts in each chapter using a contemporary anima-
tion platform. Available only in the MyLab MIS digital edition
• New Video Cases collection: 36 video cases (two or more per chapter)
and 10 additional instructional videos covering key concepts and experi-
ences in the MIS world. Video Cases are listed at the beginning of each
• Learning Tracks: 47 Learning Tracks in MyLab MIS for additional cover-
age of selected topics.
New Topics
• Big Data and the Internet of Things: In-depth coverage of big data,
big data analytics, and the Internet of Things (IoT) in Chapters 1 , 6 ,
7 , and 12 . Includes big data analytics, analyzing IoT data streams,

Preface 19
Hadoop, in-memory computing, non-relational databases, and analytic
• Cloud Computing: Updated and expanded coverage of cloud computing
in Chapter 5 (IT infrastructure) with more detail on types of cloud ser-
vices, private and public clouds, hybrid clouds, managing cloud services,
and a new Interactive Session on using cloud services. Cloud computing
also covered in Chapter 6 (databases in the cloud), Chapter 8 (cloud secu-
rity), Chapter 9 (cloud-based CRM and ERP), Chapter 10 (e-commerce),
and Chapter 13 (cloud-based systems development).
• Social, Mobile, Local: New e-commerce content in Chapter 10 describ-
ing how social tools, mobile technology, and location-based services are
transforming marketing and advertising.
• Social Business: Expanded coverage of social business, introduced in
Chapter 2 and discussed in throughout the text. Detailed discussions of
enterprise (internal corporate) social networking as well as social net-
working in e-commerce.
• BYOD and mobile device management
• Smart products
• DevOps
• Zero-day vulnerabilities
• Machine learning
• Chatbots
• Near field communication (NFC)
• Native advertising
• Windows 10
• Microsoft Office 365
• Zero-day vulnerabilities
• Platforms
• Software-defined storage (SDS)
The 15th Edition: The Comprehensive Solution for the
MIS Curriculum
Since its inception, this text has helped to define the MIS course around the
globe. This edition continues to be authoritative but is also more customizable,
flexible, and geared to meeting the needs of different colleges, universities, and
individual instructors. Many of its learning tools are now available in digital
form. This book is now part of a complete learning package that includes the
core text, Video Case Package, and Learning Tracks.
The core text consists of 15 chapters with hands-on projects covering the
most essential topics in MIS. An important part of the core text is the Video
Case Study and Instructional Video Package: 36 video case studies (two to three
per chapter) plus 10 instructional videos that illustrate business uses of infor-
mation systems, explain new technologies, and explore concepts. Videos are
keyed to the topics of each chapter.
In addition, for students and instructors who want to go deeper into selected
topics, there are 47 Learning Tracks in MyLab MIS that cover a variety of MIS
topics in greater depth.

20 Preface
The CORE Text
The core text provides an overview of fundamental MIS concepts using an
integrated framework for describing and analyzing information systems. This
framework shows information systems composed of management, organiza-
tion, and technology elements and is reinforced in student projects and case
Chapter Organization
Each chapter contains the following elements:
• A Chapter Outline based on Learning Objectives
• Lists of all the Case Studies and Video Cases for each chapter
• A chapter-opening case describing a real-world organization to establish
the theme and importance of the chapter
• A diagram analyzing the opening case in terms of the management, orga-
nization, and technology model used throughout the text
• Two Interactive Sessions with Case Study Questions
• A Review Summary keyed to the Student Learning Objectives
• A list of Key Terms that students can use to review concepts
• Review questions for students to test their comprehension of chapter
• Discussion questions raised by the broader themes of the chapter
• A series of Hands-on MIS Projects consisting of two Management
Decision Problems, a hands-on application software project, and a project
to develop Internet skills
• A Collaboration and Teamwork Project to develop teamwork and presen-
tation skills with options for using open source collaboration tools
• A chapter-ending case study for students to apply chapter concepts
• Two assisted-graded writing questions with prebuilt grading rubrics
• Chapter references
• Improve customer
• Increase revenue
• Monitor service level
and costs
• Plan new IT
• Make IT infrastructure
• Create new services
and business
• On-premises
reservation system
• Microsoft Azure cloud
computing services
• Costly, unwieldy IT infrastructure
• Low-cost provider
• Highly competitive industry
Seat Allocation System
• Provide online seat selection
A diagram accompanying
each chapter-opening case
graphically illustrates how
management, organization,
and technology elements work
together to create an informa-
tion system solution to the
business challenges discussed
in the case.

Preface 21
Key Features
We have enhanced the text to make it more interactive, leading edge, and
appealing to both students and instructors. The features and learning tools are
described in the following sections.
Business-Driven with Real-World Business Cases and
The text helps students see the direct connection between information systems
and business performance. It describes the main business objectives driving the
use of information systems and technologies in corporations all over the world:
operational excellence, new products and services, customer and supplier inti-
macy, improved decision making, competitive advantage, and survival. In-text
examples and case studies show students how specific companies use informa-
tion systems to achieve these objectives.
We use only current (2016) examples from business and public organiza-
tions throughout the text to illustrate the important concepts in each chap-
ter. All the case studies describe companies or organizations that are familiar
to students, such as Nike, Rugby Football Union, Facebook, Walmart, Fiat,
Unilever, and GE.
There’s no better way to learn about MIS than by doing MIS! We provide differ-
ent kinds of hands-on projects where students can work with real-world busi-
ness scenarios and data and learn firsthand what MIS is all about. These proj-
ects heighten student involvement in this exciting subject.
• Online Video Case Package. Students can watch short videos online,
either in-class or at home or work, and then apply the concepts of the
book to the analysis of the video. Every chapter contains at least two
business video cases that explain how business firms and managers are
using information systems and explore concepts discussed in the chap-
ter. Each video case consists of one or more videos about a real-world
company, a background text case, and case study questions. These video
cases enhance students’ understanding of MIS topics and the relevance of
MIS to the business world. In addition, there are 10 Instructional Videos
that describe developments and concepts in MIS keyed to respective
• Online Conceptual Videos [the digital edition only]. Forty-five video
animations where the authors walk students through three concepts from
each chapter.
• Interactive Sessions. Two short cases in each chapter have been rede-
signed as Interactive Sessions to be used in the classroom (or on Internet
discussion boards) to stimulate student interest and active learning. Each
case concludes with case study questions. The case study questions pro-
vide topics for class discussion, Internet discussion, or written assign-
• Hands-On MIS Projects. Every chapter concludes with a Hands-On
MIS Projects section containing three types of projects: two Management
Decision Problems; a hands-on application software exercise using
Microsoft Excel, Access, or web page and blog creation tools; and a proj-
ect that develops Internet business skills. A Dirt Bikes USA running case
in MyLab MIS provides additional hands-on projects for each chapter.

22 Preface
Businesses of all sizes are finding Facebook, Twit-
ter, and other social media to be powerful tools for
engaging customers, amplifying product messages,
discovering trends and influencers, building brand
awareness, and taking action on customer requests
and recommendations. Half of all Twitter users rec-
ommend products in their tweets.
About 1.6 billion people use Facebook, and more
than 30 million businesses have active brand pages,
enabling users to interact with the brand through
blogs, comment pages, contests, and offerings on the
brand page. The “like” button gives users a chance to
share with their social network their feelings about
content and other objects they are viewing and web-
sites they are visiting. With like buttons on millions
of websites, Facebook can track user behavior on
other sites and then sell this information to market-
ers. Facebook also sells display ads to firms that
show up in the right column of users’ home pages
and most other pages in the Facebook interface such
as photos and apps.
Twitter has developed many new offerings to
interest advertisers, like “promoted tweets” and “pro-
moted trends.” These features give advertisers the
ability to have their tweets displayed more promi-
nently when Twitter users search for certain key-
words. Many big advertisers are using Twitter’s Vine
service, which allows users to share short, repeating
videos with a mobile-phone app or post them on
other platforms such as Facebook.
Lowe’s is using Facebook mobile video and Snap-
chat image messaging to help first-time millennial
home buyers learn home improvement skills. The
home improvement retailer launched a new series of
social videos in April 2016 to showcase spring clean-
ing and do-it-yourself projects. Lowe’s believes this
is a more immediate and interactive way to reach
Getting Social with Customers
Lowe’s “In-a-Snap” Snapchat series tries to inspire
young homeowners and renters to undertake sim-
ple home improvement projects such as installing
shelves to build a study nook. During the Lowe’s
Snapchat story, users can tap on the screen to put
a nail in a wall or chisel off an old tile. Lowe’s is
working on another series of video tutorials on Face-
book and Instagram called “Home School” that uses
drawings from chalk artists to animate maintenance
Lowe’s social media activities have helped
increase brand engagement. Although the company’s
social campaigns are designed to teach first-time
homeowners or young renters about home improve-
ment, the company is also hoping they will encour-
age consumers to think differently about the brand
beyond its products and services. Management
believes millennials who are becoming first-time
homeowners want to know the deeper meaning of
what a company is trying to stand for, not just the
products and services it offers.
An estimated 90 percent of customers are influ-
enced by online reviews, and nearly half of U.S.
social media users actively seek customer service
through social media. As a result, marketing is now
placing much more emphasis on customer satisfac-
tion and customer service. Social media monitoring
helps marketers and business owners understand
more about likes, dislikes, and complaints concern-
ing products, additional products or product modifi-
cations customers want, and how people are talking
about a brand (positive or negative sentiment).
General Motors (GM) has 26 full-time social media
customer care advisers for North America alone,
covering more than 150 company social channels
from GM, Chevrolet, Buick, GMC, and Cadillac, and
approximately 85 sites such as automotive enthusiast
Each chapter contains two
Interactive Sessions on
Management, Organizations,
or Technology using real-world
companies to illustrate chapter
concepts and issues.
Case Study Questions encour-
age students to apply chapter
concepts to real-world compa-
nies in class discussions, stu-
dent presentations, or writing
, ,
1. Assess the management, organization, and tech-
nology issues for using social media technology to
engage with customers.
2. What are the advantages and disadvantages of
using social media for advertising, brand building,
market research, and customer service?
3. Give an example of a business decision in this
case study that was facilitated by using social
media to interact with customers.
4. Should all companies use social media technology
for customer service and marketing? Why or why
not? What kinds of companies are best suited to
use these platforms?
• Collaboration and Teamwork Projects. Each chapter features a col-
laborative project that encourages students working in teams to use
Google Drive, Google Docs, or other open source collaboration tools.
The first team project in Chapter 1 asks students to build a collaborative
Google site.
Assessment and AACSB Assessment Guidelines
The Association to Advance Collegiate Schools of Business (AACSB) is a not-
for-profit corporation of educational institutions, corporations, and other orga-
nizations that seeks to improve business education primarily by accrediting uni-
versity business programs. As a part of its accreditation activities, the AACSB has

Preface 23
developed an Assurance of Learning Program designed to ensure that schools
do in fact teach students what they promise. Schools are required to state a clear
mission, develop a coherent business program, identify student learning objec-
tives, and then prove that students do in fact achieve the objectives.
We have attempted in this book to support AACSB efforts to encourage assess-
ment-based education. The back end papers of this edition identify student
learning objectives and anticipated outcomes for our Hands-On MIS projects.
The authors will provide custom advice on how to use this text in colleges with
different missions and assessment needs. Please e-mail the authors or contact
your local Pearson representative for contact information.
Management Decision Problems
11-8 U.S. Pharma Corporation is headquartered in New Jersey but has research sites in Germany, France, the
United Kingdom, Switzerland, and Australia. Research and development of new pharmaceuticals is key to
ongoing profits, and U.S. Pharma researches and tests thousands of possible drugs. The company’s
researchers need to share information with others within and outside the company, including the U.S.
Food and Drug Administration, the World Health Organization, and the International Federation of Phar-
maceutical Manufacturers & Associations. Also critical is access to health information sites, such as the
U.S. National Library of Medicine, and to industry conferences and professional journals. Design a knowl-
edge portal for U.S. Pharma’s researchers. Include in your design specifications relevant internal systems
and databases, external sources of information, and internal and external communication and collabora-
tion tools. Design a home page for your portal.
11-9 Canadian Tire is one of Canada’s largest companies, with 50,000 employees and 1,100 stores and gas bars
(gas stations) across Canada selling sports, leisure, home products, apparel, and financial services as well
as automotive and petroleum products. The retail outlets are independently owned and operated. Cana-
dian Tire has been using daily mailings and thick product catalogs to inform its dealers about new prod-
ucts, merchandise setups, best practices, product ordering, and problem resolution, and it is looking for a
better way to provide employees with human resources and administrative documents. Describe the prob-
lems created by this way of doing business and how knowledge management systems might help.
Two real-world business sce-
narios per chapter provide
opportunities for students to
apply chapter concepts and
practice management decision
Students practice using soft-
ware in real-world settings for
achieving operational excel-
lence and enhancing decision
Each chapter features a project
to develop Internet skills for
accessing information, con-
ducting research, and perform-
ing online calculations and
Improving Decision Making: Using Web Tools to Configure and Price an Automobile
Software skills: Internet-based software
Business skills: Researching product information and pricing
3-11 In this exercise, you will use software at car websites to find product information about a car of your choice
and use that information to make an important purchase decision. You will also evaluate two of these sites
as selling tools.
You are interested in purchasing a new Ford Escape (or some other car of your choice). Go to the
website of CarsDirect ( and begin your investigation. Locate the Ford Escape. Research
the various Escape models, and choose one you prefer in terms of price, features, and safety ratings. Locate
and read at least two reviews. Surf the website of the manufacturer, in this case Ford ( Com-
pare the information available on Ford’s website with that of CarsDirect for the Ford Escape. Try to locate
the lowest price for the car you want in a local dealer’s inventory. Suggest improvements for

24 Preface
For more information on the AACSB Assurance of Learning Program and
how this text supports assessment-based learning, please visit the website for
this book.
Customization and Flexibility: Learning Track Modules
Our Learning Tracks feature gives instructors the flexibility to provide in-depth
coverage of the topics they choose. There are 47 Learning Tracks in MyLab MIS
available to instructors and students. This supplementary content takes students
deeper into MIS topics, concepts, and debates; reviews basic technology concepts
in hardware, software, database design, telecommunications, and other areas.
Author-Certified Test Bank and Supplements
• Author-Certified Test Bank. The authors have worked closely with
skilled test item writers to ensure that higher-level cognitive skills are
tested. Test bank multiple-choice questions include questions on content
but also include many questions that require analysis, synthesis, and
evaluation skills.
• Annotated Slides. The authors have prepared a comprehensive collec-
tion of 50 PowerPoint slides for each chapter to be used in your lectures.
Many of these slides are the same as used by Ken Laudon in his MIS
classes and executive education presentations. Each of the slides is anno-
tated with teaching suggestions for asking students questions, developing
in-class lists that illustrate key concepts, and recommending other firms
as examples in addition to those provided in the text. The annotations
are like an Instructor’s Manual built into the slides and make it easier to
teach the course effectively.
Student Learning-Focused
Student Learning Objectives are organized around a set of study questions to
focus student attention. Each chapter concludes with a Review Summary and
Review Questions organized around these study questions, and each major
chapter section is based on a Learning Objective.
Career Resources
The Instructor Resources for this text include extensive Career Resources,
including job-hunting guides and instructions on how to build a Digital Portfolio
demonstrating the business knowledge, application software proficiency, and
Internet skills acquired from using the text. The portfolio can be included in a
resume or job application or used as a learning assessment tool for instructors.
Instructor Resources
At the Instructor Resource Center, ,
instructors can easily register to gain access to a variety of instructor resources
available with this text in downloadable format. If assistance is needed, our
dedicated technical support team is ready to help with the media supplements
that accompany this text. Visit for answers to fre-
quently asked questions and toll-free user support phone numbers.
The following supplements are available with this text:
• Instructor’s Resource Manual
• Test Bank

Preface 25
• TestGen ® Computerized Test Bank
• PowerPoint Presentation
• Image Library
• Lecture Notes
Video Cases and Instructional Videos
Instructors can download step-by-step instructions for accessing the video cases
from the Instructor Resources Center. Video Cases and Instructional Videos are
listed at the beginning of each chapter as well as in the Preface.
Learning Tracks Modules
There are 47 Learning Tracks in MyLab MIS providing additional coverage
topics for students and instructors. See page 26 for a list of the Learning Tracks
available for this edition.
Video Cases and Instructional Videos
Chapter Video
Chapter 1 : Information Systems in Global
Business Today
Business in the Cloud: Facebook and eBay Data Centers
UPS Global Operations with the DIAD
Instructional Video: Tour IBM’s Raleigh Data Center
Chapter 2 : Global E-business and
Walmart’s Retail Link Supply Chain
CEMEX: Becoming a Social Business
Instructional Video: US Foodservice Grows Market with Oracle CRM on Demand
Chapter 3 : Information Systems,
Organizations, and Strategy
GE Becomes a Digital Firm: The Emerging Industrial Internet
National Basketball Association: Competing on Global Delivery with Akamai OS Streaming
Chapter 4 : Ethical and Social Issues in
Information Systems
What Net Neutrality Means for You
Facebook and Google Privacy: What Privacy?
The United States v. Terrorism: Data Mining for Terrorists and Innocents
Instructional Video: Viktor Mayer Schönberger on the Right to Be Forgotten
Chapter 5 : IT Infrastructure and Emerging
Rockwell Automation Fuels the Oil and Gas Industry with the Internet of Things (IoT) : The Future of Sports Broadcasting in the Cloud
Netflix: Building a Business in the Cloud
Chapter 6 : Foundations of Business
Intelligence: Databases and Information
Dubuque Uses Cloud Computing and Sensors to Build a Smarter City
Brooks Brothers Closes in on Omnichannel Retail
Maruti Suzuki Business Intelligence and Enterprise Databases
Chapter 7 : Telecommunications, the
Internet, and Wireless Technology
Telepresence Moves out of the Boardroom and into the Field
Virtual Collaboration with IBMSametime
Chapter 8 : Securing Information Systems Stuxnet and Cyberwarfare
Cyberespionage: The Chinese Threat
Instructional Video: Sony PlayStation Hacked; Data Stolen from 77 Million Users
Instructional Video: Meet the Hackers: Anonymous Statement on Hacking SONY
Chapter 9 : Achieving Operational
Excellence and Customer Intimacy:
Enterprise Applications
Life Time Fitness Gets in Shape with Salesforce CRM
Evolution Homecare Manages Patients with Microsoft CRM
Instructional Video: GSMS Protects Products and Patients by Serializing Every Bottle of Drugs
Chapter 10 : E-commerce: Digital Markets,
Digital Goods
Walmart Takes on Amazon: A Battle of IT and Management Systems
Groupon: Deals Galore
Etsy: A Marketplace and Community
Instructional Video: Walmart’s eCommerce Fulfillment Center Network
Instructional Video: Behind the Scenes of an Amazon Warehouse
Chapter 11 : Managing Knowledge How IBM’s Watson Became a Jeopardy Champion
Alfresco: Open Source Document Management and Collaboration
Chapter 12 : Enhancing Decision Making PSEG Leverages Big Data and Business Analytics Using GE’s PREDIX Platform
FreshDirect Uses Business Intelligence to Manage Its Online Grocery.
Business Intelligence Helps the Cincinnati Zoo Work Smarter

26 Preface
Chapter Video
Chapter 13 Building Information Systems IBM: Business Process Management in a SaaS Environment
IBM Helps the City of Madrid with Real-Time BPM Software
Instructional Video: BPM: Business Process Management Customer Story
Instructional Video: Workflow Management Visualized
Chapter 14 Managing Projects Blue Cross Blue Shield: Smarter Computing Project
NASA Project Management Challenges
Chapter 15 Managing Global Systems Daum Runs Oracle Apps on Linux
Lean Manufacturing and Global ERP: Humanetics and Global Shop
Learning Tracks
Chapter Learning Tracks
Chapter 1 : Information Systems in Global
Business Today
How Much Does IT Matter?
Information Systems and Your Career
The Mobile Digital Platform
Chapter 2 : Global E-business and
Systems From a Functional Perspective
IT Enables Collaboration and Teamwork
Challenges of Using Business Information Systems
Organizing the Information Systems Function
Occupational and Career Outlook for Information Systems Majors 2014–2020
Chapter 3 : Information Systems,
Organizations, and Strategy
The Changing Business Environment for IT
Chapter 4 : Ethical and Social Issues in
Information Systems
Developing a Corporate Code of Ethics for IT
Chapter 5 : IT Infrastructure and Emerging
How Computer Hardware Works
How Computer Software Works
Service Level Agreements
The Open Source Software Initiative
Comparing Stages in IT Infrastructure Evolution
Cloud Computing
Chapter 6 : Foundations of Business
Intelligence: Databases and Information
Database Design, Normalization, and Entity-Relationship Diagramming
Introduction to SQL
Hierarchical and Network Data Models
Chapter 7 : Telecommunications, the
Internet, and Wireless Technology
Broadband Network Services and Technologies
Cellular System Generations
Wireless Applications for Customer Relationship Management, Supply Chain Management, and Healthcare
Introduction to Web 2.0
LAN Topologies
Chapter 8 : Securing Information Systems The Booming Job Market in IT Security
The Sarbanes-Oxley Act
Computer Forensics
General and Application Controls for Information Systems
Management Challenges of Security and Control
Software Vulnerability and Reliability
Chapter 9 : Achieving Operational
Excellence and Customer Intimacy:
Enterprise Applications
SAP Business Process Map
Business Processes in Supply Chain Management and Supply Chain Metrics
Best-Practice Business Processes in CRM Software
Chapter 10 : E-commerce: Digital Markets,
Digital Goods
E-commerce Challenges: The Story of Online Groceries
Build an E-commerce Business Plan
Hot New Careers in E-Commerce
E-commerce Payment Systems
Building an E-commerce Website
Chapter 11 : Managing Knowledge Challenges of Knowledge Management Systems
Chapter 12 : Enhancing Decision Making Building and Using Pivot Tables
Video Cases and Instructional Videos (Continued)

Preface 27
Chapter Learning Tracks
Chapter 13 : Building Information Systems Unified Modeling Language
Primer on Business Process Design and Documentation
Primer on Business Process Management
Fourth-Generation Languages
Chapter 14 : Managing Projects Capital Budgeting Methods for Information Systems Investments
Enterprise Analysis (Business Systems Planning) and Critical Success Factors
Information Technology Investments and Productivity
Available in MyLab MIS
• MIS Video Exercises – Videos illustrating MIS concepts, paired with brief
• MIS Decision Simulations – interactive exercises allowing students to play
the role of a manager and make business decisions
• Assisted-Graded writing exercises – taken from the end of chapter, with a
rubric provided
• Chapter Warm Ups, Chapter Quizzes – objective-based quizzing to test
• Discussion Questions – taken from the end of chapter
• Dynamic Study Modules – on the go adaptive quizzing, also available on a
mobile phone
• Learning Catalytics – bring-your-own-device classroom response tools
• Enhanced eText – an accessible, mobile-friendly eText with Conceptual
Animations, which walk students through key concepts in the chapter by
making figures come to life
• Excel & Access Grader Projects – live in the application auto-graded
Grader projects provided inside MyLab MIS to support classes covering
Office tools
The production of any book involves valued contributions from a number of
persons. We would like to thank all of our editors for encouragement, insight,
and strong support for many years. We thank our editor Samantha McAfee
Lewis and project manager Katrina Ostler for their role in managing the project.
Our special thanks go to our supplement authors for their work, including the
following MyLab content contributors: John Hupp, Columbus State University;
Robert J. Mills, Utah State University; John P. Russo, Wentworth Institute of
Technology; and Michael L. Smith, SUNY Oswego. We are indebted to Robin
Pickering for her assistance with writing and to William Anderson and Megan
Miller for their help during production. We thank Diana R. Craig for her assis-
tance with database and software topics.
Special thanks to colleagues at the Stern School of Business at New York
University; to Professor Werner Schenk, Simon School of Business, University
of Rochester; to Professor Mark Gillenson, Fogelman College of Business and
Economics, University of Memphis; to Robert Kostrubanic, Indiana-Purdue
University Fort Wayne; to Professor Lawrence Andrew of Western Illinois
University; to Professor Detlef Schoder of the University of Cologne; to Professor

28 Preface
Walter Brenner of the University of St. Gallen; to Professor Lutz Kolbe of the
University of Gottingen; to Professor Donald Marchand of the International
Institute for Management Development; and to Professor Daniel Botha of
Stellenbosch University who provided additional suggestions for improvement.
Thank you to Professor Ken Kraemer, University of California at Irvine, and
Professor John King, University of Michigan, for more than a decade-long dis-
cussion of information systems and organizations. And a special remembrance
and dedication to Professor Rob Kling, University of Indiana, for being our friend
and colleague over so many years.
We also want to especially thank all our reviewers whose suggestions helped
improve our texts. Reviewers for Managing the Digital Firm include:
Charles Wankel, St. John’s University
Ahmed Kamel, Concordia College
Deborah E Swain, North Carolina Central University
Jigish Zaveri, Morgan State University
Robert Gatewood, Mississippi College
James Drogan, SUNY Maritime College
Amiya Samantray, Marygrove College
John Miles, Keuka College
Werner Schenk, University of Rochester
Shuyuan Mary Ho, Florida State University
Brian Jones, Tennessee Technological University
Robert Fulkerth, Golden Gate University
Osman Guzide, Shepherd University
Pearson gratefully acknowledges and thanks the following people for their
contribution to the Global Edition:
Daniel Ortiz Arroyo, Aalborg University
June Clarke, Sheffield Hallam University
Andy Jones, Staffordshire University
Sahil Raj, Punjabi University
Neerja Sethi, Nanyang Technological University
Vijay Sethi, Nanyang Technological University

PART ONE introduces the major themes of this book, raising a series of important questions:
What is an information system, and what are its management, organization, and technology
dimensions? Why are information systems so essential in businesses today? Why are sys-
tems for collaboration and social business so important? How can information systems help
businesses become more competitive? What broader ethical and social issues are raised by
widespread use of information systems?
Chapter 1
Information Systems in Global Business
Chapter 2
Global E-business and Collaboration
Chapter 3
Information Systems, Organizations,
and Strategy
Chapter 4
Ethical and Social Issues in
Information Systems
Management, and the
Networked Enterprise

MyLab MIS™
Visit for simulations, tutorials, and end-of-chapter problems.
Information Systems in Global
Business Today
Learning Objectives
After reading this chapter , you will be able to answer the following questions:
1-1 How are information systems transforming business, and why are they so
essential for running and managing a business today?
1-2 What is an information system? How does it work? What are its
management, organization, and technology components? Why are
complementary assets essential for ensuring that information systems
provide genuine value for organizations?
1-3 What academic disciplines are used to study information systems, and how
does each contribute to an understanding of information systems?
Business in the Cloud: Facebook and eBay Data Centers
UPS Global Operations with the DIAD
Instructional Video:
Tour IBM’s Raleigh Data Center
Rugby Football Union Tries Big Data
The Mobile Pocket Office
Digital Transformation of Healthcare at Singapore’s JurongHealth Services
Are Farms Becoming Digital Firms?

In 1871, twenty-one English clubs decided that their sport, officially called rugby union but commonly referred to simply as rugby, needed an admin-istrative body. The clubs formed The Rugby Football Union (RFU), which
today manages the English national team (England Rugby) in partnership
with Premier Rugby Limited. Responsible for the promotion of rugby at all
levels, the RFU organizes the Six Nations Championship, the unofficial north-
ern hemisphere championship featuring teams from England, Scotland, Wales,
Italy, Ireland, and France, and the Heineken Cup, its club-level counterpart.
Owned by its member clubs, the RFU’s mission is to maximize profits from
international ticket sales and vending
so that it can support the more than
60,000 volunteers who organize
matches and seminars, help secure
loans and insurance policies, fund-
raise, write grant proposals, provide
medical advice and support, and per-
form the clerical duties that keep the
lower-level clubs operating.
To succeed in this complicated
mission, the RFU entered into a five-
year deal with IBM to capture and
analyze Big Data that will be useful
to both fans, and later—it is hoped—
the players themselves. The system
is called TryTracker. In rugby, a try,
worth five points, is the highest scor-
ing opportunity. Teams get posses-
sion of the ball through a scrum, a
contest for the ball where eight players bind together and push against eight
players from the other team. The outcome determines who can control the
ball. To score a try, a team must break through the opposition’s defenses,
move into their in-goal area, and “ground” the ball. This is done in one of
two ways. A player can either hold the ball in one or both hands or arms and
then touch it to the ground in the in-goal area, or exert downward pressure
on a ball already on the ground using one or both hands or arms or the upper
front of the body (from the neck to the waistline).
The IBM TryTracker does not just track tries, however. It uses predictive
analytics to track three categories of data: keys to the game, momentum, and
key players. TryTracker uses over 8,000 measures of performance. Tradi-
tional rugby statistics on team and individual performance as well as live
Rugby Football Union Tries Big Data
©Michal Sanca/Shutterstock

text commentary complement the TryTracker data. The keys to the game
are determined ahead of a specific contest by analyzing a historical database
of past matchups between a pair. For example, in 2015 England’s key was
to average at least 3.2 meters per carry in the forwards; attempt an off load
from 10 percent of opposition tackles; and make more than 66 percent of total
line-breaks in the match. Fans can use their mobile devices to keep track of
how their favorite team is faring, concentrating on game elements that will
increase its winning chances. Key players for each team are selected after the
game by comparing a single score compiled using different criteria for each
position. Goal scoring is currently excluded so as not to overvalue kickers and
undervalue players who contribute to creating scoring opportunities.
Like the IBM SlamTracker used at the Grand Slam tennis tournaments,
the goal of TryTracker is to provide data visualization and real-time statis-
tics to draw in fans. To compete with more popular sports such as Premier
League football, the RFU hopes that enhanced communication will increase
fan engagement. In 2015, IBM TryTracker was an ever-present fixture of Eng-’s extensive match coverage. As their understanding of game
mechanics and emotional investment in what their team needs to do in order
to prevail grows, casual fans will become dedicated fans who return again
and again. Beyond marketing strategy, the long-term potential of predictive
analysis is that it may provide tactical insights to players and coaches that will
improve match play and thus the overall product offered to fans.
In 2016 IBM has deployed the same predictive analytics technology to the
Australian New South Wales Waratahs Rugby team with an emphasis on pre-
dicting player injuries based on their general health, and performance data on
the field generated from GPS sensors that players wear.
Sources: IBM, “Building a Solid Foundation for Big Data Analytics,” IBM Systems Thought
Leadership Paper, 2016; IBM, “IBM Predictive Analytics Reduces Player Injury and Opti-
mises Team Performance for NSW Waratahs Rugby Team,”, accessed November
14, 2016; IBM, “3 Ways Big Data and Analytics Will Change Sports,” by Preetam Kumar, IBM
Analytics,, December 17, 2015; Simon Creasey, “Rugby Football Union
Uses IBM Predictive Analytics For Six Nations,”, 2016; “About Us,”, accessed December, 14, 2015; “TryTracker: Rugby Data Analysis,” Telegraph,
November 19, 2015; Oliver Pickup, “How Does TryTracker Work,” Telegraph, November 19,
2015; Simon Creasey, “Rugby Football Union Uses IBM Predictive Analytics for Six Nations,”
ComputerWeek, September 2015; “IBM Rugby Insight Summer 2015,”, Sep-
tember 3, 2015; “Live England vs. Scotland with IBM TryTracker,” www.englandrugby.
com, March 15, 2015; “IBM TryTracker Confirms Performance,”
ibmtrytracker/, November 29, 2014; IBM UK, “IBM TryTracker Rugby Insight: QBE Interna-
tionals 2014 England vs. Australia,” IBM Rugby Insight, November 27, 2014; Oliver Pickup,
“IBM TryTracker: How Does It Work?” Telegraph, October 31, 2013.
The challenges facing the RFU demonstrate why information systems are so essential today. The RFU is classified as a “Friendly Society,” somewhere
between a true company and a charity. It receives both government support
and corporate sponsorship money. But it must maximize revenues from ticket
sales, hospitality and catering, television rights, and its travel company in order
to support both grassroots and elite rugby in England.
32 Part One Organizations, Management, and the Networked Enterprise

The chapter-opening diagram calls attention to important points raised by
this case and this chapter. The RFU entered into a strategic partnership with
IBM to educate and engage fans. Using the data collected by sports data com-
pany Opta and the analytics developed by IBM, it may also be able to improve
coaching and game performance as an additional way of cultivating custom-
ers. IBM is also helping the RFU to develop a customer relationship manage-
ment (CRM) system integrated with its Web site.
Here are some questions to think about: What role does technology play
in the RFU’s success as the administrative head of rugby union in England?
Assess the contributions which these systems make to the future of RFU.
1- 1 How are information systems transforming
global business, and why are they so essential
for running and managing a business today?
It’s not business as usual in the global economy anymore. Information sys-
tems and technologies are transforming the global business environment. In
2015, global firms and governments spent about €3.4 trillion on information
systems hardware, software, and telecommunications equipment. In addition,
they spent another €544 billion on business and management consulting and
services—much of which involves redesigning firms’ business operations to
take advantage of these new technologies (Gartner, 2016; IDC 2016; Shumsky,
2016). In fact, most of the business value of IT investment derives from these
organizational, management, and cultural changes inside firms ( Saunders and
Brynjolfsson, 2016 ). It is not simply the technology that is changing. Figure 1. 1
shows that between 2005 and 2015, global investment in information technology
Chapter 1 Information Systems in Global Business Today 33

consisting of hardware, software, and communications equipment grew from
€2.43 trillion to €3.18 trillion and is expected to expand to €3.55 trillion by 2020.
While America and Europe account for an estimated 70 percent of this invest-
ment, 30 percent is occurring in Asia Pacific, Latin America, the Middle East
and North Africa, and Eastern Europe. (Accelerance, 2016; IDC, 2016).
As managers, most of you will work for firms that are intensively using
information systems and making large investments in information technol-
ogy. You will certainly want to know how to invest this money wisely. If you
make wise choices, your firm can outperform competitors. If you make poor
choices, you will be wasting valuable capital. This book is dedicated to help-
ing you make wise decisions about information technology and information
How Information Systems Are Transforming Business
You can see the results of this large-scale spending around you every day
by observing how people conduct business. Changes in technology and
new, innovative business models have transformed social life and busi-
ness practices. Some 2.8 billion people worldwide have smartphones (50
percent of the world’s population), and an estimated 1.26 billion use their
smartphones for Internet access. More than 1 billion people use tablet
computers, about 15 percent of the global population. In developing and
emerging countries, phones and tablets are the primary means of access to
the Internet (Pew Research, 2016; eMarketer, 2015). An estimated 2.34 bil-
lion people now use social networks, with Facebook accounting for 1.7 bil-
lion people alone. Messaging services like WhatsApp, Facebook Messenger,
and Twitter collectively have over 2 billion monthly users. Smartphones,
Global investment in information technology has expanded by 30 percent in the period 2005 to 2015.
IT investment now accounts for an estimated 20 percent of all capital investment.
Source: World Economic Outlook, International Monetary Fund, October 2016; industry sources; author estimates.
34 Part One Organizations, Management, and the Networked Enterprise

social networking, texting, e-mailing, and webinars have all become essen-
tial tools of business because that’s where your customers, suppliers, and
colleagues can be found (eMarketer, 2016a).
By June 2015, more than 150 million businesses worldwide had dot-com
Internet sites registered ( Curtis, 2015 ). In 2016 1.62 billion Internet users will
purchase online, generating $1.9 billion in sales. Half of these sales will be
from mobile devices. While still only 8 percent of total retail global sales,
online commerce is growing at 6 percent annually, three times the growth
of traditional offline retail (eMarketer, 2016a). In 2015, FedEx moved about
11.5 million packages daily in 220 countries and territories around the world,
mostly overnight, and the United Parcel Service (UPS) moved more than
18 million packages daily. Businesses are using information technology to
sense and respond to rapidly changing customer demand, reduce inventories
to the lowest possible levels, and achieve higher levels of operational effi-
ciency. Supply chains have become more fast-paced, with companies of all
sizes depending on just-in-time inventory to reduce their overhead costs and
get to market faster.
In comparison with the 2.7 billion people who read a print newspaper,
online newspapers are read by one billion people, growing at 10 percent annu-
ally, far faster than print newspapers (WPT, 2016; Conaghan, 2015). An esti-
mated 1.7 billion people watch videos and feature films online, 100 million
post to a blog everyday, and 250 million read a blog, creating an explosion of
new writers and new forms of customer feedback that did not exist five years
ago. Social networking site Facebook attracted more than 1.7 billion monthly
visitors worldwide. Nearly all of the Fortune 2000 global firms now have Face-
book pages, Twitter accounts, and Tumblr sites.
Global e-commerce and Internet advertising continue to expand. Google’s
online ad revenues surpassed €80 billion in 2016, and Internet advertising con-
tinues to grow at more than 20 percent a year, reaching more than €194 billion
in revenues in 2016 ( eMarketer, 2016c ). That’s about one-third of all advertising
in the world.
These changes in information technology and systems, consumer behavior,
and commerce have spurred the annual growth of digital information to over
5 exabytes every few days, roughly equivalent to all the libraries in existence
(Pappas, 2016). A recent study concluded that the value of information flow-
ing between countries has grown 45 times since 2005, and the value of this
information now exceeds the value of goods and finance exchanged (McKen-
zie, 2016).
What’s New in Management Information Systems
Plenty. In fact, there’s a whole new world of doing business using new tech-
nologies for managing and organizing. What makes the MIS field the most
exciting area of study in schools of business is the continuous change in tech-
nology, management, and business processes. Five changes are of paramount
IT Innovations. A continuing stream of information technology innovations is
transforming the traditional business world. Examples include the emergence
of cloud computing, the growth of a mobile digital business platform based on
smartphones and tablet computers, big data, business analytics, and the use
of social networks by managers to achieve business objectives. Most of these
Chapter 1 Information Systems in Global Business Today 35

changes have occurred in the past few years. These innovations are ena bling
entrepreneurs and innovative traditional fi rms to create new products and
services, develop new business models, and transform the day-to-day conduct
of business. In the process, some old businesses, even industries, are being
destroyed while new businesses are springing up.
New Business Models. For instance, the emergence of online video ser-
vices like Netfl ix for streaming, Apple iTunes, Amazon, and many others for
downloading video has forever changed how premium video is distributed
and even created. Netfl ix in 2016 attracted more than 75 million subscribers
worldwide to what it calls the “Internet TV” revolution. Netfl ix has moved
into premium TV show production with 30 original shows such as House of
Cards and Orange Is the New Black, challenging cable and broadcast produc-
ers of TV shows, and potentially disrupting cable network dominance of TV
show production. Apple’s iTunes now accounts for 67 percent of movie and
TV show downloads and has struck deals with major Hollywood studios for
recent movies and TV shows. A growing trickle of viewers are unplugging
from cable and using only the Internet for entertainment.
E-commerce Expanding. E-commerce generated about $600 billion in
revenues in 2016 and is estimated to grow to nearly $900 billion by 2020.
E-commerce is changing how fi rms design, produce, and deliver their prod-
ucts and services. E-commerce has reinvented itself again, disrupting the
traditional marketing and advertising industry and putting major media and
content fi rms in jeopardy. Facebook and other social networking sites such
as YouTube, Twitter, and Tumblr along with Netfl ix, Apple Beats music ser-
vice, and many other media fi rms exemplify the new face of e-commerce in
the twenty-fi rst century. They sell services. When we think of e-commerce,
we tend to think of selling physical products. While this iconic vision of
e-commerce is still very powerful and the fastest-growing form of retail in
the United States, growing up alongside is a whole new value stream based
on selling services, not goods. It’s a services model of e-commerce. Growth
in social commerce is spurred by powerful growth of the mobile platform:
80 percent of Facebook’s users access the service from mobile phones and
tablets. Information systems and technologies are the foundation of this new
services-based e-commerce. Mobile e-commerce hit $130 billion in 2016 and
is growing at more than 30 percent a year.
Management Changes. The management of business fi rms has changed: With
new mobile smartphones, high-speed wireless Wi-Fi networks, and tablets,
remote salespeople on the road are only seconds away from their managers’
questions and oversight. Business is going mobile, along with consumers. Man-
agers on the move are in direct, continuous contact with their employees. The
growth of enterprise-wide information systems with extraordinarily rich data
means that managers no longer operate in a fog of confusion but instead have
online, nearly instant access to the really important information they need for
accurate and timely decisions. In addition to their public uses on the web, wikis
and blogs are becoming important corporate tools for communication, collabo-
ration, and information sharing.
Changes in Firms and Organizations. Compared to industrial organizations
of the previous century, new fast-growing twenty-fi rst-century business fi rms
put less emphasis on hierarchy and structure and more emphasis on employees
36 Part One Organizations, Management, and the Networked Enterprise

Can you run your company out of your pocket?
Perhaps not entirely, but there are many business
functions today that can be performed using an
iPhone, iPad, or Android mobile handheld device.
The smartphone has been called the “Swiss Army
knife of the digital age.” A flick of the finger turns it
into a web browser, a telephone, a camera, a music
or video player, an e-mail and messaging machine,
and, increasingly, a gateway into corporate systems.
New software applications for document sharing, col-
laboration, sales, order processing, inventory man-
agement, and production monitoring make these
devices even more versatile business tools. Mobile
pocket offices that fit into a purse or coat pocket are
helping to run companies large and small.
Sonic Automotive is one of the largest automo-
tive retailers in the United States with more than
100 dealerships in 14 states. Every year Sonic sells
250,000 new and used cars from approximately 25
different automotive brands, and it also sells auto
parts and maintenance, warranty, collision, and vehi-
cle financing services. Sonic Automotive managers
and employees do much of their work on the iPhone
and iPad.
Sonic developed several custom iPhone and iPad
applications to speed up sales and service. Virtual
Lot, a dealer inventory app, lets sales associates
quickly search for vehicles held in inventory by all
Sonic dealerships. They have immediate access to
vehicle information, pricing, trade-in values, interest
rates, special promotions, financing, and what com-
petitors are charging for identical vehicles. The asso-
ciates can quickly find the best selection for each
customer and often offer far more choices than the
competition. Dealers are not limited to selling only
their own inventory.
A mobile app called the Sonic Inventory Manage-
ment System (SIMS) has speeded up and simplified
trade-in appraisals and pricing. Sonic staff use their
iPhones or iPads to take photos of a car, input the
vehicle identification number (VIN) and mileage,
and note any issues. The data are transmitted to cor-
porate headquarters, which can quickly appraise the
car. A Service Pad app simplifies the steps in repair
and warranty work. In the past, customers with cars
requiring repairs had to go inside the dealership and
sit at a desk with a Sonic staff member who wrote
up the repair order by hand. Now the Sonic staff
members go outside to the customer’s vehicle and
enter the repair order on an iPad on the spot.
SKF is a global engineering company headquar-
tered in Gothenburg, Sweden, with 140 manufac-
turing sites in 32 countries and 48,500 employees
worldwide. SKF produces bearings, seals, lubrication
systems, and services used in more than 40 indus-
tries, including mining, transportation, and manu-
facturing. SKF has developed more than 30 custom
iPhone and iPad applications for streamlining work-
flows and accessing critical corporate data from any-
where in the world.
For example, a virtual reality app uses the iPhone
or iPad camera to identify a factory machine and
produce a 3-D overlay of the SKF parts it contains.
A sensor-driven app called Shaft Align is used by SKF
service teams and customers in the field. Shaft Align
connects via wireless Bluetooth sensors to a piece of
machinery such as a motor-driven fan to ensure that
the drive shaft is running in proper alignment. If not,
the app generates step-by-step instructions and a 3-D
rendering to show how to manually align the motor.
Then it checks the work and produces a report.
A mobile app called MOST enables factory opera-
tors to monitor some SKF factory production lines.
MOST links to the back-end systems running the
machinery and provides operators with key pieces of
data. Operators using this mobile app are able to use
secure instant messaging to communicate with man-
agers and each other, update maintenance logs, and
track products in real time as they move through the
factory line.
SKF’s Shelf mobile app allows sales engineers and
customers to access on demand more than 5,000
pieces of product literature, catalogs, product speci-
fications, and interactive marketing materials. Sales
teams can use Shelf to create custom “shelves” to
organize, annotate, and share materials with custom-
ers right from their iPhones or iPads. The iPhone,
iPad, and Shelf app save company sales engineers
as much as 25 minutes per day on processes and
paperwork, freeing them up to spend more time
in the field supporting customers. This increase in
productivity is equivalent to putting 200 more sales
engineers in the field.
SKF auditors perform about 60 audits per year,
and each audit used to take more than a month to
complete. With the SKF Data Collect app, auditors
The Mobile Pocket Office
Chapter 1 Information Systems in Global Business Today 37

taking on multiple roles and tasks and collaborating with others on a team.
They put greater emphasis on competency and skills rather than position in the
hierarchy. They emphasize higher speed and more accurate decision making
based on data and analysis. They are more aware of changes in technology, con-
sumer attitudes, and culture. They use social media to enter into conversations
with consumers and demonstrate a greater willingness to listen to consumers,
in part because they have no choice. They show better understanding of the
importance of information technology in creating and managing business fi rms
and other organizations. To the extent organizations and business fi rms demon-
strate these characteristics, they are twenty-fi rst-century digital fi rms.
are able to use their iPads to collect data and present
customers with detailed reports instantly.
SKF Seals offers specifications and information
about SKF’s machined and injection-molded seals
and plastic parts, while the Seal Select app helps
users select seals and accessories using several dif-
ferent input parameters to find the right solution for
their needs.
4. One company deploying iPhones has said, “The
iPhone is not a game changer, it’s an industry
changer. It changes the way that you can interact
with your customers” and “with your suppliers.”
Discuss the implications of this statement.
Sources: “Sonic Automotive: Driving Growth with iPhone and iPad”
and “Driving Innovation in the Factory and in the Field with iOS,”
iPhone in Business,, accessed March 31, 2016;, accessed March 31, 2016;,
accessed March 31, 2016; and “Why the Mobile Pocket Office Is Good
For Business,”, accessed March 6, 2015.
1. What kinds of applications are described here?
What business functions do they support? How do
they improve operational efficiency and decision
2. Identify the problems that businesses in this case
study solved by using mobile digital devices.
3. What kinds of businesses are most likely to benefit
from equipping their employees with mobile digi-
tal devices such as iPhones and iPads?
iPhone and iPad Applications
for Business
1. Salesforce1
2. Cisco WebEx Meetings
3. SAP Business One
4. iWork
5. Evernote
6. Adobe Acrobat Reader
7. Oracle Business Intelli-
gence Mobile
8. Dropbox
Whether it’s attending an
online meeting, checking
orders, working with files
and documents, or
obtaining business intelli-
gence, Apple’s iPhone
and iPad offer unlimited
possibilities for business
users. A stunning multi-
touch display, full Internet
browsing, and capabilities
for messaging, video and
audio transmission, and
document management
make each an all-purpose
platform for mobile
© STANCA SANDA/Alamy Stock Photo
38 Part One Organizations, Management, and the Networked Enterprise

You can see some of these trends at work in the Interactive Session on Man-
agement. Millions of managers rely heavily on the mobile digital platform
to coordinate suppliers and shipments, satisfy customers, and manage their
employees. A business day without these mobile devices or Internet access
would be unthinkable.
Globalization Challenges and Opportunities:
A Flattened World
In 1492, Columbus reaffirmed what astronomers were long saying: the world was
round and the seas could be safely sailed. As it turned out, the world was popu-
lated by peoples and languages living in isolation from one another, with great
disparities in economic and scientific development. The world trade that ensued
after Columbus’s voyages has brought these peoples and cultures closer. The
“industrial revolution” was really a worldwide phenomenon energized by expan-
sion of trade among nations and the emergence of the first global economy.
In 2005, journalist Thomas Friedman wrote an influential book declaring the
world was now “flat,” by which he meant that the Internet and global communi-
cations had greatly reduced the economic and cultural advantages of developed
countries. Friedman argued that the United States and European countries
were in a fight for their economic lives, competing for jobs, markets, resources,
and even ideas with highly educated, motivated populations in low-wage areas
in the less developed world ( Friedman, 2007 ). This “globalization” presents both
challenges and opportunities for business firms.
A significant percentage of the global economy depends on imports and
exports. In 2015, about 57 percent of the worlds €74 trillion GDP resulted from
imports and exports (World Bank, 2016). Many Fortune 1000 global firms derive
more than half their revenues from foreign operations. Tech companies are par-
ticularly dependent on offshore revenue: 85 percent of Intel’s revenues in 2015
came from overseas sales of its microprocessors, while Apple earned 60 percent
of its revenue outside of the United States. Eighty percent of the toys sold in
the United States are manufactured in China, while all iPhones and about 90
percent of the PCs assembled in China use American-made Qualcomm, Intel
or AMD chips.
It’s not just goods that move across borders; jobs do too, some of them high-
level jobs that pay well and require a college degree. In the past decade, the
United States lost 5 million manufacturing jobs to offshore, low-wage producers.
But manufacturing is now a very small part of U.S. employment (less than 12
percent of the labor force and declining). Manufacturing jobs in the last decade
have been replaced by service and retail jobs even as the value of manufactured
goods made in the U.S. has soared by 20 percent in the same period, largely
due to highly automated factories and enterprise information systems (Cassel-
man, 2016). In a normal year in the United States, about 300,000 service jobs
move offshore to lower-wage countries. On the plus side, the global labor force
expanded from 3.2 billion to 3.4 billion during the 2010−2015 period, an expan-
sion of 200 million new jobs. The U.S. economy creates more than 3.5 million
new jobs in a normal, non-recessionary year. Although only 1.1 million private
sector jobs were created due to slow recovery in 2011, by 2015 the U.S. econ-
omy was adding more than 2 million new jobs annually for the third straight
year. Employment in information systems and the other service occupations
is expanding, and wages in the tech sector are rising at 5 percent annually.
Outsourcing may have accelerated the development of new systems worldwide
as new systems could be developed and maintained in low-wage countries. In
Chapter 1 Information Systems in Global Business Today 39

part this explains why the job market for MIS and computer science graduates
is growing rapidly in the United States as well as Europe, the Middle East, and
Asia Pacific.
The challenge for you as a business student is to develop high-level skills
through education and on-the-job experience that cannot be outsourced. The
challenge for your business is to avoid markets for goods and services that can
be produced offshore much less expensively. The opportunities are equally
immense. Throughout this book , you will find examples of companies and indi-
viduals who either failed or succeeded in using information systems to adapt to
this new global environment.
What does globalization have to do with management information systems?
That’s simple: everything. The emergence of the Internet into a full-blown
international communications system has drastically reduced the costs of oper-
ating and transacting on a global scale. Communication between a factory floor
in Shanghai and a distribution center in Rapid City, South Dakota, or Antwerp,
Belgium, is now instant and virtually free. Customers can now shop in a world-
wide marketplace, obtaining price and quality information reliably 24 hours a
day. Firms producing goods and services on a global scale achieve extraordinary
cost reductions by finding low-cost suppliers and managing production facili-
ties in other countries. Internet service firms, such as Google, Netflix, Alibaba,
and eBay, are able to replicate their business models and services in multiple
countries without having to redesign their expensive fixed-cost information sys-
tems infrastructure. Briefly, information systems enable globalization.
The Emerging Digital Firm
All of the changes we have just described, coupled with equally significant orga-
nizational redesign, have created the conditions for a fully digital firm. A digital
firm can be defined along several dimensions. A digital firm is one in which
nearly all of the organization’s significant business relationships with customers,
suppliers, and employees are digitally enabled and mediated. Core business pro-
cesses are accomplished through digital networks spanning the entire organiza-
tion or linking multiple organizations.
Business processes refer to the set of logically related tasks and behaviors
that organizations develop over time to produce specific business results and
the unique manner in which these activities are organized and coordinated.
Developing a new product, generating and fulfilling an order, creating a mar-
keting plan, and hiring an employee are examples of business processes, and
the ways organizations accomplish their business processes can be a source of
competitive strength. (A detailed discussion of business processes can be found
in Chapter 2 .)
Key corporate assets —intellectual property, core competencies, and financial
and human assets—are managed through digital means. In a digital firm, any
piece of information required to support key business decisions is available at
any time and anywhere in the firm.
Digital firms sense and respond to their environments far more rapidly than
traditional firms, giving them more flexibility to survive in turbulent times. Digi-
tal firms offer extraordinary opportunities for more flexible global organization
and management. In digital firms, both time shifting and space shifting are the
norm. Time shifting refers to business being conducted continuously, 24/7, rather
than in narrow “work day” time bands of 9 a.m. to 5 p.m. Space shifting means
that work takes place in a global workshop as well as within national boundaries.
Work is accomplished physically wherever in the world it is best accomplished.
40 Part One Organizations, Management, and the Networked Enterprise

Many firms, such as Cisco Systems, 3M, and GE (see the Chapter 12 end-
ing case) , are close to becoming digital firms, using the Internet to drive every
aspect of their business. Most other companies are not fully digital, but they
are moving toward close digital integration with suppliers, customers, and
Strategic Business Objectives of Information Systems
What makes information systems so essential today? Why are businesses invest-
ing so much in information systems and technologies? In the United States,
more than 57 million managers and 120 million workers in the information and
knowledge sectors in the labor force rely on information systems to conduct
business. Information systems are essential for conducting day-to-day business
in most advanced countries as well as achieving strategic business objectives.
Entire sectors of the economy are nearly inconceivable without substan-
tial investments in information systems. E-commerce firms such as Amazon,
eBay, Google, and E*Trade simply would not exist. Today’s service industries—
finance, insurance, and real estate as well as personal services such as travel,
medicine, and education—could not operate without information systems. Sim-
ilarly, retail firms such as Walmart and Sears and manufacturing firms such as
General Motors, Volkswagen, Siemens, and GE require information systems to
survive and prosper. Just as offices, telephones, filing cabinets, and efficient tall
buildings with elevators were once the foundations of business in the twentieth
century, information technology is a foundation for business in the twenty-first
There is a growing interdependence between a firm’s ability to use informa-
tion technology and its ability to implement corporate strategies and achieve
corporate goals (see Figure 1. 2 ). What a business would like to do in five years
often depends on what its systems will be able to do. Increasing market share,
becoming the high-quality or low-cost producer, developing new products, and
increasing employee productivity depend more and more on the kinds and
Business Strategic
Business Processes Data Management
In contemporary systems, there is a growing interdependence between a firm’s information systems
and its business capabilities. Changes in strategy, rules, and business processes increasingly require
changes in hardware, software, databases, and telecommunications. Often, what the organization
would like to do depends on what its systems will permit it to do.
Chapter 1 Information Systems in Global Business Today 41

quality of information systems in the organization. The more you understand
about this relationship, the more valuable you will be as a manager.
Specifically, business firms invest heavily in information systems to achieve
six strategic business objectives: operational excellence; new products, services,
and business models; customer and supplier intimacy; improved decision mak-
ing; competitive advantage; and survival.
Operational Excellence
Businesses continuously seek to improve the efficiency of their operations in
order to achieve higher profitability. Information systems and technologies are
some of the most important tools available to managers for achieving higher
levels of efficiency and productivity in business operations, especially when
coupled with changes in business practices and management behavior.
Walmart, the largest retailer on earth, exemplifies the power of informa-
tion systems coupled with state of the art business practices and supportive
management to achieve world-class operational efficiency. In fiscal year 2016,
Walmart achieved $499 billion in sales—nearly one-tenth of retail sales in the
United States—in large part because of its Retail Link system, which digitally
links its suppliers to every one of Walmart’s stores. As soon as a customer pur-
chases an item, the supplier monitoring the item knows to ship a replacement
to the shelf. Walmart is the most efficient retail store in the industry, achieving
sales of more than $600 per square foot, compared with its closest competitor,
Target, at $425 a square foot and other large general merchandise retail firms
producing less than $200 a square foot.
New Products, Services, and Business Models
Information systems and technologies are a major enabling tool for firms to
create new products and services as well as entirely new business models. A
business model describes how a company produces, delivers, and sells a prod-
uct or service to create wealth.
Today’s music industry is vastly different from the industry a decade ago.
Apple Inc. transformed an old business model of music distribution based on
vinyl records, tapes, and CDs into an online, legal distribution model based
on its own iPod technology platform. Apple has prospered from a continuing
stream of innovations, including the iTunes music service, the iPad, and the
Customer and Supplier Intimacy
When a business really knows its customers and serves them well, the custom-
ers generally respond by returning and purchasing more. This raises revenues
and profits. Likewise with suppliers, the more a business engages its suppli-
ers, the better the suppliers can provide vital inputs. This lowers costs. How
to really know your customers or suppliers is a central problem for businesses
with millions of offline and online customers.
The Mandarin Oriental hotel group which operates hotels in Asia, Europe,
and the Americas, exemplifies the use of information systems and technolo-
gies to achieve customer intimacy. These hotels use computers to keep track of
guests’ preferences.When a customer arrives at one of these hotels, the system
automatically changes the room conditions, such as dimming the lights, setting
the room temperature, or selecting appropriate music, based on the customer’s
digital profile. The hotels also analyze their customer data to identify their best
customers and to develop individualized marketing campaigns based on cus-
tomers’ preferences.
42 Part One Organizations, Management, and the Networked Enterprise

Large national retailers in Europe, the U.S., and Asia exemplify the use of
information systems to enable supplier and customer intimacy. Every time a
dress shirt is bought at a store the record of the sale appears immediately on
computers of suppliers like TAL Apparel Ltd. in Hong Kong, a contract manu-
facturer that produces one in eight dress shirts sold in the United States and
Europe. TAL runs the numbers through a computer model it developed and
then decides how many replacement shirts to make and in what styles, colors,
and sizes. TAL then sends the shirts directly to retail stores, completely bypass-
ing retailers’ warehouses (European Commission, 2014).
Improved Decision Making
Many business managers operate in an information fog bank, never really
having the right information at the right time to make an informed decision.
Instead, managers rely on forecasts, best guesses, and luck. In the past decade,
information systems and technologies have made it possible for managers to
use real-time data from the marketplace when making decisions.
For instance, Privi Organics Ltd., a leading Indian company that manufac-
tures, supplies, and exports aroma chemical products worldwide, uses the Ora-
cle Human Capital Management system for real-time insight into individual
employee information—including performance rating and compensation his-
tory. The system helps managers make faster human resource decisions, such
as promotions or transfers, by integrating all employee records across the orga-
nization. Managers are able to quickly review employee performance ratings
for the previous three years and drill down into more details.
Competitive Advantage
When firms achieve one or more of these business objectives—operational excel-
lence; new products, services, and business models; customer/supplier inti-
macy; and improved decision making—chances are they have already achieved
a competitive advantage. Doing things better than your competitors, charging
less for superior products, and responding to customers and suppliers in real
time all add up to higher sales and higher profits that your competitors can-
not match. Apple Inc., Walmart, and the Mandarin Group are industry leaders
because they know how to use information systems for this purpose.
Business firms also invest in information systems and technologies because
they are necessities of doing business. Sometimes these “necessities” are driven
by industry-level changes. Today, most national banks in the world have ATMs
and link to national and international ATM networks, such as CIRRUS. Provid-
ing ATM services to retail banking customers is simply a requirement of being
in and surviving in the retail banking business.
Most nations have statutes and regulations that create a legal duty for com-
panies and their employees to retain records, including digital records. For
instance, the European Council REACH law and the U.S. Toxic Substances Con-
trol Act (1976) regulate the exposure of workers to more than 75,000 toxic chem-
icals and require firms to retain records on employee exposure for 30 years
(European Commission, 2007). Financial regulatory agencies such as the U.S.
Securities and Exchange Commission (SEC), Financial Conduct Authority (FAC
UK), Financial Services Agency (FSA Japan), and the China Securities Regula-
tory Commission (CSRC People’s Republic of China) require certified public
accounting firms that audit public companies to retain audit working papers
and records, including all e-mails, for five years or longer. Many other pieces
Chapter 1 Information Systems in Global Business Today 43

of national and regional legislation in health care, financial services, education,
and privacy protection impose significant information retention and report-
ing requirements on global businesses. Firms turn to information systems and
technologies to provide the capability to respond to these record management
1- 2 What is an information system? How does it
work? What are its management, organization,
and technology components? Why are
complementary assets essential for ensuring
that information systems provide genuine value
for organizations?
So far we’ve used information systems and technologies informally without defin-
ing the terms. Information technology (IT) consists of all the hardware and
software that a firm needs to use in order to achieve its business objectives. This
includes not only computer machines, storage devices, and handheld mobile
devices but also software, such as the Windows or Linux operating systems, the
Microsoft Office desktop productivity suite, and the many thousands of com-
puter programs that can be found in a typical large firm. “Information systems”
are more complex and can be best understood by looking at them from both a
technology and a business perspective.
What Is an Information System?
An information system can be defined technically as a set of interrelated
components that collect (or retrieve), process, store, and distribute information
to support decision making and control in an organization. In addition to sup-
porting decision making, coordination, and control, information systems may
also help managers and workers analyze problems, visualize complex subjects,
and create new products.
Information systems contain information about significant people, places, and
things within the organization or in the environment surrounding it. By infor-
mation we mean data that have been shaped into a form that is meaningful and
useful to human beings. Data , in contrast, are streams of raw facts representing
events occurring in organizations or the physical environment before they have
been organized and arranged into a form that people can understand and use.
A brief example contrasting information and data may prove useful. Super-
market checkout counters scan millions of pieces of data from bar codes, which
describe each product. Such pieces of data can be totaled and analyzed to pro-
vide meaningful information, such as the total number of bottles of dish deter-
gent sold at a particular store, which brands of dish detergent were selling the
most rapidly at that store or sales territory, or the total amount spent on that
brand of dish detergent at that store or sales region (see Figure 1. 3 ).
Three activities in an information system produce the information that
organizations need to make decisions, control operations, analyze problems,
and create new products or services. These activities are input, process-
ing, and output (see Figure 1. 4 ). Input captures or collects raw data from
within the organization or from its external environment. Processing con-
verts this raw input into a meaningful form. Output transfers the processed
44 Part One Organizations, Management, and the Networked Enterprise

information to the people who will use it or to the activities for which it will
be used. Information systems also require feedback , which is output that is
returned to appropriate members of the organization to help them evaluate or
correct the input stage.
Sales Region: Northwest
Store: Superstore #122
Brite Dish Soap 7,156
331 Brite Dish Soap 1.29
863 BL Hill Coffee 4.69
173 Meow Cat .79
331 Brite Dish Soap 1.29
663 Country Ham 3.29
524 Fiery Mustard 1.49
113 Ginger Root .85
331 Brite Dish Soap 1.29
Raw data from a supermarket checkout counter can be processed and organized to produce meaningful informa-
tion, such as the total unit sales of dish detergent or the total sales revenue from dish detergent for a specific
store or sales territory.
Suppliers Customers
Stockholders CompetitorsRegulatory
Input Output
An information system contains information about an organization and its surrounding environment.
Three basic activities—input, processing, and output—produce the information organizations need.
Feedback is output returned to appropriate people or activities in the organization to evaluate and
refine the input. Environmental actors, such as customers, suppliers, competitors, stockholders, and
regulatory agencies, interact with the organization and its information systems.
Chapter 1 Information Systems in Global Business Today 45

In a professional sports team’s system for selling tickets, the raw input con-
sists of order data for tickets, such as the purchaser’s name, address, credit
card number, number of tickets ordered, and the date of the game for which
the ticket is being purchased. Another input would be the ticket price, which
would fluctuate based on computer analysis of how much could optimally
be charged for a ticket for a particular game. Computers store these data and
process them to calculate order totals, to track ticket purchases, and to send
requests for payment to credit card companies. The output consists of tickets
to print out, receipts for orders, and reports on online ticket orders. The sys-
tem provides meaningful information, such as the number of tickets sold for
a particular game or at a particular price, the total number of tickets sold each
year, and frequent customers.
Although computer-based information systems use computer technology
to process raw data into meaningful information, there is a sharp distinction
between a computer and a computer program on the one hand and an infor-
mation system on the other. Computers and related software programs are the
technical foundation, the tools and materials, of modern information systems.
Computers provide the equipment for storing and processing information.
Computer programs, or software, are sets of operating instructions that direct
and control computer processing. Knowing how computers and computer pro-
grams work is important in designing solutions to organizational problems, but
computers are only part of an information system.
A house is an appropriate analogy. Houses are built with hammers, nails,
and wood, but these do not make a house. The architecture, design, setting,
landscaping, and all of the decisions that lead to the creation of these features
are part of the house and are crucial for solving the problem of putting a roof
over one’s head. Computers and programs are the hammers, nails, and lum-
ber of computer-based information systems, but alone they cannot produce the
information a particular organization needs. To understand information sys-
tems, you must understand the problems they are designed to solve, their archi-
tectural and design elements, and the organizational processes that lead to the
Dimensions of Information Systems
To fully understand information systems, you must understand the broader
organization, management, and information technology dimensions of sys-
tems (see Figure 1. 5 ) and their power to provide solutions to challenges
and problems in the business environment. We refer to this broader under-
standing of information systems, which encompasses an understanding of
the management and organizational dimensions of systems as well as the
technical dimensions of systems, as information systems literacy . Com-
puter literacy , in contrast, focuses primarily on knowledge of information
The field of management information systems (MIS) tries to achieve this
broader information systems literacy. MIS deals with behavioral issues as well
as technical issues surrounding the development, use, and impact of informa-
tion systems used by managers and employees in the firm.
Let’s examine each of the dimensions of information systems—organizations,
management, and information technology.
46 Part One Organizations, Management, and the Networked Enterprise

Information systems are an integral part of organizations. Indeed, for some
companies, such as credit reporting firms, there would be no business without
an information system. The key elements of an organization are its people,
structure, business processes, politics, and culture. We introduce these compo-
nents of organizations here and describe them in greater detail in Chapters 2
and 3 .
Organizations have a structure that is composed of different levels and spe-
cialties. Their structures reveal a clear-cut division of labor. Authority and
responsibility in a business firm are organized as a hierarchy, or a pyramid
structure. The upper levels of the hierarchy consist of managerial, professional,
and technical employees, whereas the lower levels consist of operational
Senior management makes long-range strategic decisions about products
and services as well as ensures financial performance of the firm. Middle
management carries out the programs and plans of senior management, and
operational management is responsible for monitoring the daily activities of
the business. Knowledge workers , such as engineers, scientists, or architects,
design products or services and create new knowledge for the firm, whereas
data workers , such as secretaries or clerks, assist with scheduling and com-
munications at all levels of the firm. Production or service workers actually
produce the product and deliver the service (see Figure 1. 6 ).
Experts are employed and trained for different business functions. The
major business functions , or specialized tasks performed by business organi-
zations, consist of sales and marketing, manufacturing and production, finance
and accounting, and human resources (see Table 1. 1 ). Chapter 2 provides more
detail on these business functions and the ways in which they are supported by
information systems.
An organization coordinates work through its hierarchy and through its
business processes. Most organizations’ business processes include formal rules
that have been developed over a long time for accomplishing tasks. These
Organizations Technology
Using information systems effectively requires an understanding of the organization, management,
and information technology shaping the systems. An information system creates value for the firm as
an organizational and management solution to challenges posed by the environment.
Chapter 1 Information Systems in Global Business Today 47

rules guide employees in a variety of procedures, from writing an invoice to
responding to customer complaints. Some of these business processes have
been written down, but others are informal work practices, such as a require-
ment to return telephone calls from coworkers or customers, that are not for-
mally documented. Information systems automate many business processes.
For instance, how a customer receives credit or how a customer is billed is
often determined by an information system that incorporates a set of formal
business processes.
Each organization has a unique culture , or fundamental set of assumptions,
values, and ways of doing things, that has been accepted by most of its mem-
bers. You can see organizational culture at work by looking around your univer-
sity or college. Some bedrock assumptions of university life are that professors
know more than students, that the reason students attend college is to learn,
and that classes follow a regular schedule.
Parts of an organization’s culture can always be found embedded in its infor-
mation systems. For instance, UPS’s first priority is customer service, which is
Sales and marketing Selling the organization’s products and services
Manufacturing and production Producing and delivering products and services
Finance and accounting Managing the organization’s financial assets and
maintaining the organization’s financial records
Human resources Attracting, developing, and maintaining the
organization’s labor force; maintaining employee records
Middle Management
Scientists and knowledge workers
Operational Management
Production and service workers
Data workers
Business organizations are hierarchies consisting of three principal levels: senior management, middle
management, and operational management. Information systems serve each of these levels. Scientists
and knowledge workers often work with middle management.
48 Part One Organizations, Management, and the Networked Enterprise

an aspect of its organizational culture that can be found in the company’s pack-
age tracking systems, which we describe later in this section.
Different levels and specialties in an organization create different interests
and points of view. These views often conflict over how the company should be
run and how resources and rewards should be distributed. Conflict is the basis
for organizational politics. Information systems come out of this cauldron of
differing perspectives, conflicts, compromises, and agreements that are a natu-
ral part of all organizations. In Chapter 3 , we examine these features of organiza-
tions and their role in the development of information systems in greater detail.
Management’s job is to make sense out of the many situations faced by orga-
nizations, make decisions, and formulate action plans to solve organizational
problems. Managers perceive business challenges in the environment, they set
the organizational strategy for responding to those challenges, and they allocate
the human and financial resources to coordinate the work and achieve success.
Throughout, they must exercise responsible leadership. The business informa-
tion systems described in this book reflect the hopes, dreams, and realities of
real-world managers.
But managers must do more than manage what already exists. They must
also create new products and services and even re-create the organization from
time to time. A substantial part of management responsibility is creative work
driven by new knowledge and information. Information technology can play
a powerful role in helping managers design and deliver new products and ser-
vices and redirecting and redesigning their organizations. Chapter 12 treats
management decision making in detail.
Information Technology
Information technology is one of many tools managers use to cope with change.
Computer hardware is the physical equipment used for input, processing, and
output activities in an information system. It consists of the following: comput-
ers of various sizes and shapes (including mobile handheld devices); various
input, output, and storage devices; and telecommunications devices that link
computers together.
Computer software consists of the detailed, preprogrammed instructions
that control and coordinate the computer hardware components in an infor-
mation system. Chapter 5 describes the contemporary software and hardware
platforms used by firms today in greater detail.
Data management technology consists of the software governing the orga-
nization of data on physical storage media. More detail on data organization and
access methods can be found in Chapter 6 .
Networking and telecommunications technology , consisting of both
physical devices and software, links the various pieces of hardware and trans-
fers data from one physical location to another. Computers and communica-
tions equipment can be connected in networks for sharing voice, data, images,
sound, and video. A network links two or more computers to share data or
resources, such as a printer.
The world’s largest and most widely used network is the Internet . The Inter-
net is a global “network of networks” that uses universal standards (described in
Chapter 7 ) to connect millions of networks in more than 230 countries around
the world.
The Internet has created a new “universal” technology platform on which
to build new products, services, strategies, and business models. This same
Chapter 1 Information Systems in Global Business Today 49

technology platform has internal uses, providing the connectivity to link dif-
ferent systems and networks within the firm. Internal corporate networks
based on Internet technology are called intranets . Private intranets extended
to authorized users outside the organization are called extranets , and firms use
such networks to coordinate their activities with other firms for making pur-
chases, collaborating on design, and other interorganizational work. For most
business firms today, using Internet technology is both a business necessity
and a competitive advantage.
The World Wide Web is a service provided by the Internet that uses uni-
versally accepted standards for storing, retrieving, formatting, and displaying
information in a page format on the Internet. Web pages contain text, graphics,
animations, sound, and video and are linked to other web pages. By clicking on
highlighted words or buttons on a web page, you can link to related pages to find
additional information and links to other locations on the web. The web can
serve as the foundation for new kinds of information systems.
All of these technologies, along with the people required to run and man-
age them, represent resources that can be shared throughout the organization
and constitute the firm’s information technology (IT) infrastructure . The
IT infrastructure provides the foundation, or platform , on which the firm can
build its specific information systems. Each organization must carefully design
and manage its IT infrastructure so that it has the set of technology services it
needs for the work it wants to accomplish with information systems. Chapters 5
through 8 of this book examine each major technology component of informa-
tion technology infrastructure and show how they all work together to create
the technology platform for the organization.
For instance, UPS operates the largest global package delivery system in
the world. UPS invests heavily in information systems technology to make its
business more efficient and customer oriented. It uses an array of information
technologies, including bar code scanning systems, wireless networks, large
mainframe computers, handheld computers, the Internet, and many different
pieces of software for tracking packages, calculating fees, maintaining customer
accounts, and managing logistics.
Let’s identify the organization, management, and technology elements in
the UPS package tracking system we have just described. The organization ele-
ment anchors the package tracking system in UPS’s sales and production func-
tions (the main product of UPS is a service—package delivery). It specifies the
required procedures for identifying packages with both sender and recipient
information, taking inventory, tracking the packages en route, and providing
package status reports for UPS customers and customer service representatives.
The system must also provide information to satisfy the needs of managers
and workers. UPS drivers need to be trained in both package pickup and deliv-
ery procedures and in how to use the package tracking system so that they can
work efficiently and effectively. UPS customers may need some training to use
UPS in-house package tracking software or the UPS website.
UPS’s management is responsible for monitoring service levels and costs and
for promoting the company’s strategy of combining low cost and superior ser-
vice. Management decided to use computer systems to increase the ease of
sending a package using UPS and of checking its delivery status, thereby reduc-
ing delivery costs and increasing sales revenues.
The technology supporting this system consists of handheld computers, bar
code scanners, desktop computers, wired and wireless communications net-
works, UPS’s data center, storage technology for the package delivery data, UPS
in-house package tracking software, and software to access the World Wide Web.
50 Part One Organizations, Management, and the Networked Enterprise

Jurong Health Services, or JurongHealth, is one of
Singapore’s six public healthcare clusters. Health-
care clusters provide holistic and integrated care
when patients move from one care setting, like a
clinic, to another, like a hospital. Overall, Singapore’s
healthcare system comprises 8 public hospitals, 10
private hospitals, 8 national specialty centers, and
an island-wide network of general medical practitio-
ners. JurongHealth primarily manages the 700-bed
Ng Teng Fong General Hospital, the 400-bed Jurong
Community Hospital, and the Jurong Medical Cen-
ter, all of which are located in western Singapore.
JurongHealth’s goal is to provide transformative
medical care for its patients through the use of inno-
vative information technologies. Underscoring this
commitment, in September 2016 JurongHealth’s Ng
Teng Fong General Hospital was awarded the Health-
care Information and Management Systems Society
(HIMSS) Electronic Medical Record Adoption Model
(EMRAM) Stage 7 Award—there are 8 stages, from
0 to 7, that measure a hospital’s implementation of
IT systems, and Stage 7 represents the highest level.
Ng Teng Fong General thus became the first hospital
in Singapore and the ASEAN region, and fifth in the
Asia Pacific, to receive the award.
JurongHealth has integrated more than 50 health-
care IT systems as part of the Project OneCare
initiative. The systems’ implementation and integra-
tion took four years and has enabled the hospital to
become paperless, scriptless, chartless, and filmless.
Among the many systems implemented by the hos-
pital are self-service kiosks to enable patients to reg-
ister themselves by merely scanning their national
identification cards and obtaining a queue number
generated by the Enterprise Queue Management
System. This unique number is used throughout the
patient’s visit that day for all service itineraries in
the hospital. Patients refer to live screens located in
the waiting areas that display a real-time queue sta-
tus that shows their turn. This system has not only
enabled JurongHealth to cut down on expenses but
also to improve efficiency, as patients do not need
different numbers for different services. It reduces
waiting time and increases patient satisfaction.
Similarly, the Visitor Management System self-
service kiosks enable visitors to scan their identifi-
cation cards and register themselves to gain access
to the hospital wards. Visitors can also register
Digital Transformation of Healthcare at Singapore’s JurongHealth Services
themselves and obtain an e-pass from the Visitor
Registration counters that grants them access to the
wards that they want to visit. The identification card
or e-pass must then be scanned at the 2-in-1 Gantry
when entering and leaving the ward. The 2-in-1 Gan-
try logs not only visitor information but also tracks
staff, as they are also required to use the same gan-
tries to visit a particular ward. Through the imple-
mentation of the Visitor Management system, the
hospital can control access to the wards, and visitors
or staff can be easily tracked and contacted in case of
an epidemic.
Another IT system implemented is the Warehouse
Management System, which eliminates the tedious
process of manually counting inventory. The system
uses passive radio frequency identification (RFID)
technology and a two-bin shelving system to auto-
mate inventory top-up requests and improve inven-
tory management. Once the primary compartment
of the storage bin is empty, the clinical staff transfers
the relevant RFID tag into a drop-box, where the
reader automatically sends a request for drug replen-
ishment, thus avoiding stock-outs.
JurongHealth has also implemented a Real-Time
Location Tracking System to automatically track
patients and medical equipment using Wi-Fi triangu-
lation, low frequency exciters, and about 6,000 active
RFID tags attached to patients or medical equipment.
These tags continuously communicate with the low-
frequency exciters to transmit data to the backend
system for processing, allowing hospital staff to pre-
cisely locate patients and equipment, thus eliminat-
ing the need for tedious manual searching.
In another major move, JurongHealth made a
conscious effort to ensure that the different IT sys-
tems would not be stand-alone. The hospital thus
implemented an integrated Electronic Medical
Record (EMR) system that combines all the func-
tional modules of the hospital in addition to being
interfaced with 140 medical devices and equipment.
Using the vendor-neutral Medical Devices Middle-
ware Integration System, data from these medical
devices is directly uploaded into the EMR system,
and thus no time or effort is wasted by clinical staff
having to manually enter such readings, and the hos-
pital no longer has to worry about charting errors.
Being vendor-neutral also means the freedom to
Chapter 1 Information Systems in Global Business Today 51

The result is an information system solution to the business challenge of provid-
ing a high level of service with low prices in the face of mounting competition.
It Isn’t Just Technology: A Business Perspective on
Information Systems
Managers and business firms invest in information technology and systems
because they provide real economic value to the business. The decision to build
or maintain an information system assumes that the returns on this invest-
ment will be superior to other investments in buildings, machines, or other
assets. These superior returns will be expressed as increases in productivity,
as increases in revenues (which will increase the firm’s stock market value), or
perhaps as superior long-term strategic positioning of the firm in certain mar-
kets (which produce superior revenues in the future).
We can see that from a business perspective, an information system is an
important instrument for creating value for the firm. Information systems
enable the firm to increase its revenue or decrease its costs by providing
adopt best-of-breed individual modules as well as a
lack of reliance on a single vendor.
The EMR system has spurred other innovations
such as the Electronic Patient Information Board,
which enables clinic staff and nurses to view essen-
tial patient information on digital tablets, unlike
most hospitals, which manually compile the informa-
tion and display it at the bedside. Another example is
the Inpatient Pharmacy Automation System, which
receives prescriptions entered by the doctors via the
EMR system and then sends machine-packed medi-
cines to the wards using Automated Guided Vehicles
that travel on pre-programmed routes and help in
moving not only medication but also linen, meals,
etc. At the ward, the patient’s wrist tag is scanned
and matched against the doctor’s prescription before
the medicines can be retrieved from the medical
carts. Thus, only the required medication is supplied
and administered to the right patient.
Another innovative use of technology is the Daily
Operations Dashboard, which integrates data from
different systems to show key metrics for various
departments, such as emergency, outpatient clinics,
inpatient wards, and surgery areas. It also analyzes,
compares, and displays daily, weekly, and monthly
statistics, which act as vital input for management
decision making.
IT has played a key role in enabling JurongHealth
to achieve its mission of providing world-class medi-
cal care at an affordable cost. As a result, Jurong-
Health has developed a reputation as a leading
technology-driven healthcare provider as well as a
role model not only in Singapore but also the entire
region. This is also evident from its many accolades,
which include awards for IT-driven transformation—
the Project of the Year 2015–16 award by SPMI, the
Singapore branch of the global professional accredita-
tion body Project Management International—and
for overall organizational transformation—“Best Com-
panies to Work for in Asia 2014” by HR Asia.

Sources: P. Bhunia, “The JurongHealth IT Journey—Integrating IT
from the Ground-Up into a New Digital Hospital,”,
November 13, 2016, accessed December 21, 2016; JurongHealth,
“Integrated Healthcare IT Systems at Ng Teng Fong General Hospital
and Jurong Community Hospital win the Project of the Year Award
at the SPMI Symposium 2016,”, accessed Decem-
ber 21, 2016; JurongHealth, “Our Milestones,” www.juronghealth., October 2016, accessed December 21, 2016 .
1. What technologies are used by JurongHealth?
What purpose do they serve?
2. Search the web for RFID. Suggest an example of
using RFID for locating and tracking people.
3. What information systems are implemented by
JurongHealth? Describe the input, processing, and
output of any one such system.
4. Why are information systems important for
Case contributed by Neerja Sethi and Vijay Sethi,
Nanyang Technological University
52 Part One Organizations, Management, and the Networked Enterprise

information that helps managers make better decisions or that improves the
execution of business processes. For example, the information system for ana-
lyzing supermarket checkout data illustrated in Figure 1. 3 can increase firm
profitability by helping managers make better decisions as to which products to
stock and promote in retail supermarkets.
Every business has an information value chain, illustrated in Figure 1. 7 , in
which raw information is systematically acquired and then transformed through
various stages that add value to that information. The value of an information
system to a business, as well as the decision to invest in any new information
system, is, in large part, determined by the extent to which the system will lead
to better management decisions, more efficient business processes, and higher
firm profitability. Although there are other reasons why systems are built, their
primary purpose is to contribute to corporate value.
The business perspective calls attention to the organizational and managerial
nature of information systems. An information system represents an organiza-
tional and management solution, based on information technology, to a chal-
lenge or problem posed by the environment. Every chapter in this book begins
with a short case study that illustrates this concept. A diagram at the beginning
of each chapter illustrates the relationship between a business challenge and
resulting management and organizational decisions to use IT as a solution to
challenges generated by the business environment. You can use this diagram
as a starting point for analyzing any information system or information system
problem you encounter.
Review the diagram at the beginning of this chapter . The diagram shows how
the Rugby Football Union’s systems solved the business problem presented by
the need to generate revenue in a highly competitive industry. These systems
created a solution that takes advantage of opportunities that new digital tech-
nology and the Internet provided. They opened up new channels for selling
tickets and interacting with customers, optimized ticket pricing, and used new
tools to analyze player performance. These systems were essential in improv-
ing the rugby teams’ overall business performance. The diagram also illustrates
Using a handheld com-
puter called a Delivery
Information Acquisition
Device (DIAD), UPS drivers
automatically capture cus-
tomers’ signatures along
with pickup, delivery, and
time card information. UPS
information systems use
these data to track pack-
ages while they are being
© Bill Aron/PhotoEdit.Inc
Chapter 1 Information Systems in Global Business Today 53

how people, technology, and organizational elements work together to create
the systems.
Complementary Assets: Organizational Capital and
the Right Business Model
Awareness of the organizational and managerial dimensions of information sys-
tems can help us understand why some firms achieve better results from their
information systems than others. Studies of returns from information technol-
ogy investments show that there is considerable variation in the returns firms
receive (see Figure 1. 8 ). Some firms invest a great deal and receive a great deal
(quadrant 2); others invest an equal amount and receive few returns (quadrant
4). Still other firms invest little and receive much (quadrant 1), whereas others
invest little and receive little (quadrant 3). This suggests that investing in infor-
mation technology does not by itself guarantee good returns. What accounts for
this variation among firms?
The answer lies in the concept of complementary assets. Information tech-
nology investments alone cannot make organizations and managers more
effective unless they are accompanied by supportive values, structures, and
behavior patterns in the organization and other complementary assets. Busi-
ness firms need to change how they do business before they can really reap the
advantages of new information technologies.
Complementary assets are those assets required to derive value from a pri-
mary investment ( Teece, 1998 ). For instance, to realize value from automobiles
requires substantial complementary investments in highways, roads, gasoline
Business Processes
Information Processing Activities
Business Value
Management Activities
into Business
Planning Controlling Modeling and
From a business perspective, information systems are part of a series of value-adding activities for acquiring, trans-
forming, and distributing information that managers can use to improve decision making, enhance organizational
performance, and, ultimately, increase firm profitability.
54 Part One Organizations, Management, and the Networked Enterprise

stations, repair facilities, and a legal regulatory structure to set standards and
control drivers.
Research indicates that firms that support their technology investments
with investments in complementary assets, such as new business models, new
business processes, management behavior, organizational culture, or training,
receive superior returns, whereas those firms failing to make these complemen-
tary investments receive less or no returns on their information technology
investments ( Brynjolfsson, 2005 ; Brynjolfsson and Hitt, 2000 ; Laudon, 1974 ).
These investments in organization and management are also known as organi-
zational and management capital .
Table 1. 2 lists the major complementary investments that firms need to make
to realize value from their information technology investments. Some of this
investment involves tangible assets, such as buildings, machinery, and tools.
However, the value of investments in information technology depends to a
large extent on complementary investments in management and organization.
Key organizational complementary investments are a supportive business
culture that values efficiency and effectiveness, an appropriate business model,
efficient business processes, decentralization of authority, highly distributed
decision rights, and a strong information system (IS) development team.
Important managerial complementary assets are strong senior management
support for change, incentive systems that monitor and reward individual inno-
vation, an emphasis on teamwork and collaboration, training programs, and a
management culture that values flexibility and knowledge.
Important social investments (not made by the firm but by the society at large,
other firms, governments, and other key market actors) are the Internet and the
supporting Internet culture, educational systems, network and computing stan-
dards, regulations and laws, and the presence of technology and service firms.
Throughout the book we emphasize a framework of analysis that considers
technology, management, and organizational assets and their interactions. Per-
haps the single most important theme in the book, reflected in case studies and
IT Capital Stock (relative to industry average)
(relati ve to
1 .0 4 .0 8 .0.25.12
1 .0
2 .0
4 .0
1 2
3 4
Although, on average, investments in information technology produce returns far above those returned
by other investments, there is considerable variation across firms.
Source: Based on Brynjolfsson and Hitt (2000) .
Chapter 1 Information Systems in Global Business Today 55

exercises, is that managers need to consider the broader organization and man-
agement dimensions of information systems to understand current problems as
well as to derive substantial above-average returns from their information tech-
nology investments. As you will see throughout the text, firms that can address
these related dimensions of the IT investment are, on average, richly rewarded.
1- 3 What academic disciplines are used to study
information systems, and how does each
contribute to an understanding of information
The study of information systems is a multidisciplinary field. No single theory
or perspective dominates. Figure 1. 9 illustrates the major disciplines that con-
tribute problems, issues, and solutions in the study of information systems.
In general, the field can be divided into technical and behavioral approaches.
Information systems are sociotechnical systems. Though they are composed
of machines, devices, and “hard” physical technology, they require substan-
tial social, organizational, and intellectual investments to make them work
Technical Approach
The technical approach to information systems emphasizes mathematically
based models to study information systems as well as the physical technology
and formal capabilities of these systems. The disciplines that contribute to the
technical approach are computer science, management science, and operations
Organizational assets Supportive organizational culture that values efficiency and effectiveness
Appropriate business model
Efficient business processes
Decentralized authority
Distributed decision-making rights
Strong IS development team
Managerial assets Strong senior management support for technology investment and change
Incentives for management innovation
Teamwork and collaborative work environments
Training programs to enhance management decision skills
Management culture that values flexibility and knowledge-based decision making.
Social assets The Internet and telecommunications infrastructure
IT-enriched educational programs raising labor force computer literacy
Standards (both government and private sector)
Laws and regulations creating fair, stable market environments
Technology and service firms in adjacent markets to assist implementation
56 Part One Organizations, Management, and the Networked Enterprise

Computer science is concerned with establishing theories of computability,
methods of computation, and methods of efficient data storage and access. Man-
agement science emphasizes the development of models for decision-making
and management practices. Operations research focuses on mathematical tech-
niques for optimizing selected parameters of organizations, such as transporta-
tion, inventory control, and transaction costs.
Behavioral Approach
An important part of the information systems field is concerned with behavioral
issues that arise in the development and long-term maintenance of information
systems. Issues such as strategic business integration, design, implementation,
utilization, and management cannot be explored usefully with the models used
in the technical approach. Other behavioral disciplines contribute important
concepts and methods.
For instance, sociologists study information systems with an eye toward how
groups and organizations shape the development of systems and also how sys-
tems affect individuals, groups, and organizations. Psychologists study infor-
mation systems with an interest in how human decision makers perceive and
use formal information. Economists study information systems with an interest
in understanding the production of digital goods, the dynamics of digital mar-
kets, and how new information systems change the control and cost structures
within the firm.
The behavioral approach does not ignore technology. Indeed, information
systems technology is often the stimulus for a behavioral problem or issue. But
the focus of this approach is generally not on technical solutions. Instead, it
concentrates on changes in attitudes, management and organizational policy,
and behavior.
Psychology Economics
The study of information systems deals with issues and insights contributed from technical and behav-
ioral disciplines.
Chapter 1 Information Systems in Global Business Today 57

Approach of This Text: Sociotechnical Systems
Throughout this book you will find a rich story with four main actors: suppliers
of hardware and software (the technologists); business firms making invest-
ments and seeking to obtain value from the technology; managers and employ-
ees seeking to achieve business value (and other goals); and the contemporary
legal, social, and cultural context (the firm’s environment). Together these
actors produce what we call management information systems .
The study of management information systems (MIS) arose to focus on the
use of computer-based information systems in business firms and government
agencies. MIS combines the work of computer science, management science,
and operations research with a practical orientation toward developing sys-
tem solutions to real-world problems and managing information technology
resources. It is also concerned with behavioral issues surrounding the develop-
ment, use, and impact of information systems, which are typically discussed in
the fields of sociology, economics, and psychology.
Our experience as academics and practitioners leads us to believe that no
single approach effectively captures the reality of information systems. The
successes and failures of information systems are rarely all technical or all
behavioral. Our best advice to students is to understand the perspectives of
many disciplines. Indeed, the challenge and excitement of the information sys-
tems field are that it requires an appreciation and tolerance of many different
The view we adopt in this book is best characterized as the sociotech-
nical view of systems. In this view, optimal organizational performance is
achieved by jointly optimizing both the social and technical systems used in
Adopting a sociotechnical systems perspective helps to avoid a purely tech-
nological approach to information systems. For instance, the fact that infor-
mation technology is rapidly declining in cost and growing in power does not
necessarily or easily translate into productivity enhancement or bottom-line
profits. The fact that a firm has recently installed an enterprise-wide finan-
cial reporting system does not necessarily mean that it will be used, or used
effectively. Likewise, the fact that a firm has recently introduced new business
procedures and processes does not necessarily mean employees will be more
productive in the absence of investments in new information systems to enable
those processes.
In this book , we stress the need to optimize the firm’s performance as a
whole. Both the technical and behavioral components need attention. This
means that technology must be changed and designed in such a way as to fit
organizational and individual needs. Sometimes, the technology may have
to be “de-optimized” to accomplish this fit. For instance, mobile phone users
adapt this technology to their personal needs, and as a result manufactur-
ers quickly seek to adjust the technology to conform with user expectations.
Organizations and individuals must also be changed through training, learn-
ing, and planned organizational change to allow the technology to operate
and prosper. Figure 1. 10 illustrates this process of mutual adjustment in a
sociotechnical system.
58 Part One Organizations, Management, and the Networked Enterprise

Design of
Design of
In a sociotechnical perspective, the performance of a system is optimized when both the technology
and the organization mutually adjust to one another until a satisfactory fit is obtained.
Review Summary
1-1 How are information systems transforming business, and why are they essential for running and
managing a business today?
E-mail, online conferencing, smartphones, and tablet computers have become essential tools for
conducting business. Information systems are the foundation of fast-paced supply chains. The Inter-
net allows many businesses to buy, sell, advertise, and solicit customer feedback online. Organiza-
tions are trying to become more competitive and efficient by digitally enabling their core business
processes and evolving into digital firms. The Internet has stimulated globalization by dramatically
reducing the costs of producing, buying, and selling goods on a global scale. New information system
trends include the emerging mobile digital platform, big data, and cloud computing.
Information systems are a foundation for conducting business today. In many industries, survival
and the ability to achieve strategic business goals are difficult without extensive use of information
technology. Businesses today use information systems to achieve six major objectives: operational
excellence; new products, services, and business models; customer/supplier intimacy; improved
decision making; competitive advantage; and day-to-day survival.
1-2 What is an information system? How does it work? What are its management, organization, and technology
components? Why are complementary assets essential for ensuring that information systems provide genu-
ine value for organizations?
From a technical perspective, an information system collects, stores, and disseminates informa-
tion from an organization’s environment and internal operations to support organizational functions
and decision making, communication, coordination, control, analysis, and visualization. Information
systems transform raw data into useful information through three basic activities: input, processing,
and output.
From a business perspective, an information system provides a solution to a problem or challenge
facing a firm and represents a combination of management, organization, and technology elements.
The management dimension of information systems involves issues such as leadership, strategy, and
management behavior. The technology dimension consists of computer hardware, software, data
management technology, and networking/telecommunications technology (including the Internet).
The organization dimension of information systems involves issues such as the organization’s hierar-
chy, functional specialties, business processes, culture, and political interest groups.
Chapter 1 Information Systems in Global Business Today 59

In order to obtain meaningful value from information systems, organizations must support their
technology investments with appropriate complementary investments in organizations and manage-
ment. These complementary assets include new business models and business processes, supportive
organizational culture and management behavior, and appropriate technology standards, regulations,
and laws. New information technology investments are unlikely to produce high returns unless busi-
nesses make the appropriate managerial and organizational changes to support the technology.
1-3 What academic disciplines are used to study information systems, and how does each contribute to an
understanding of information systems?
The study of information systems deals with issues and insights contributed from technical and
behavioral disciplines. The disciplines that contribute to the technical approach focusing on formal
models and capabilities of systems are computer science, management science, and operations
research. The disciplines contributing to the behavioral approach focusing on the design, implemen-
tation, management, and business impact of systems are psychology, sociology, and economics. A
sociotechnical view of systems considers both technical and social features of systems and solutions
that represent the best fit between them.
Key Terms
Business functions , 47
Business model , 42
Business processes , 40
Complementary assets , 54
Computer hardware , 49
Computer literacy , 46
Computer software , 49
Culture , 48
Data , 44
Data management technology , 49
Data workers , 47
Digital firm , 40
Extranets , 50
Feedback , 46
Information , 44
Information system , 44
Information systems literacy , 46
Information technology (IT) , 44
Information technology (IT) infrastructure , 50
Input , 45
Internet , 49
Intranets , 50
Knowledge workers , 47
Management information systems (MIS) , 46
Middle management , 47
Network , 49
Networking and telecommunications
technology , 49
Operational management , 47
Organizational and management capital , 55
Output , 46
Processing , 45
Production or service workers , 47
Senior management , 47
Sociotechnical view , 58
World Wide Web , 50
To complete the problems marked with the MyLab MIS , go to the EOC Discussion Questions in MyLab MIS.
Review Questions
1- 1 How are information systems transforming
business, and why are they so essential for run-
ning and managing a business today?
• Describe how information systems have
changed the way businesses operate and
their products and services.
• Identify three major new information sys-
tem trends.
• Describe the characteristics of a digital firm.
• Describe the challenges and opportunities
of globalization in a “flattened” world.
• List and briefly describe the six strategic
business objectives of information systems.
1- 2 What is an information system? How does it
work? What are its management, organization,
and technology components? Why are comple-
mentary assets essential for ensuring that infor-
mation systems provide genuine value for
• Define an information system and describe
the activities it performs.
60 Part One Organizations, Management, and the Networked Enterprise

• List and describe the organizational, man-
agement, and technology dimensions of
information systems.
• Distinguish between data and information
and between information systems literacy
and computer literacy.
• Explain how the Internet and the World
Wide Web are related to the other technol-
ogy components of information systems.
• Describe the flow of information through
the business information value chain..
• Describe the complementary social, mana-
gerial, and organizational assets required to
optimize returns from information technol-
ogy investments.
1- 3 What academic disciplines are used to study
information systems, and how does each con-
tribute to an understanding of information
• List and describe each discipline that con-
tributes to a technical approach to informa-
tion systems.
• List and describe each discipline that con-
tributes to a behavioral approach to informa-
tion systems.
• Describe the sociotechnical perspective on
information systems.
Discussion Questions
1- 4 What does it mean to describe the world as
1- 5 If you were setting up the website for a com-
petitive rugby team, what management, orga-
nization, and technology issues might you
1- 6 What do you think were some of the key
managerial and organizational decisions that
helped make JurongHealth Services’ IT
efforts so successful?
Hands-On MIS Projects
The projects in this section give you hands-on experience in analyzing financial reporting and inventory
management problems, using data management software to improve management decision making about
increasing sales, and using Internet software for researching job requirements. Visit MyLab MIS’s Multime-
dia Library to access this chapter’s Hands-On MIS Projects.
Management Decision Problems
1- 7 Warbenton Snack Foods is a manufacturer of potato crisps and savoury snacks in the U.K. Warbenton’s
financial department uses spreadsheets and manual processes for much of its data gathering and reporting.
Warbenton’s financial analyst would spend the entire final week of every month collecting spreadsheets
from the heads of various departments. She would then consolidate and re-enter all the data into another
spreadsheet, which would serve as the company’s monthly profit-and-loss statement. If a department
needed to update its data after submitting the spreadsheet to the main office, the analyst had to return the
original spreadsheet and then wait for the department to resubmit its data before finally submitting the
updated data in the consolidated document. Assess the impact of this situation on business performance
and management decision making.
1- 8 Rabatt operates deep-discount stores offering housewares, cleaning supplies, clothing, health and beauty
aids, and packaged food throughout Germany, with most items selling for 1 euro. Its business model calls
for keeping costs as low as possible. The company has no automated method for keeping track of inventory
at each store. Managers know approximately how many cases of a particular product the store is supposed
to receive when a delivery truck arrives, but the stores lack technology for scanning the cases or verifying
the item count inside the cases. Merchandise losses from theft or other mishaps have been rising and now
represent over 3 percent of total sales. What decisions have to be made before investing in an information
system solution?
Chapter 1 Information Systems in Global Business Today 61

Improving Decision Making: Using Databases to Analyze Sales Trends
Software skills: Database querying and reporting
Business skills: Sales trend analysis
1- 9 In this project, you will start out with raw transactional sales data and use Microsoft Access database soft-
ware to develop queries and reports that help managers make better decisions about product pricing, sales
promotions, and inventory replenishment. In MyLab MIS, you can find a Store and Regional Sales Database
developed in Microsoft Access. The database contains raw data on weekly store sales of computer equip-
ment in various sales regions. The database includes fields for store identification number, sales region,
item number, item description, unit price, units sold, and the weekly sales period when the sales were
made. Use Access to develop some reports and queries to make this information more useful for running
the business. Sales and production managers want answers to the following questions:
• Which products should be restocked?
• Which stores and sales regions would benefit from a promotional campaign and additional marketing?
• When (what time of year) should products be offered at full price, and when should discounts be used?
You can easily modify the database table to find and report your answers. Print your reports and results of
Improving Decision Making: Using the Internet to Locate Jobs Requiring Information
Systems Knowledge
Software skills: Internet-based software
Business skills: Job searching
1- 10 Visit a job-posting website such as . Spend some time at the site examining jobs for account-
ing, finance, sales, marketing, and human resources. Find two or three descriptions of jobs that require
some information systems knowledge. What information systems knowledge do these jobs require? What
do you need to do to prepare for these jobs? Write a one- to two-page report summarizing your findings.
Collaboration and Teamwork Project
Selecting Team Collaboration Tools
1- 11 Form a team with three or four classmates and review the capabilities of Google Drive and Google Sites for
your team collaboration work. Compare the capabilities of these two tools for storing team documents,
project announcements, source materials, work assignments, illustrations, electronic presentations, and
web pages of interest. Learn how each works with Google Docs. Explain why Google Drive or Google Sites
is more appropriate for your team. If possible, use Google Docs to brainstorm and develop a presentation of
your findings for the class. Organize and store your presentation using the Google tool you have selected.
Are Farms Becoming Digital Firms?
Ohio farmer Mark Bryant raises corn, soybeans, and
soft red winter wheat on 12,000 acres. But you’ll
hardly ever see him on a tractor because that isn’t
how farms work anymore. Bryant spends most of
his time monitoring dashboards full of data gathered
from the 20 or so iPhones and five iPads he has sup-
plied to employees who report on his acreage in real
time. Using software from a Google-funded startup
called Granular, Bryant analyzes the data along with
data gathered from aircraft, self-driving tractors, and
62 Part One Organizations, Management, and the Networked Enterprise

other forms of automated and remote sensors for
yield, moisture, and soil quality.
Tractors themselves have been morphed into
pieces of intelligent equipment, and are now much
smarter. Many tractors and combines today are
guided by Global Positioning System (GPS) satellite-
based navigation systems. The GPS computer
receives signals from earth-orbiting satellites to track
each piece of equipment’s location and where it has
gone. The system helps steer the equipment so farm-
ers are able to monitor progress on iPads and other
tablet computers in their tractor cabs.
The world’s largest producer of autonomous four-
wheeled vehicles isn’t Tesla or Google, it’s John
Deere. The cab of one of Deere’s self-driving trac-
tors is now so full of screens and tablets that it looks
like the cockpit of a jet airplane. John Deere and
its competitors aren’t just turning out tractors, com-
bines, and trucks that can drive themselves, they
are also turning out wirelessly connected sensors
that map every field as well as planting and spraying
machines that can use computerized instructions to
apply seed and nutrients to a field.
Deere & Co. has embedded information technol-
ogy in all of its farming equipment, creating an eco-
system for controlling sprayers, balers, and planters.
Deere products include AutoTrac GPS-controlled
assisted-steering systems, which allow equipment
operators to take their hands off the wheel; JDLink,
which enables machinery to automatically upload
data about fields to a remote computer center and
farmers to download planting or fertilizing instruc-
tions; and John Deere Machine Sync, which uses
GPS data to create maps based on aerial or satellite
photos to improve planting, seeding, spraying, and
nutrient application.
Deere now ranks among the leading companies
offering tools for farmers to practice what is known
as precision agriculture. Managing fields with this
level of computerized precision means farmers
need to use fewer loads of fertilizer, potentially
saving an individual farmer tens of thousands of
dollars. Some also see precision agriculture as the
solution to feeding the world’s exploding popula-
tion. By 2050, the world’s population is predicted to
be 9.2 billion people, 34 percent higher than today.
More people will have the means to purchase food
that requires more land, water, and other resources
to produce. To keep up with rising populations
and income growth, global food production must
increase by 70 percent and precision agriculture
could make this possible. Farmers using fertilizer,
water, and energy to run equipment more precisely
are less wasteful, and this also promotes the health
of the planet.
Other large agricultural companies like Monsanto
and Dupont are big precision agriculture players,
providing data analysis and planting recommenda-
tions to farmers who use their seeds, fertilizers, and
herbicides. Because adjustments in planting depth or
the distance between crop rows can make a big dif-
ference in crop yields, these companies want their
computers to analyze the data generated during
computerized planting work to show farmers how to
further increase their crop output.
The farmer provides data on his or her farm’s field
boundaries, historic crop yields, and soil conditions
to these companies or another agricultural data anal-
ysis company, which analyzes the data along with
other data it has collected about seed performance
and soil types in different areas. The company doing
the data analysis then sends a computer file with
recommendations back to the farmer, who uploads
the data into computerized planting equipment. The
farmer’s planting equipment follows the recommen-
dations as it plants fields. For example, the recom-
mendations might tell an Iowa corn farmer to lower
the number of seeds planted per acre or to plant
more seeds per acre in specified portions of the field
capable of growing more corn. The farmer might also
receive advice on the exact type of seed to plant in
different areas. The data analysis company monitors
weather and other factors to advise farmers how to
manage crops as they grow.
A software application developed by Monsanto
called FieldScripts takes into account variables such
as the amount of sunlight and shade and variations
in soil nitrogen and phosphorous content down to
an area as small as a 10-meter-by-10-meter grid.
Monsanto analyzes the data in conjunction with
the genetic properties of its seeds, combines all this
information with climate predictions, and delivers
precise planting instructions or “scripts” to iPads
connected to planting equipment in the field. Tools
such as FieldScripts would allow farmers to pinpoint
areas that need more or less fertilizer, saving them
the cost of spreading fertilizer everywhere while
boosting their yields in areas that have performed
more poorly and reducing the amount of excess
fertilizer that enters the water table—good for the
Prescriptive planting could help raise the aver-
age corn harvest to more than 200 bushels an acre
from the current 160 bushels, some experts say. On
a larger scale, according to Monsanto, the world’s
largest seed company, data-driven planting advice
Chapter 1 Information Systems in Global Business Today 63

to farmers could increase worldwide crop produc-
tion by about $20 billion a year. So far, output from
prescriptive planting systems has not achieved those
spectacular levels.
Is there a downside to all of this? For small farm-
ers, the answer may be yes. The costs of investing
in the new technology and vendor service fees for
some of these tools such as FieldScripts can amount
to more than what many small farmers can earn
in extra yield from their farms. According to Sara
Olson of Lux Research Inc., the problem with preci-
sion agriculture is the diminishing returns that come
along with costly technologies on smaller farms.
That means that only the really big farms are likely
to benefit.
Monsanto estimates that FieldScripts will improve
yields by five to 10 bushels per acre. With corn at
about $4 per bushel, that’s an increase of $20 to $40
per acre. A small farm of about 500 acres could get
anywhere from $10,000 to $20,000 in extra revenue.
Monsanto charges around $10 per acre for the ser-
vice, so the farm will wind up paying about $5,000—
in addition to paying tens of thousands of dollars
to either retrofit its existing planting equipment or
buy more modern tractors that include the elec-
tronics gear that syncs the “scripts” provided by the
Monsanto online service with the planter’s onboard
navigation systems. Monsanto also charges an extra
$15 per acre for its local climate prediction service. A
small farm will most likely lose money or break even
for the first two years of using a service like Field-
Scripts, according to Olson.
For a large farm of about 5,000 acres, FieldScripts
could increase revenues by between $100,000 and
$200,000. With Monsanto’s service costing about
$50,000, that farm’s total profits will run between
$50,000 to $150,000, more than sufficient to offset
the cost of updating farm machinery. Whether a
farm is big or small, the impact of FieldScripts would
be minimal in good years because yields would be
high regardless. The technology is likely to have a
bigger impact in years when conditions aren’t so
propitious. A spokesperson for Monsanto stated that
the outcome of its prescriptive planting system is
less about the size of the farm and more about the
farmer’s technology know-how. According to Michael
Cox, codirector of investment research at securities
firm Piper Jaffray Cos., revenue from FieldScripts
and other technology-driven products and services
could account for 20 percent of Monsanto’s projected
growth in per-share earnings by 2018.
Although some farmers have embraced prescrip-
tive planting, others are critical. Many farmers are
suspicious about what Monsanto and DuPont might
do with the data collected about them. Others worry
about seed prices rising too much because the big
companies that developed prescriptive planting tech-
nology are the same ones that sell seeds. (There has
been a surge in seed prices during the past 15 years
as the biggest companies increased their market
share. Monsanto and DuPont now sell about 70 per-
cent of all corn seed in the United States.) Farmers
also fear that rivals could use the data to their own
advantage. For instance, if nearby farmers saw crop-
yield information, they might rush to rent farmland,
pushing land and other costs higher. Other farmers
worry that Wall Street traders could use the data to
make bets on futures contracts. If such bets push
futures-contract prices lower early in the growing
season, it might squeeze the profits farmers might
lock in for their crops by selling futures.
There are not yet any publicly known examples
where a farmer’s prescriptive-planting informa-
tion has been misused. Monsanto and DuPont offi-
cials say the companies have no plans to sell data
gathered from farmers. Monsanto has stated that it
supports industrywide standards for managing infor-
mation collected from fields and that it wouldn’t
access the data without permission from farmers.
Deere & Co., which has been working with DuPont
and Dow Chemical Co. to formulate specialized
seed-planting recommendations based on data from
its tractors, combines, and other machinery, says it
obtains consent from customers before sharing any
of their data.
Some farmers have discussed aggregating plant-
ing data on their own so they could decide what
information to sell and at what price. Others are
working with smaller technology companies that are
trying to keep agricultural giants from dominating
the prescriptive-planting business. Startups such as
Farmobile LLC, Granular Inc., and Grower Informa-
tion Services Cooperative are developing informa-
tion systems that will enable farmers to capture data
streaming from their own tractors and combines,
store the data in their own remote data centers, and
market the data to seed, pesticide, and equipment
companies or futures traders if they so choose. Such
platforms could help farmers wring larger profits
from precision farming and give them more control
over the information generated on their fields.
Sources: “Precision Agriculture,” , accessed
April 4, 2016; Matthew J. Grassi, “Agrible Launches Nutrient
Forecasting, Spray Smart Features,” PrecisionAg, March 9, 2016; , accessed April 4, 2016; Jacob Bunge, ”On the
Farm: Startups Put Data in Farmers’ Hands,” Wall Street Journal,
64 Part One Organizations, Management, and the Networked Enterprise

August 31, 2015; Mary K. Pratt, “How Technology Is Nourishing
the Food Chain,” Computerworld, August 18, 2015; and Michael
Hickins, “For Small Farmers, Big Data Adds Modern Problems to
Ancient Ones,” Wall Street Journal, February 25, 2014.
1- 12 List and describe the technologies used in this
case study.
1- 13 In what sense are U.S. farms now digital firms?
Explain your answer.
1- 14 How is information technology changing the
way farmers run their business?
1- 15 How do the systems described in this case
improve farming operations?
1- 16 How do precision agriculture systems support
decision making? Identify three different deci-
sions that can be supported.
1- 17 How helpful is precision agriculture to individ-
ual farmers and the agricultural industry?
Explain your answer.
Go to the Assignments section of MyLab MIS to complete these writing exercises.
1- 18 What are the strategic objectives that firms try to achieve by investing in information systems and technologies?
For each strategic objective, give an example of how a firm could use information systems to achieve the
1- 19 Describe the complementary assets that firms need in order to optimize returns from their information system
investments. For each type of complementary asset, give an example of a specific asset a firm should have.
Chapter 1 Information Systems in Global Business Today 65

Chapter 1 References
Lev, Baruch. “Intangibles: Management, Measurement, and
Reporting.” The Brookings Institution Press (2001).
McKinsey Global Institute. “Digital America: A Tale of the Haves
and Have-Mores (December 2015).
Mithas, Sunil and Roland T. Rust, “How Information Technology
Strategy and Investments Influence Firm Performance:
Conjecture and Empirical Evidence.” MIS Quarterly (March
Nevo, Saggi and Michael R. Wade. “The Formation and Value of
IT-Enabled Resources: Antecedents and Consequences of
Synergistic Relationships.” MIS Quarterly 34, No. 1 (March
Otim, Samual, Kevin E. Dow, Varun Grover, and Jeffrey A. Wong.
“The Impact of Information Technology Investments on
Downside Risk of the Firm: Alternative Measurement of the
Business Value of IT.” Journal of Management Information
Systems 29, No. 1 (Summer 2012).
Ren, Fei and Sanjeev Dewan. “Industry-Level Analysis of
Information Technology Return and Risk: What Explains the
Variation?” Journal of Management Information Systems 21, No.
2 (2015).
Ross, Jeanne W. and Peter Weill. “Four Questions Every CEO
Should Ask About IT.” Wall Street Journal (April 25, 2011).
Sabherwal, Rajiv and Anand Jeyaraj. “Information Technology
Impacts on Firm Performance: An Extension of Kohli and
Devaraj (2003).” MIS Quarterly (December 2015).
Sampler, Jeffrey L., and Michael J. Earl. “What’s Your Information
Footprint?” MIT Sloan Management Review (Winter 2014).
Saunders, Adam and Erik Brynjolfsson. “Valuing Information
Technology Related Intangible Assets.” MIS Quarterly (March
Shanks, Ryan, Sunit Sinha and Robert J. Thomas. “Managers and
Machines, Unite!” Accenture (2015).
Stats-Wordpress. “Wordpress Global Statistics,” https://wordpress.
com , accessed April 22, 2016.
Teece, David. Economic Performance and Theory of the Firm : The
Selected Papers of David Teece. London: Edward Elgar
Publishing (1998).
U.S. Bureau of Labor Statistics. Occupational Outlook Handbook .
(December 17, 2015).
Weill, Peter and Jeanne Ross. IT Savvy: What Top Executives Must
Know to Go from Pain to Gain . Boston: Harvard Business
School Press (2009).
Brynjolfsson, Erik and Lorin M. Hitt. “Beyond Computation:
Information Technology, Organizational Transformation, and
Business Performance.” Journal of Economic Perspectives 14,
No. 4 (2000).
Brynjolfsson, Erik. “VII Pillars of IT Productivity.” Optimize (May
Bureau of Economic Analysis. National Income and Product
Accounts . , accessed April 19, 2016.
Carr, Nicholas. “IT Doesn’t Matter.” Harvard Business Review (May
Chae, Ho-Chang, Chang E. Koh, and Victor Prybutok. “Information
Technology Capability and Firm Performance: Contradictory
Findings and Their Possible Causes.” MIS Quarterly 38, No. 1
(March 2014).
Conaghan, Jim. “Newspaper Digital Audience Grew Twice as Fast
as the Internet in the Past 12 Months.” Newspaper
Association of America (October 9, 2015).
Curtis, Sophie. “Dot-com at 30: Will the World’s Best-Known Web
Domain Soon Be Obsolete?” (March 15,
Dedrick, Jason, Vijay Gurbaxani, and Kenneth L. Kraemer.
“Information Technology and Economic Performance: A
Critical Review of the Empirical Evidence.” Center for
Research on Information Technology and Organizations,
University of California, Irvine (December 2001).
eMarketer. “eMarketer Numbers for: Blogging, 2014–2018.” (2016).
eMarketer. “Worldwide Retail E-commerce Sales.” (2016a).
eMarketer. “Tablet Users to Surpass 1 Billion Worldwide in 2015.”
(January, 2015a).
eMarketer. “US Adults Spend 5.5 Hours with Video Content Each
Day.” (April 16, 2015b).
eMarketer. “US Digital Ad Spending, 2013–2019.” (March 2015c).
FedEx Corporation. “SEC Form 10-K for the Fiscal Year Ended May
31, 2015.”
Friedman, Thomas. The World Is Flat. New York: Picador (2007).
Garretson, Rob. “IT Still Matters.” CIO Insight 81 (May 2007).
Hughes, Alan and Michael S. Scott Morton. “The Transforming
Power of Complementary Assets.” MIT Sloan Management
Review 47. No. 4 (Summer 2006).
Lamb, Roberta, Steve Sawyer, and Rob Kling. “A Social Informatics
Perspective of Socio-Technical Networks.” (2004).
Laudon, Kenneth C. Computers and Bureaucratic Reform . New York:
Wiley (1974).
66 Part One Organizations, Management, and the Networked Enterprise

MyLab MIS™
Visit for simulations, tutorials, and end-of-chapter problems.
Learning Objectives
After reading this chapter , you will be able to answer the following questions:
2- 1 What are business processes? How are they related to information
2- 2 How do systems serve the different management groups in a business,
and how do systems that link the enterprise improve organizational
2- 3 Why are systems for collaboration and social business so important, and
what technologies do they use?
2- 4 What is the role of the information systems function in a business?
Walmart’s Retail Link Supply Chain
CEMEX: Becoming a Social Business
Instructional Video:
US Foodservice Grows Market with Oracle CRM on Demand
Enterprise Social Networking Helps ABB Innovate and Grow
New Systems Help Plan International Manage Its Human Resources
Collaborating the Glasscubes Way
Social Business: Full Speed Ahead or Proceed with Caution?

2 Global E-business and Collaboration

ABB, headquartered in Zurich, Switzerland, is a global supplier of power grids, industrial motors and drives, and generators for industrial, com-mercial, and utility operations. The company has about 135,000
employees in 100 countries around the world and is noted for its innovations
in ship propulsion and power transmission. Collaboration, sharing informa-
tion, and ongoing innovation are essential for ABB’s growth and business
ABB had a corporate intranet, but man-
agement believed it was too static and
outmoded to meet its current needs for
empowering and energizing employees.
The intranet had poor capabilities for
searching for information, and informa-
tion was often added instead of changed.
This often created two or more differ-
ent versions of the same content. ABB
employees were storing information in
wikis, local file servers, and other knowl-
edge platforms besides the intranet, add-
ing to the confusion and inefficiency.
There were nine different platforms
employees might need to access to do
their work. Additionally, the intranet
lacked tools to help staff have dialogues,
share ideas, and work with other mem-
bers of the company, including people
that they might not know.
What ABB needed was a central resource that would support dynamic
knowledge sharing. The entire staff would be able to easily locate information
about the company as well as updates on the latest developments of current
initiatives and projects. Tools that would help employees work more closely
together—including the ability to locate employees in other parts of the com-
pany who were experts in specific subjects—would help streamline operations
and speed up key business functions.
ABB replaced its outmoded intranet with one called Inside+ that is more
dynamic and socially enabled. Inside+ provides ABB employees with a single
entry point to all the information and tools they need for their jobs. These
include Microsoft Yammer, Office 365, and Sharepoint.
Yammer is an enterprise social networking platform used by more than
200,000 organizations worldwide. Yammer enables employees to create
Enterprise Social Networking Helps ABB
Innovate and Grow
© Andrey Popov/Shutterstock

groups to collaborate on projects and share and edit documents and includes
a news feed to find out what’s happening within the company. Yammer can be
accessed through the web and desktop and mobile devices and can be integrated
with other systems such as Microsoft SharePoint and Office 365 to make other
applications more “social.” SharePoint is Microsoft’s platform for collaboration,
document sharing, and document management. Office 365 is Microsoft’s online
service for its Office productivity applications (word processing, spreadsheet,
electronic presentations, data management). Its mail service works seamlessly
with an online meeting and videoconferencing service, simplifying online
Inside+ integrates all the key internal platforms that employees use for their
work. Individualized Yammer feeds occupy the left half of the landing page. An
employee’s Yammer feed displays e-mail messages and updates to documents
that person has been working on. Conversations on Yammer are archived and
searchable. Employees can access Microsoft SharePoint from their Inside+
toolbar, and Office 365 applications are also seamlessly linked to Yammer. This
enterprise social network is now used by 50,000 ABB employees-nearly one-
third of the company’s global workforce.
How has ABB benefited from becoming more “social”? Employees are using
Yammer and Inside+ to collaborate on projects, share ideas, and discover peo-
ple in other departments with useful expertise that could help them in their
work. Moving conversations from e-mail to Yammer has made discussions
more productive with better employee engagement. Some ABB teams report
that their e-mail messages have shrunk by 50 percent. Staff can be productive
anytime and anywhere because they are able to access Inside+ from smart-
phones and tablets. More than half the comments employees post come from
mobile devices. The company is also saving on conference costs. For example,
instead of flying 100 employees to Zurich for an annual communications con-
ference in 2012 and 2013, the company ran the conference online with all dis-
cussion housed and archived on Yammer. Many more employees feel closely
involved with the business as a whole—something that could not have been
achieved with the old system.
Sources: Adam Bonefeste, “ABB Reinvents Its Intranet with Social Networking Technology,” , January 28, 2015; Rachel Miller, “ABB Employees Have 50,000 Reasons to
Discover Yammer,” , accessed March 8, 2016; and , accessed
March 14, 2016.
ABB’s experience illustrates how much organizations today rely on informa-tion systems to improve their performance and remain competitive. It also
shows how much systems supporting collaboration and teamwork make a dif-
ference in an organization’s ability to innovate, execute, and grow profits.
The chapter- opening diagram calls attention to important points raised by
this case and this chapter . ABB itself is a knowledge-intensive company that
prizes innovation, but it was hampered by outdated processes and tools for
managing information that prevented employees and managers from working
efficiently and effectively. This affected the company’s ability to create and
deliver new leading-edge products and services.
ABB management decided that the best solution was to deploy new technol-
ogy to move from a static corporate knowledge and work environment to one
70 Part One Organizations, Management, and the Networked Enterprise


that actively engaged employees and enabled them to obtain more knowledge
from colleagues. The company consolidated its multiple knowledge platforms
so that all employees would use Inside+ as a single entry point into ABB’s
systems for knowledge sharing and collaboration. ABB took advantage of Micro-
soft Yammer’s social tools to increase employee collaboration and engagement.
Inside+ integrates all of the ways employees share knowledge. There is more
effective sharing of institutional knowledge, and the company has become
more innovative and efficient.
New technology alone would not have solved ABB’s problem. To make the
solution effective, ABB had to change its organizational culture and business
processes for knowledge dissemination and collaborative work, and the new
technology made these changes possible.
Here are some questions to think about: How are collaboration and employee
engagement keeping ABB competitive? How did using Yammer change the way
work was performed at ABB?
2- 1 What are business processes? How are
they related to information systems?
In order to operate, businesses must deal with many different pieces of infor-
mation about suppliers, customers, employees, invoices, and payments, and of
course their products and services. They must organize work activities that use
this information to operate efficiently and enhance the overall performance
of the firm. Information systems make it possible for firms to manage all their
information, make better decisions, and improve the execution of their busi-
ness processes.
Business Processes
Business processes , which we introduced in Chapter 1 , refer to the manner
in which work is organized, coordinated, and focused to produce a valuable
product or service. Business processes are the collection of activities required
to produce a product or service. These activities are supported by flows of
material, information, and knowledge among the participants in business pro-
cesses. Business processes also refer to the unique ways in which organizations
Deploy Yammer
Outdated static technology
Geographically dispersed
Change knowledge
and collaboration
Change organizational
culture Inside+
Provide new channels
for knowledge
acquisition, innovation,
and collaboration
Improve productivity
Reduce costs
Develop knowledge-
sharing strategy
and goals

Chapter 2 Global E-business and Collaboration 71

coordinate work, information, and knowledge and the ways in which manage-
ment chooses to coordinate work.
To a large extent, the performance of a business firm depends on how well
its business processes are designed and coordinated. A company’s business pro-
cesses can be a source of competitive strength if they enable the company to
innovate or to execute better than its rivals. Business processes can also be
liabilities if they are based on inefficient ways of working that impede organi-
zational responsiveness and efficiency. The chapter- opening case describing
ABB’s improvements in knowledge-sharing processes clearly illustrates these
points , as do many of the other cases in this text .
Every business can be seen as a collection of business processes, some of
which are part of larger encompassing processes. For instance, uses of mentor-
ing, wikis, blogs, and videos are all part of the overall knowledge management
process. Many business processes are tied to a specific functional area. For
example, the sales and marketing function is responsible for identifying cus-
tomers, and the human resources function is responsible for hiring employees.
Table 2. 1 describes some typical business processes for each of the functional
areas of business.
Other business processes cross many different functional areas and require
coordination across departments. For instance, consider the seemingly simple
business process of fulfilling a customer order (see Figure 2. 1 ). Initially, the
sales department receives a sales order. The order passes first to accounting
to ensure the customer can pay for the order either by a credit verification or
request for immediate payment prior to shipping. Once the customer credit is
established, the production department pulls the product from inventory or
produces the product. Then the product is shipped (and this may require work-
ing with a logistics firm, such as UPS or FedEx). A bill or invoice is generated
by the accounting department, and a notice is sent to the customer indicating
that the product has shipped. The sales department is notified of the shipment
and prepares to support the customer by answering calls or fulfilling warranty
What at first appears to be a simple process, fulfilling an order, turns out to be
a very complicated series of business processes that require the close coordina-
tion of major functional groups in a firm. Moreover, to efficiently perform all
these steps in the order fulfillment process requires a great deal of information.
Manufacturing and production Assembling the product
Checking for quality
Producing bills of materials
Sales and marketing Identifying customers
Making customers aware of the product
Selling the product
Finance and accounting Paying creditors
Creating financial statements
Managing cash accounts
Human resources Hiring employees
Evaluating employees’ job performance
Enrolling employees in benefits plans
72 Part One Organizations, Management, and the Networked Enterprise

The required information must flow rapidly within the firm from one decision
maker to another; with business partners, such as delivery firms; and with the
customer. Computer-based information systems make this possible.
How Information Technology Improves
Business Processes
Exactly how do information systems improve business processes? Information
systems automate many steps in business processes that were formerly per-
formed manually, such as checking a client’s credit or generating an invoice
and shipping order. But today, information technology can do much more. New
technology can actually change the flow of information, making it possible for
many more people to access and share information, replacing sequential steps
with tasks that can be performed simultaneously, and eliminating delays in
decision making. New information technology frequently changes the way a
business works and supports entirely new business models. Downloading a
Kindle e-book from Amazon, buying a computer online at Best Buy, and down-
loading a music track from iTunes are entirely new business processes based on
new business models that would be inconceivable without today’s information
That’s why it’s so important to pay close attention to business processes, both
in your information systems course and in your future career. By analyzing
business processes, you can achieve a very clear understanding of how a busi-
ness actually works. Moreover, by conducting a business process analysis, you
will also begin to understand how to change the business by improving its pro-
cesses to make it more efficient or effective. Throughout this book , we examine
business processes with a view to understanding how they might be improved
by using information technology to achieve greater efficiency, innovation, and
customer service.
Fulfilling a customer order involves a complex set of steps that requires the close coordination of the
sales, accounting, and manufacturing functions.
Chapter 2 Global E-business and Collaboration 73

2- 2 How do systems serve the different
management groups in a business, and how do
systems that link the enterprise improve
organizational performance?
Now that you understand business processes, it is time to look more closely
at how information systems support the business processes of a firm. Because
there are different interests, specialties, and levels in an organization, there are
different kinds of systems. No single system can provide all the information an
organization needs.
A typical business organization has systems supporting processes for each
of the major business functions—sales and marketing, manufacturing and pro-
duction, finance and accounting, and human resources. You can find exam-
ples of systems for each of these business functions in the Learning Tracks
for this chapter . Functional systems that operate independently of each other
are becoming a thing of the past because they cannot easily share informa-
tion to support cross-functional business processes. Many have been replaced
with large-scale cross-functional systems that integrate the activities of related
business processes and organizational units. We describe these integrated cross-
functional applications later in this section.
A typical firm also has different systems supporting the decision-making
needs of each of the main management groups we described in Chapter 1 .
Operational management, middle management, and senior management each
use systems to support the decisions they must make to run the company. Let’s
look at these systems and the types of decisions they support.
Systems for Different Management Groups
A business firm has systems to support different groups or levels of manage-
ment. These systems include transaction processing systems and systems for
business intelligence.
Transaction Processing Systems
Operational managers need systems that keep track of the elementary
activities and transactions of the organization, such as sales, receipts, cash
deposits, payroll, credit decisions, and the flow of materials in a factory.
Transaction processing systems (TPS) provide this kind of information.
A transaction processing system is a computerized system that performs
and records the daily routine transactions necessary to conduct business,
such as sales order entry, hotel reservations, payroll, employee record keep-
ing, and shipping.
The principal purpose of systems at this level is to answer routine questions
and to track the flow of transactions through the organization. How many parts
are in inventory? What happened to Mr. Smith’s payment? To answer these
kinds of questions, information generally must be easily available, current, and
At the operational level, tasks, resources, and goals are predefined and highly
structured. The decision to grant credit to a customer, for instance, is made by
a lower-level supervisor according to predefined criteria. All that must be deter-
mined is whether the customer meets the criteria.
74 Part One Organizations, Management, and the Networked Enterprise

Figure 2. 2 illustrates a TPS for payroll processing. A payroll system keeps
track of money paid to employees. An employee time sheet with the employ-
ee’s name, social security number, and number of hours worked per week
represents a single transaction for this system. Once this transaction is
input into the system, it updates the system’s master file (or database —see
Chapter 6 ) that permanently maintains employee information for the orga-
nization. The data in the system are combined in different ways to create
reports of interest to management and government agencies and to send pay-
checks to employees.
Managers need TPS to monitor the status of internal operations and the firm’s
relations with the external environment. TPS are also major producers of infor-
mation for the other systems and business functions. For example, the payroll
system illustrated in Figure 2. 2 , along with other accounting TPS, supplies data
to the company’s general ledger system, which is responsible for maintaining
records of the firm’s income and expenses and for producing reports such as
income statements and balance sheets. It also supplies employee payment his-
tory data for insurance, pension, and other benefits calculations to the firm’s
human resources function and employee payment data to government agencies
such as the U.S. Internal Revenue Service and Social Security Administration.
Transaction processing systems are often so central to a business that TPS
failure for a few hours can lead to a firm’s demise and perhaps that of other
firms linked to it. Imagine what would happen to UPS if its package tracking
system was not working! What would the airlines do without their computer-
ized reservation systems?
Employee Data To General Ledger
To government agencies
Employee paychecks
Employee Number
Pay rate
Gross pay
Federal tax
State tax
Net pay
Earnings (YTD)
Payroll data on master file
A TPS for payroll processing captures employee payment transaction data (such as a time card).
System outputs include online and hard-copy reports for management and employee paychecks.
Chapter 2 Global E-business and Collaboration 75

Systems for Business Intelligence
Firms also have business intelligence systems that focus on delivering infor-
mation to support management decision making. Business intelligence is a
contemporary term for data and software tools for organizing, analyzing, and
providing access to data to help managers and other enterprise users make
more informed decisions. Business intelligence addresses the decision-mak-
ing needs of all levels of management. This section provides a brief introduc-
tion to business intelligence. You’ll learn more about this topic in Chapters 6
and 12 .
Business intelligence systems for middle management help with monitoring,
controlling, decision-making, and administrative activities. In Chapter 1 , we
defined management information systems as the study of information systems
in business and management. The term management information systems
(MIS) also designates a specific category of information systems serving mid-
dle management. MIS provide middle managers with reports on the organiza-
tion’s current performance. This information is used to monitor and control the
business and predict future performance.
MIS summarize and report on the company’s basic operations using data
supplied by transaction processing systems. The basic transaction data from
TPS are compressed and usually presented in reports that are produced
on a regular schedule. Today, many of these reports are delivered online.
Figure 2. 3 shows how a typical MIS transforms transaction-level data from
inventory, production, and accounting into MIS files that are used to pro-
vide managers with reports. Figure 2. 4 shows a sample report from this
MIS typically provide answers to routine questions that have been specified
in advance and have a predefined procedure for answering them. For instance,
MIS reports might list the total pounds of lettuce used this quarter by a fast-
food chain or, as illustrated in Figure 2. 4 , compare total annual sales figures for
Transaction Processing Systems Management Information Systems
cost data
Online Displays
and Dashboards
In the system illustrated by this diagram, three TPS supply summarized transaction data to the MIS reporting system
at the end of the time period. Managers gain access to the organizational data through the MIS, which provides them
with the appropriate reports.
76 Part One Organizations, Management, and the Networked Enterprise

specific products to planned targets. These systems generally are not flexible
and have little analytical capability. Most MIS use simple routines, such as sum-
maries and comparisons, as opposed to sophisticated mathematical models or
statistical techniques.
Other types of business intelligence systems support more non-routine deci-
sion making. Decision-support systems (DSS) focus on problems that are
unique and rapidly changing, for which the procedure for arriving at a solution
may not be fully predefined in advance. They try to answer questions such as
these: What would be the impact on production schedules if we were to double
sales in the month of December? What would happen to our return on invest-
ment if a factory schedule were delayed for six months?
Although DSS use internal information from TPS and MIS, they often bring
in information from external sources, such as current stock prices or product
prices of competitors. These systems are employed by “super-user” managers
and business analysts who want to use sophisticated analytics and models to
analyze data.
An interesting, small, but powerful DSS is the voyage-estimating system
of a large global shipping company that transports bulk cargoes of coal,
oil, ores, and finished products. The firm owns some vessels, charters oth-
ers, and bids for shipping contracts in the open market to carry general
cargo. A voyage-estimating system calculates financial and technical voy-
age details. Financial calculations include ship/time costs (fuel, labor, capi-
tal), freight rates for various types of cargo, and port expenses. Technical
details include a myriad of factors, such as ship cargo capacity, speed, port
distances, fuel and water consumption, and loading patterns (location of
cargo for different ports).
The system can answer questions such as the following: Given a customer
delivery schedule and an offered freight rate, which vessel should be assigned
at what rate to maximize profits? What is the optimal speed at which a particu-
lar vessel can optimize its profit and still meet its delivery schedule? What is the
optimal loading pattern for a ship bound for the U.S. West Coast from Malaysia?
Carpet Cleaner
Consolidated Consumer Products Corporation Sales by Product and Sales Region: 2017
Room Freshener
5674 3,676,700
This report, showing summarized annual sales data, was produced by the MIS in Figure 2. 3 .
Chapter 2 Global E-business and Collaboration 77

Figure 2. 5 illustrates the DSS built for this company. The system operates on a
powerful desktop personal computer, providing a system of menus that makes
it easy for users to enter data or obtain information.
The voyage-estimating DSS we have just described draws heavily on models.
Other business intelligence systems are more data-driven, focusing instead on
extracting useful information from very large quantities of data. For example,
large ski resort companies such as Intrawest and Vail Resorts collect and store
large amounts of customer data from call centers, lodging and dining reserva-
tions, ski schools, and ski equipment rental stores. They use special software
to analyze these data to determine the value, revenue potential, and loyalty
of each customer to help managers make better decisions about how to target
their marketing programs.
Business intelligence systems also address the decision-making needs of
senior management. Senior managers need systems that focus on strategic
issues and long-term trends, both in the firm and in the external environment.
They are concerned with questions such as: What will employment levels be in
five years? What are the long-term industry cost trends? What products should
we be making in five years?
Executive support systems (ESS) help senior management make these
decisions. They address nonroutine decisions requiring judgment, evaluation,
and insight because there is no agreed-on procedure for arriving at a solution.
ESS present graphs and data from many sources through an interface that is
easy for senior managers to use. Often the information is delivered to senior
executives through a portal , which uses a web interface to present integrated
personalized business content.
ESS are designed to incorporate data about external events, such as new tax
laws or competitors, but they also draw summarized information from internal
MIS and DSS. They filter, compress, and track critical data, displaying the data
of greatest importance to senior managers. Increasingly, such systems include
Ship file (e.g.,
speed, capacity)
Port distance
restrictions file
Fuel consumption
cost file
Ship charter hire
history cost file
expense file
This DSS operates on a powerful PC. It is used daily by managers who must develop bids on shipping
78 Part One Organizations, Management, and the Networked Enterprise

business intelligence analytics for analyzing trends, forecasting, and “drilling
down” to data at greater levels of detail.
For example, the chief operating officer (COO) and plant managers at Valero,
the world’s largest independent petroleum refiner, use a Refining Dashboard
to display real-time data related to plant and equipment reliability, inventory
management, safety, and energy consumption. With the displayed informa-
tion, the COO and his team can review the performance of each Valero refin-
ery in the United States and Canada in terms of how each plant is performing
compared to the production plan of the firm. The headquarters group can drill
down to from executive level to refinery level and individual system-operator
level displays of performance. Valero’s Refining Dashboard is an example of
a digital dashboard , which displays on a single screen graphs and charts of
key performance indicators for managing a company. Digital dashboards are
becoming an increasingly popular tool for management decision makers.
The Interactive Session on Organizations describes real-world examples of
several of these types of systems used by an organization with employees and
staff members working all over the world. Note the types of systems illustrated
by this case and the role they play in improving both operations and decision
Systems for Linking the Enterprise
Reviewing all the different types of systems we have just described, you might
wonder how a business can manage all the information in these different sys-
tems. You might also wonder how costly it is to maintain so many different
systems. And you might wonder how all these different systems can share
Retail Chain
Web Only
Consumer Brand
Catalog/Call Center
$10$0 $20 $30 $40 $50
ROI (in Dollars)
Social networking sites
Direct mail (postal)
Internet other
Display Ads
Online catalogs
Search engine (keywords
and context marketing)
Commercial e-mail
DR magazine
DR newspaper
Telephone marketing
Mobile Internet
Television $6.62
Sales Revenue
Media Utilization
2010 2011 2012 201420132009
Media Channel
124 115
125 108149
197 184
t o
f h
e m
Sales by Type 2017 Returns on Investment
0 20
Average Quantity
$0 $250
Average Amount
A digital dashboard delivers
comprehensive and accurate
information for decision mak-
ing, often using a single
screen. The graphical overview
of key performance indicators
helps managers quickly spot
areas that need attention.
Chapter 2 Global E-business and Collaboration 79

Founded in 1937, Plan International is one of the
oldest and largest children’s development organiza-
tions in the world, promoting rights and opportuni-
ties for children in need. With global headquarters in
Surrey, UK, the organization has operations in more
than 70 countries (including 51 developing nations
in Africa, Asia, and the Americas), and worked with
81.5 million children in more than 86,676 communi-
ties in 2014. Plan International has grown steadily
over the years and has more than 1,200 paid staff
members and more than 9,000 volunteers.
Plan International is not affiliated with any reli-
gious or political group or government. It obtains
about half of its funding from donations from corpo-
rations, governments, and trusts and the rest from
individuals willing to sponsor a child.
Plan International works with children, families,
communities, and local governments to bring about
positive change for children in health, education,
water and sanitation, protection, economic security,
and coping with catastrophes such as wars, floods,
earthquakes, and other natural disasters. For exam-
ple, Plan has sent workers to help children affected
by the 2013 Typhoon Haiyan in the Philippines and
the Ebola virus outbreak in West Africa. In addition
to coordinating emergency response efforts, Plan
runs public health information campaigns and trains
health and aid workers.
Plan’s objective is to reach as many disadvan-
taged children as possible, and this requires a highly
coordinated approach. When an emergency strikes,
Plan must locate and deploy the most appropriate
resources wherever they are required. To accomplish
this a disaster relief team at Plan’s head office must
sift through data on all of its 10,000 aid workers in
70 countries to see which people have the appropri-
ate skills and experience in medical aid, child protec-
tion, education, and shelter management to provide
the necessary services. Typically the people chosen
to respond to a specific emergency will have a vari-
ety of skills, including frontline workers with knowl-
edge of the language and the local area. Plan now
has the ability see data about all of its workers’ skills
the moment an emergency occurs, so it can respond
immediately with the right team of people.
Plan is now able to instantly assemble perti-
nent information about its workers because of its
new human resources (HR) systems. The human
resources systems allow Plan to track not only the
skills people bring when they are hired but also any
additional training or experience they have acquired
for disaster response emergencies while working for
The human resources systems also help Plan
manage the grants and donations it receives. When
a donation first comes in, it is sent to Plan’s London
headquarters and allocated from there. If, for exam-
ple, Plan receives a $40 million grant to use in Sierra
Leone, Plan will need different people to manage
that grant for Plan. Plan needs to be able to scan the
organization globally to find the right people.
Before the new human resources systems were
implemented, Plan was working with very outdated
decentralized systems that were partially manual.
The organization had to keep track of employees
using a patchwork of 30 different human resources
systems, spreadsheets, and documents.
It could take weeks to locate people with the right
language skills, disaster experience, and medical
training. When a massive earthquake struck Haiti in
2010, Plan had to email everyone asking if staff knew
any people who could speak French, had the appro-
priate disaster management skills, and were avail-
able to help.
In 2012 Plan began looking for a human resources
system that could handle its growing global work-
force, support common processes across all regions,
and deliver information on a secure mobile platform
in regions where technology infrastructure was not
well developed. The organization selected a cloud-
based HR system from SAP’s SuccessFactors as well
as on-premises software from SAP, which satisfied
these requirements and are integrated with one
another. Implementation of the new system began in
May 2013. It took only 16 weeks to implement a fully
working system at Plan’s international headquarters,
and all of Plan’s international regions were brought
onto the system by 2014.
The cloud-based SuccessFactors system runs in
remote computer centers managed by SuccessFac-
tors and is accessible to users via the Internet. The
system provides a centralized employee profile
with a comprehensive view of employee skill sets,
expertise, experience, and career interests. Through
an intuitive interface, employees can update their
own information, creating an easily searchable
New Systems Help Plan International Manage Its Human Resources
80 Part One Organizations, Management, and the Networked Enterprise

directory that every employee can access. Plan uses
SuccessFactors software modules for recruiting, per-
formance and goals, succession and development,
compensation, and learning. Plan also implemented
SuccessFactors Workforce Planning and on-premises
SAP Personnel Administration and Organization
Management software. Workforce planning entails
systematic identification and analysis of what an
organization is going to need in terms of the size,
type, experience, knowledge, skills, and quality
of its workforce to achieve its business objectives.
SAP’s Personnel Administration software manages
employee recordkeeping and organizational data
concerning the recruitment, selection, retention,
development, and assessment of personnel. SAP’s
Organization Management software enables organi-
zations to depict and analyze their organizational and
reporting structures.
The new human resources systems provide a
bird’s-eye view of the entire Plan workforce, showing
immediately how many people work for Plan, where
they are located, what skills they possess, their job
responsibilities, and their career paths. Plan’s central
human resources staff spend much less time chasing
information. For example, assembling and analyzing
data from employee performance reviews, including
4. How did these systems improve operational
5. How did these systems improve decision making?
Give examples of two decisions improved by
Plan’s new systems.
performance-based salary calculations, used to take
up to six months. Now all it takes is the push of a
button. Employees are able to access their human
resources records online and update information such
as address, family details, and emergency contacts.
By enabling employees to perform these tasks them-
selves, Plan saves valuable human resources staff
time, which can be directed toward more value-adding
work. Plan is also able to show its donors exactly how
their contributions were spent and the results.
Using SuccessFactors and SAP human resources
software, Plan staff are able to identify and dispatch
relief workers to disaster areas within hours. When
Typhoon Haiyan struck the Philippines in Novem-
ber 2013, Plan specialists were on the scene within
72 hours. Being able to deploy staff to emergencies
so rapidly has saved more lives. What’s more, Plan’s
improved response time has helped it secure new
sources of funding by giving it more credibility with
governments, corporations, and other sources of
grants and donations.
Sources: Lauren Bonneau, “Customer Snapshot: Changing Lives
and Creating Self-Sufficient Communities—One Child at a Time,” , accessed March 10, 2016; “Better Planning for Plan
International: The Life-Saving Power of Improved Data Visibility,”
SAP Insider Profiles, January 1, 2015; and www.plan-international.
org , accessed March 10, 2016.
1. Describe the problem faced by Plan International.
What management, organization, and technology
factors contributed to this problem?
2. Describe the system solution to this problem.
Describe the types of systems used for the solution.
3. Why is human resources so important at Plan
information and how managers and employees are able to coordinate their
work. In fact, these are all important questions for businesses today.
Enterprise Applications
Getting all the different kinds of systems in a company to work together
has proven a major challenge. Typically, corporations are put together both
through normal “organic” growth and through acquisition of smaller firms.
Over a period of time, corporations end up with a collection of systems, most
of them older, and face the challenge of getting them all to “talk” with one
another and work together as one corporate system. There are several solu-
tions to this problem.
Chapter 2 Global E-business and Collaboration 81

One solution is to implement enterprise applications , which are systems
that span functional areas, focus on executing business processes across the
business firm, and include all levels of management. Enterprise applications
help businesses become more flexible and productive by coordinating their
business processes more closely and integrating groups of processes so they
focus on efficient management of resources and customer service.
There are four major enterprise applications: enterprise systems, supply
chain management systems, customer relationship management systems, and
knowledge management systems. Each of these enterprise applications inte-
grates a related set of functions and business processes to enhance the perfor-
mance of the organization as a whole. Figure 2. 6 shows that the architecture
for these enterprise applications encompasses processes spanning the entire
organization and, in some cases, extending beyond the organization to custom-
ers, suppliers, and other key business partners.
Enterprise Systems Firms use enterprise systems , also known as enter-
prise resource planning (ERP) systems, to integrate business processes in
manufacturing and production, fi nance and accounting, sales and market-
ing, and human resources into a single software system. Information that
was previously fragmented in many different systems is stored in a single
Sales and
and Production
Finance and
Business Partners
Enterprise applications automate processes that span multiple business functions and organizational
levels and may extend outside the organization.
82 Part One Organizations, Management, and the Networked Enterprise

comprehensive data repository where it can be used by many different parts
of the business.
For example, when a customer places an order, the order data flow auto-
matically to other parts of the company that are affected by them. The order
transaction triggers the warehouse to pick the ordered products and sched-
ule shipment. The warehouse informs the factory to replenish whatever has
been depleted. The accounting department is notified to send the customer
an invoice. Customer service representatives track the progress of the order
through every step to inform customers about the status of their orders. Manag-
ers are able to use firmwide information to make more precise and timely deci-
sions about daily operations and longer-term planning.
Supply Chain Management Systems Firms use supply chain management
(SCM) systems to help manage relationships with their suppliers. These sys-
tems help suppliers, purchasing fi rms, distributors, and logistics companies
share information about orders, production, inventory levels, and delivery of
products and services so they can source, produce, and deliver goods and ser-
vices effi ciently. The ultimate objective is to get the right amount of their prod-
ucts from their source to their point of consumption in the least amount of time
and at the lowest cost. These systems increase fi rm profi tability by lowering
the costs of moving and making products and by enabling managers to make
better decisions about how to organize and schedule sourcing, production, and
Supply chain management systems are one type of interorganizational
system because they automate the flow of information across organizational
boundaries. You will find examples of other types of interorganizational infor-
mation systems throughout this text because such systems make it possible
for firms to link digitally to customers and to outsource their work to other
Customer Relationship Management Systems Firms use customer rela-
tionship management (CRM) systems to help manage their relationships
with their customers. CRM systems provide information to coordinate all of the
business processes that deal with customers in sales, marketing, and service to
optimize revenue, customer satisfaction, and customer retention. This infor-
mation helps fi rms identify, attract, and retain the most profi table customers;
provide better service to existing customers; and increase sales.
Knowledge Management Systems Some fi rms perform better than oth-
ers because they have better knowledge about how to create, produce, and
deliver products and services. This fi rm knowledge is unique, is diffi cult to
imitate, and can be leveraged into long-term strategic benefi ts. Knowledge
management systems (KMS) enable organizations to better manage pro-
cesses for capturing and applying knowledge and expertise. These systems
collect all relevant knowledge and experience in the fi rm and make it avail-
able wherever and whenever it is needed to improve business processes
and management decisions. They also link the fi rm to external sources of
We examine enterprise systems and systems for supply chain manage-
ment and customer relationship management in greater detail in Chapter 9 .
We discuss collaboration systems that support knowledge management in
this chapter and cover other types of knowledge management applications
in Chapter 11 .
Chapter 2 Global E-business and Collaboration 83

Intranets and Extranets
Enterprise applications create deep-seated changes in the way the firm con-
ducts its business, offering many opportunities to integrate important business
data into a single system. They are often costly and difficult to implement.
Intranets and extranets deserve mention here as alternative tools for increas-
ing integration and expediting the flow of information within the firm and with
customers and suppliers.
Intranets are simply internal company websites that are accessible only by
employees. The term intranet refers to an internal network, in contrast to the
Internet, which is a public network linking organizations and other external
networks. Intranets use the same technologies and techniques as the larger
Internet, and they often are simply a private access area in a larger company
website. Likewise with extranets, which are company websites that are acces-
sible to authorized vendors and suppliers and are often used to coordinate the
movement of supplies to the firm’s production apparatus.
For example, Six Flags, which operates 18 theme parks throughout North
America, maintains an intranet for its 1900 full-time employees that provides
company-related news and information on each park’s day-to-day operations,
including weather forecasts, performance schedules, and details about groups
and celebrities visiting the parks. The company also uses an extranet to broad-
cast information about schedule changes and park events to its 30,000 seasonal
employees. We describe the technology for intranets and extranets in more
detail in Chapter 7 .
E-business, E-commerce, and E-government
The systems and technologies we have just described are transforming firms’
relationships with customers, employees, suppliers, and logistic partners into
digital relationships using networks and the Internet. So much business is now
enabled by or based upon digital networks that we use the terms electronic busi-
ness and electronic commerce frequently throughout this text.
Electronic business, or e-business , refers to the use of digital technology
and the Internet to execute the major business processes in the enterprise.
E-business includes activities for the internal management of the firm and for
coordination with suppliers and other business partners. It also includes elec-
tronic commerce, or e-commerce .
E-commerce is the part of e-business that deals with the buying and selling of
goods and services over the Internet. It also encompasses activities supporting
those market transactions, such as advertising, marketing, customer support,
security, delivery, and payment.
The technologies associated with e-business have also brought about similar
changes in the public sector. Governments on all levels are using Internet tech-
nology to deliver information and services to citizens, employees, and businesses
with which they work. E-government refers to the application of the Internet
and networking technologies to digitally enable government and public sector
agencies’ relationships with citizens, businesses, and other arms of government.
In addition to improving delivery of government services, e-government
makes government operations more efficient and also empowers citizens by
giving them easier access to information and the ability to network electroni-
cally with other citizens. For example, citizens in some states can renew their
driver’s licenses or apply for unemployment benefits online, and the Internet
has become a powerful tool for instantly mobilizing interest groups for political
action and fund-raising.
84 Part One Organizations, Management, and the Networked Enterprise

2- 3 Why are systems for collaboration and social
business so important, and what technologies
do they use?
With all these systems and information, you might wonder how is it possible
to make sense of them. How do people working in firms pull it all together,
work toward common goals, and coordinate plans and actions? Information sys-
tems can’t make decisions, hire or fire people, sign contracts, agree on deals, or
adjust the price of goods to the marketplace. In addition to the types of systems
we have just described, businesses need special systems to support collabora-
tion and teamwork.
What Is Collaboration?
Collaboration is working with others to achieve shared and explicit goals. Col-
laboration focuses on task or mission accomplishment and usually takes place
in a business or other organization and between businesses. You collaborate
with a colleague in Tokyo having expertise on a topic about which you know
nothing. You collaborate with many colleagues in publishing a company blog. If
you’re in a law firm, you collaborate with accountants in an accounting firm in
servicing the needs of a client with tax problems.
Collaboration can be short-lived, lasting a few minutes, or longer term,
depending on the nature of the task and the relationship among participants.
Collaboration can be one-to-one or many-to-many.
Employees may collaborate in informal groups that are not a formal part
of the business firm’s organizational structure, or they may be organized into
formal teams. Teams have a specific mission that someone in the business
assigned to them. Team members need to collaborate on the accomplishment
of specific tasks and collectively achieve the team mission. The team mission
might be to “win the game” or “increase online sales by 10 percent.” Teams are
often short-lived, depending on the problems they tackle and the length of time
needed to find a solution and accomplish the mission.
Collaboration and teamwork are more important today than ever for a vari-
ety of reasons.
• Changing nature of work . The nature of work has changed from factory manu-
facturing and pre-computer office work where each stage in the production
process occurred independently of one another and was coordinated by
supervisors. Work was organized into silos. Within a silo, work passed from
one machine tool station to another, from one desktop to another, until the
finished product was completed. Today, jobs require much closer coordina-
tion and interaction among the parties involved in producing the service or
product. A report from the consulting firm McKinsey & Company estimated
that 41 percent of the U.S. labor force is now composed of jobs where interac-
tion (talking, e-mailing, presenting, and persuading) is the primary value-
adding activity. Even in factories, workers today often work in production
groups, or pods.
• Growth of professional work. “Interaction” jobs tend to be professional jobs in
the service sector that require close coordination and collaboration. Profes-
sional jobs require substantial education and the sharing of information and
opinions to get work done. Each actor on the job brings specialized expertise
to the problem, and all the actors need to take one another into account in
order to accomplish the job.
Chapter 2 Global E-business and Collaboration 85

• Changing organization of the firm. For most of the industrial age, managers
organized work in a hierarchical fashion. Orders came down the hierarchy,
and responses moved back up the hierarchy. Today, work is organized into
groups and teams, and the members are expected to develop their own meth-
ods for accomplishing the task. Senior managers observe and measure results
but are much less likely to issue detailed orders or operating procedures. In
part, this is because expertise and decision-making power have been pushed
down in organizations.
• Changing scope of the firm. The work of the firm has changed from a single
location to multiple locations—offices or factories throughout a region, a
nation, or even around the globe. For instance, Henry Ford developed the
first mass-production automobile plant at a single Dearborn, Michigan, fac-
tory. In 2015, Ford employed 199,000 people at about 67 plants worldwide.
With this kind of global presence, the need for close coordination of design,
production, marketing, distribution, and service obviously takes on new
importance and scale. Large global companies need to have teams working
on a global basis.
• Emphasis on innovation. Although we tend to attribute innovations in busi-
ness and science to great individuals, these great individuals are most likely
working with a team of brilliant colleagues. Think of Bill Gates and Steve
Jobs (founders of Microsoft and Apple), both of whom are highly regarded
innovators and both of whom built strong collaborative teams to nurture
and support innovation in their firms. Their initial innovations derived from
close collaboration with colleagues and partners. Innovation, in other words,
is a group and social process, and most innovations derive from collabora-
tion among individuals in a lab, a business, or government agencies. Strong
collaborative practices and technologies are believed to increase the rate and
quality of innovation.
• Changing culture of work and business. Most research on collaboration sup-
ports the notion that diverse teams produce better outputs faster than indi-
viduals working on their own. Popular notions of the crowd (“crowdsourcing”
and the “wisdom of crowds”) also provide cultural support for collaboration
and teamwork.
What Is Social Business?
Many firms today enhance collaboration by embracing social business —the
use of social networking platforms, including Facebook, Twitter, and internal
corporate social tools—to engage their employees, customers, and suppliers.
These tools enable workers to set up profiles, form groups, and “follow” each
other’s status updates. The goal of social business is to deepen interactions with
groups inside and outside the firm to expedite and enhance information shar-
ing, innovation, and decision making.
A key word in social business is conversations . Customers, suppliers, employ-
ees, managers, and even oversight agencies continually have conversations
about firms, often without the knowledge of the firm or its key actors (employ-
ees and managers).
Supporters of social business argue that, if firms could tune into these con-
versations, they would strengthen their bonds with consumers, suppliers, and
employees, increasing their emotional involvement in the firm.
All of this requires a great deal of information transparency. People need to
share opinions and facts with others quite directly, without intervention from
executives or others. Employees get to know directly what customers and other
employees think, suppliers will learn very directly the opinions of supply chain
partners, and even managers presumably will learn more directly from their
86 Part One Organizations, Management, and the Networked Enterprise

employees how well they are doing. Nearly everyone involved in the creation
of value will know much more about everyone else.
If such an environment could be created, it is likely to drive operational effi-
ciencies, spur innovation, and accelerate decision making. If product design-
ers can learn directly about how their products are doing in the market in real
time, based on consumer feedback, they can speed up the redesign process. If
employees can use social connections inside and outside the company to cap-
ture new knowledge and insights, they will be able to work more efficiently and
solve more business problems.
Table 2. 2 describes important applications of social business inside and out-
side the firm. This chapter focuses on enterprise social business—its internal
corporate uses. Chapters 7 and 10 describe social business applications relating
to customers and suppliers outside the company.
Business Benefits of Collaboration and Social Business
Although many articles and books have been written about collaboration,
nearly all of the research on this topic is anecdotal. Nevertheless, there is a
general belief among both business and academic communities that the more a
business firm is “collaborative,” the more successful it will be, and that collabo-
ration within and among firms is more essential than in the past. A global sur-
vey of business and information systems managers found that investments in
collaboration technology produced organizational improvements that returned
more than four times the amount of the investment, with the greatest benefits
for sales, marketing, and research and development functions ( Frost and Sul-
livan, 2009 ). McKinsey & Company consultants predict that social technologies
used within and across enterprises could potentially raise the productivity of
interaction workers by 20 to 25 percent ( McKinsey Global Institute, 2012 ).
Table 2. 3 summarizes some of the benefits of collaboration and social busi-
ness that have been identified. Figure 2. 7 graphically illustrates how collabora-
tion is believed to affect business performance.
Building a Collaborative Culture and Business Processes
Collaboration won’t take place spontaneously in a business firm, especially
if there is no supportive culture or business processes. Business firms, espe-
cially large firms, had a reputation in the past for being “command and control”
Social networks Connect through personal and business profiles
Crowdsourcing Harness collective knowledge to generate new ideas and solutions
Shared workspaces Coordinate projects and tasks; co-create content
Blogs and wikis Publish and rapidly access knowledge; discuss opinions and
Social commerce Share opinions about purchasing or purchase on social platforms
File sharing Upload, share, and comment on photos, videos, audio, text documents
Social marketing Use social media to interact with customers; derive customer insights
Communities Discuss topics in open forums; share expertise
Chapter 2 Global E-business and Collaboration 87

Productivity People interacting and working together can capture
expert knowledge and solve problems more rapidly
than the same number of people working in isolation
from one another. There will be fewer errors.
Quality People working collaboratively can communicate
errors and corrective actions faster than if they work
in isolation. Collaborative and social technologies
help reduce time delays in design and production.
Innovation People working collaboratively can come up with
more innovative ideas for products, services, and
administration than the same number working in
isolation from one another. Advantages to diversity
and the “wisdom of crowds.”
Customer service People working together using collaboration and
social tools can solve customer complaints and
issues faster and more effectively than if they were
working in isolation from one another.
Financial performance (profitability,
sales, and sales growth)
As a result of all of the above, collaborative firms
have superior sales, sales growth, and financial
Collaboration Capability

Open culture
Decentralized structure
Breadth of collaboration
Collaboration Technology

Use of collaboration
and social technology
for implementation and
Use of collaborative
and social technology
for strategic planning
Firm PerformanceCollaboration Quality
Successful collaboration requires an appropriate organizational structure and culture along with appro-
priate collaboration technology.
88 Part One Organizations, Management, and the Networked Enterprise

organizations where the top leaders thought up all the really important mat-
ters and then ordered lower-level employees to execute senior management
plans. The job of middle management supposedly was to pass messages back
and forth, up and down the hierarchy.
Command and control firms required lower-level employees to carry out
orders without asking too many questions, with no responsibility to improve
processes, and with no rewards for teamwork or team performance. If your
work group needed help from another work group, that was something for
the bosses to figure out. You never communicated horizontally, always verti-
cally, so management could control the process. Together, the expectations
of management and employees formed a culture, a set of assumptions about
common goals and how people should behave. Many business firms still oper-
ate this way.
A collaborative business culture and business processes are very dif-
ferent. Senior managers are responsible for achieving results but rely on
teams of employees to achieve and implement the results. Policies, prod-
ucts, designs, processes, and systems are much more dependent on teams
at all levels of the organization to devise, to create, and to build. Teams are
rewarded for their performance, and individuals are rewarded for their per-
formance in a team. The function of middle managers is to build the teams,
coordinate their work, and monitor their performance. The business culture
and business processes are more “social.” In a collaborative culture, senior
management establishes collaboration and teamwork as vital to the organi-
zation, and it actually implements collaboration for the senior ranks of the
business as well.
Tools and Technologies for Collaboration and
Social Business
A collaborative, team-oriented culture won’t produce benefits without informa-
tion systems in place to enable collaboration and social business. Currently
there are hundreds of tools designed to deal with the fact that, in order to suc-
ceed in our jobs, we are all much more dependent on one another, our fellow
employees, customers, suppliers, and managers. Some of these tools are expen-
sive, but others are available online for free (or with premium versions for a
modest fee). Let’s look more closely at some of these tools.
E-mail and Instant Messaging (IM)
E-mail and instant messaging (including text messaging) have been major com-
munication and collaboration tools for interaction jobs. Their software operates
on computers, mobile phones, and other wireless devices and includes features
for sharing files as well as transmitting messages. Many instant messaging sys-
tems allow users to engage in real-time conversations with multiple partici-
pants simultaneously. In recent years, e-mail use has declined, with messaging
and social media becoming preferred channels of communication.
Wikis are a type of website that makes it easy for users to contribute and edit
text content and graphics without any knowledge of web page development or
programming techniques. The most well-known wiki is Wikipedia, the largest
collaboratively edited reference project in the world. It relies on volunteers,
makes no money and accepts no advertising.
Chapter 2 Global E-business and Collaboration 89

Wikis are very useful tools for storing and sharing corporate knowledge and
insights. Enterprise software vendor SAP AG has a wiki that acts as a base of
information for people outside the company, such as customers and software
developers who build programs that interact with SAP software. In the past,
those people asked and sometimes answered questions in an informal way on
SAP online forums, but that was an inefficient system, with people asking and
answering the same questions over and over.
Virtual Worlds
Virtual worlds, such as Second Life, are online 3-D environments populated
by “residents” who have built graphical representations of themselves known
as avatars. Companies like IBM, Cisco, and Intel Corporations use the online
world for meetings, interviews, guest speaker events, and employee training.
Real-world people represented by avatars meet, interact, and exchange ideas
at these virtual locations using gestures, chat box conversations, and voice
Collaboration and Social Business Platforms
There are now suites of software products providing multifunction platforms
for collaboration and social business among teams of employees who work
together from many different locations. The most widely used are Internet-
based audio conferencing and video conferencing systems, cloud collaboration
services such as Google’s online services and tools, corporate collaboration sys-
tems such as Microsoft SharePoint and IBM Notes, and enterprise social net-
working tools such as Salesforce Chatter, Microsoft Yammer, Jive, Facebook at
Work, and IBM Connections.
Virtual Meeting Systems In an effort to reduce travel expenses and enable
people in different locations to meet and collaborate, many companies, both
large and small, are adopting videoconferencing and web conferencing tech-
nologies. Companies such as Heinz, GE, and PepsiCo are using virtual meet-
ing systems for product briefi ngs, training courses, strategy sessions, and even
inspirational chats.
A videoconference allows individuals at two or more locations to communi-
cate simultaneously through two-way video and audio transmissions. High-end
videoconferencing systems feature telepresence technology, an integrated
audio and visual environment that allows a person to give the appearance of
being present at a location other than his or her true physical location. Free
or low-cost Internet-based systems such as Skype group videoconferencing,
Google+ Hangouts, Zoom, and ooVoo are of lower quality, but still useful for
smaller companies. Apple’s FaceTime is useful for one-to-one videoconferenc-
ing. Some of these tools are available on mobile devices.
Companies of all sizes are finding web-based online meeting tools such as
Cisco WebEx, Skype for Business, and Adobe Connect especially helpful for
training and sales presentations. These products enable participants to share
documents and presentations in conjunction with audioconferencing and live
video via webcam.
Cloud Collaboration Services Google offers many online tools and services,
and some are suitable for collaboration. They include Google Drive, Google
Docs, Google Apps, Google Sites, and Google+. Most are free of charge.
90 Part One Organizations, Management, and the Networked Enterprise

The current business environment poses a number
of challenges to the workplace, and businesses must
offer new ways of accommodating flexi-timings,
employees who work from home, the use of per-
sonal devices for work, and reduced numbers of
personal meetings. Each of these challenges requires
changes in the IT infrastructure to accommodate the
employee. For example, if employees are working
from remote locations, they still need to connect in
real time to share their work progress and commu-
nicate with others. In such cases, a virtual space is
required for employee collaboration.
The National School of Healthcare Science
(NSHCS) was established in 2011 by Health Edu-
cation England (West Midlands) to provide new
healthcare science education and training programs
nationally. To implement this program NSHCS
needed a way for people working in teams in differ-
ent locations to co-create documents and collaborate
on scientific topics. This document creation involved
a number of external associates who are involved in
assessments, policies, strategic planning, and so on.
Using email alone for such communication proved
imprudent as it led to fragmented and disorganized
discussions spread across multiple email threads.
They required a better and reliable collaboration
solution, and looked for it at the Digital Marketplace,
which is the government’s framework for finding
and hiring such services. After shortlisting a number
of cloud-collaboration vendors and using predeter-
mined multi-criteria scoring and multiple trials, the
NSHCS settled on Glasscubes, which rated best in
both price and quality.
Based in Buckinghamshire, UK, Glasscubes has
been offering collaboration services to firms since
2008. It has a large customer base of more than
50,000 customers spread globally in over 100 coun-
tries. The name of the firm is inspired by their
vision of collaboration: to create a tool that allows
users to visualize information and activities outside
their cube (desk, office cubicle, or floor). Glasscubes
means providing collaboration for individuals and
groups who are isolated, allowing them to see and be
seen. What Glasscubes offers its clients is an online
Clients can invite anyone to join this workspace,
be it their employees, customers, suppliers—anyone
who needs to share information and communicate
Collaborating the Glasscubes Way
with the firm. Using this online space, people can
share files, assign tasks, discuss ideas and topics,
and organize schedules. The collaboration software
provides a centralized repository for file sharing, and
as the storage is on the cloud, there is no restriction
on file size or number of files that can be uploaded
to this space. The software can also automatically
version the same file when it is uploaded after
Glasscubes’s Team Collaboration feature allows
team participants to have conversations by posting
messages on the workspace to be viewed by all team
members, who can also comment on the post. New
attachments can also be posted here. A feature called
Workspace Activity Feed summarizes the entire con-
versation, displaying questions, comments, etc. as
quick links, which helps in day-to-day team commu-
nication. An instant messenger allows users to com-
municate privately if they need to, and any number
of people can be invited to join that conversation.
Any new and important update can be highlighted in
the workspace using the Workspace Announcement
Feature. The announcement stays in a user’s work-
space until they acknowledge it, thus ensuring that
all team members receive important updates.
The users can also set up a free conference class
for up to 50 participants without any prior booking or
billing. When a team is working on a specific project
that involves a number of tasks, Glasscubes allows
tasks to be assigned to individuals or groups as well.
Users can specify details like priority, what needs to
be done to complete the task, by what deadline, and
by whom. On completion, the task can be marked as
completed and its duration recorded. Glasscubes also
provides project management facilities such as Gantt
charts, critical path analysis, cost and time track-
ing of tasks, and comparison with estimates. Team
members can share their individual calendars and
overlay them to build a team calendar that shows
everyone’s availability. All the contacts of the organi-
zation, including suppliers, customers, and partners,
can be stored in Connect, a central place specifically
for contacts. The client firm’s CRM data can also
be transferred here. Glasscubes also offers cloud-
based intranet, which means that users can access
it anywhere with a device that supports an Internet
browser. Data security is not an issue as all data is
remotely backed up using SSL encryption. This can
Chapter 2 Global E-business and Collaboration 91

Google Drive is a file storage and synchronization service for cloud storage,
file sharing, and collaborative editing. Such web-based online file-sharing ser-
vices allow users to upload files to secure online storage sites from which the
files can be shared with others. Microsoft OneDrive and Dropbox are other lead-
ing cloud storage services. They feature both free and paid services, depending
on the amount of storage space and administration required. Users are able to
synchronize their files stored online with their local PCs and other kinds of
devices with options for making the files private or public and for sharing them
with designated contacts.
Google Drive and Microsoft OneDrive are integrated with tools for document
creation and sharing. OneDrive provides online storage for Microsoft Office doc-
uments and other files and works with Microsoft Office apps, both installed and
on the web. It can share to Facebook as well. Google Drive is integrated with
Google Docs, a suite of productivity applications that offer collaborative editing
on documents, spreadsheets, and presentations. Google’s cloud-based productiv-
ity suite for businesses (word processing, spreadsheets, presentations, calendars,
and mail) called Google Apps for Business also works with Google Drive.
Google Sites allows users to quickly create online team-oriented sites where
multiple people can collaborate and share files. Google+ is Google’s effort to
make these tools and other products and services it offers more “social” for
both consumer and business use. Google+ users can create a profile as well as
“Circles” for organizing people into specific groups for sharing and collaborat-
ing. “Hangouts” enable people to engage in group video chat, with a maximum
of 10 people participating at any point in time.
Microsoft SharePoint and IBM Notes Microsoft SharePoint is a browser-based
collaboration and document management platform, combined with a powerful
search engine that is installed on corporate servers. SharePoint has a web-based
interface and close integration with productivity tools such as Microsoft Offi ce,
also be used as an extranet by extending invitations
to users outside the firm to connect to the workspace
and share information.
According to Stuart Sutherland, who heads Infor-
mation and Digital Systems at the NSHCS, Glass-
cubes’s document control handling worked very
well, and adoption of the software by the firm was
very smooth owing to its ease of use. Glasscubes set
up multiple online workspaces for the NSHCS and
invited its team members to access the workspace
from anywhere, using any device. The team can now
directly post their content onto the workspace, and
thanks to the versioning of uploaded documents,
they can now be sure that the content they get is the
latest and most accurate.

Sources:, accessed January 13, 2017; “Best
UK Collaboration Software Reviews 2017,”,
accessed January 13, 2017; Jill Duffy, “The Best Online Collabora-
tion Software of 2017,”, January 5, 2017, accessed
January 13, 2017.
1. Discuss the features of Glasscubes as a collabora-
tion software.
2. Why did the NSHCS require a tool for collabora-
tion? Was Glasscubes a feasible option?
3. Name some other areas where such software can
be useful. Discuss at least one such area.
Case contributed by Sahil Raj, Punjabi University
92 Part One Organizations, Management, and the Networked Enterprise

including Offi ce 365, Microsoft’s online web-based version of these tools offered
as a subscription service. SharePoint software makes it possible for employees
to share their documents and collaborate on projects using Offi ce documents as
the foundation.
SharePoint can be used to host internal websites that organize and store
information in one central workspace to enable teams to coordinate work activ-
ities, collaborate on and publish documents, maintain task lists, implement
workflows, and share information via wikis and blogs. Users are able to con-
trol versions of documents and document security. Because SharePoint stores
and organizes information in one place, users can find relevant information
quickly and efficiently while working together closely on tasks, projects, and
documents. Enterprise search tools help locate people, expertise, and content.
SharePoint now features social tools.
Southern Valve & Fitting USA (SVF) provides wholesalers with plumbing,
irrigation, and utility valves and fittings. The company had initially used EMC
Documentum eRoom and Google Docs for document sharing but encountered
integration problems. SVF ported its documents and team sites to Microsoft
SharePoint Online, which is integrated with Office 365. This solution combines
multiple programs for communication and collaboration into a single online
service. Employees can access documents from anywhere in the world using a
standard Internet connection and make light edits to documents using Micro-
soft Office 365 productivity tools. Everything is accessed from a single platform.
An order placed in China is handled as a SharePoint project, and all the sales
order data and paperwork are shared throughout company ( Microsoft Corpora-
tion, 2015 ).
IBM Notes (formerly Lotus Notes) is a collaborative software system with
capabilities for sharing calendars, e-mail, messaging, collective writing and
editing, shared database access, and online meetings. Notes software installed
on desktop or laptop computers obtains applications stored on an IBM Domino
server. Notes is web-enabled and offers an application development environ-
ment so that users can build custom applications to suit their unique needs.
Notes has also added capabilities for blogs, microblogs, wikis, RSS aggregators,
help desk systems, voice and video conferencing, and online meetings. IBM
Notes promises high levels of security and reliability and the ability to retain
control over sensitive corporate information.
Enterprise Social Networking Tools The tools we have just described include
capabilities for supporting social business, but there are also more specialized
social tools for this purpose, such as Salesforce Chatter, Microsoft Yammer, Jive,
and IBM Connections. Enterprise social networking tools create business value
by connecting the members of an organization through profi les, updates, and
notifi cations similar to Facebook features but tailored to internal corporate uses.
Table 2. 4 provides more detail about these internal social capabilities.
Although companies have benefited from enterprise social networking,
internal social networking has not caught on as quickly as consumer uses of
Facebook, Twitter, and other public social networking products. The chapter-
ending case study addresses this topic.
Checklist for Managers: Evaluating and Selecting
Collaboration and Social Software Tools
With so many collaboration and social business tools and services available,
how do you choose the right collaboration technology for your firm? To answer
this question, you need a framework for understanding just what problems
Chapter 2 Global E-business and Collaboration 93

these tools are designed to solve. One framework that has been helpful for us
to talk about collaboration tools is the time/space collaboration and social tool
matrix developed in the early 1990s by a number of collaborative work scholars
( Figure 2. 8 ).
The time/space matrix focuses on two dimensions of the collaboration
problem: time and space. For instance, you need to collaborate with people in
Profiles Ability to set up member profiles describing who individuals are,
educational background, interests. Includes work-related associations
and expertise (skills, projects, teams).
Content sharing Share, store, and manage content including documents,
presentations, images, and videos.
Feeds and notifications Real-time information streams, status updates, and announcements
from designated individuals and groups.
Groups and team workspaces Establish groups to share information, collaborate on documents, and
work on projects with the ability to set up private and public groups
and to archive conversations to preserve team knowledge.
Tagging and social bookmarking Indicate preferences for specific pieces of content, similar to the
Facebook Like button. Tagging lets people add keywords to identify
content they like.
Permissions and privacy Ability to make sure private information stays within the right circles,
as determined by the nature of relationships. In enterprise social
networks, there is a need to establish who in the company has
permission to see what information.
Same time
Collaboration and Social Tool Matrix
Different time
Face to face interactions
decision rooms, single display
groupware, shared table, wall
displays, roomware,…
Continuous task
team rooms, large public display,
shift work groupware, project
Remote interactions
video conferencing, instant
messaging, charts/MUDs/virtual
words, shared screens, multi-user
Communication + coordination
e-mail, bulletin boards, blogs,
asynchronous conferencing, group
calenders, workflow, version control,
Collaboration and social technologies can be classified in terms of whether they support interactions
at the same or different time or place and whether these interactions are remote or colocated.
94 Part One Organizations, Management, and the Networked Enterprise

different time zones, and you cannot all meet at the same time. Midnight in
New York is noon in Bombay, so this makes it difficult to have a videoconfer-
ence (the people in New York are too tired). Time is clearly an obstacle to col-
laboration on a global scale.
Place (location) also inhibits collaboration in large global or even national
and regional firms. Assembling people for a physical meeting is made difficult
by the physical dispersion of distributed firms (firms with more than one loca-
tion), the cost of travel, and the time limitations of managers.
The collaboration and social technologies we have just described are
ways of overcoming the limitations of time and space. Using this time/space
framework will help you to choose the most appropriate collaboration and
teamwork tools for your firm. Note that some tools are applicable in more
than one time/place scenario. For example, Internet collaboration suites
such as IBM Notes have capabilities for both synchronous (instant messag-
ing, meeting tools) and asynchronous (e-mail, wikis, document editing)
Here’s a “to-do” list to get started. If you follow these six steps, you should be
led to investing in the correct collaboration software for your firm at a price you
can afford and within your risk tolerance.
1. What are the collaboration challenges facing the firm in terms of time and
space? Locate your firm in the time/space matrix. Your firm can occupy more
than one cell in the matrix. Different collaboration tools will be needed for each
2. Within each cell of the matrix where your firm faces challenges, exactly what
kinds of solutions are available? Make a list of vendor products.
3. Analyze each of the products in terms of its cost and benefits to your firm. Be
sure to include the costs of training in your cost estimates and the costs of
involving the information systems department, if needed.
4. Identify the risks to security and vulnerability involved with each of the prod-
ucts. Is your firm willing to put proprietary information into the hands of exter-
nal service providers over the Internet? Is your firm willing to expose its
important operations to systems controlled by other firms? What are the finan-
cial risks facing your vendors? Will they be here in three to five years? What
would be the cost of making a switch to another vendor in the event the vendor
firm fails?
5. Seek the help of potential users to identify implementation and training issues.
Some of these tools are easier to use than others.
6. Make your selection of candidate tools, and invite the vendors to make
2- 4 What is the role of the information systems
function in a business?
We’ve seen that businesses need information systems to operate today and
that they use many different kinds of systems. But who is responsible for
running these systems? Who is responsible for making sure the hardware,
software, and other technologies used by these systems are running prop-
erly and are up-to-date? End users manage their systems from a business
standpoint, but managing the technology requires a special information sys-
tems function.
Chapter 2 Global E-business and Collaboration 95

The Information Systems Department
In all but the smallest of firms, the information systems department is the
formal organizational unit responsible for information technology services. The
information systems department is responsible for maintaining the hardware,
software, data storage, and networks that comprise the firm’s IT infrastructure.
We describe IT infrastructure in detail in Chapter 5 .
The information systems department consists of specialists, such as pro-
grammers, systems analysts, project leaders, and information systems man-
agers. Programmers are highly trained technical specialists who write the
software instructions for computers. Systems analysts constitute the prin-
cipal liaisons between the information systems groups and the rest of the
organization. It is the systems analyst’s job to translate business problems
and requirements into information requirements and systems. Informa-
tion systems managers are leaders of teams of programmers and analysts,
project managers, physical facility managers, telecommunications manag-
ers, or database specialists. They are also managers of computer operations
and data entry staff. Also, external specialists, such as hardware vendors
and manufacturers, software firms, and consultants, frequently partici-
pate in the day-to-day operations and long-term planning of information
In many companies, the information systems department is headed by a
chief information officer (CIO) . The CIO is a senior manager who oversees
the use of information technology in the firm. Today’s CIOs are expected to
have a strong business background as well as information systems expertise
and to play a leadership role in integrating technology into the firm’s business
strategy. Large firms today also have positions for a chief security officer, chief
knowledge officer, chief data officer, and chief privacy officer, all of whom work
closely with the CIO.
The chief security officer (CSO) is in charge of information systems secu-
rity for the firm and is responsible for enforcing the firm’s information security
policy (see Chapter 8 ) . (Sometimes this position is called the chief information
security officer [CISO] where information systems security is separated from
physical security.) The CSO is responsible for educating and training users and
information systems specialists about security, keeping management aware of
security threats and breakdowns, and maintaining the tools and policies chosen
to implement security.
Information systems security and the need to safeguard personal data have
become so important that corporations collecting vast quantities of personal
data have established positions for a chief privacy officer (CPO) . The CPO
is responsible for ensuring that the company complies with existing data
privacy laws.
The chief knowledge officer (CKO) is responsible for the firm’s knowl-
edge management program. The CKO helps design programs and systems to
find new sources of knowledge or to make better use of existing knowledge in
organizational and management processes.
The chief data officer (CDO) is responsible for enterprise-wide governance
and utilization of information to maximize the value the organization can real-
ize from its data. The CDO ensures that the firm is collecting the appropriate
data to serve its needs, deploying appropriate technologies for analyzing the
data, and using the results to support business decisions. This position arose to
deal with the very large amounts of data organizations are now generating and
collecting (see Chapter 6 ) .
96 Part One Organizations, Management, and the Networked Enterprise

End users are representatives of departments outside of the information
systems group for whom applications are developed. These users are play-
ing an increasingly large role in the design and development of information
In the early years of computing, the information systems group was com-
posed mostly of programmers who performed highly specialized but limited
technical functions. Today, a growing proportion of staff members are systems
analysts and network specialists, with the information systems department act-
ing as a powerful change agent in the organization. The information systems
department suggests new business strategies and new information-based prod-
ucts and services and coordinates both the development of the technology and
the planned changes in the organization.
In the next eight years to 2024, IS/MIS will add about 500,000 jobs and will
grow 50 percent faster than the average job growth for the economy as a whole.
Out of 114 occupations, MIS is ranked 15th in terms of salaries. In 2016 the
median wage for IT/MIS jobs is about $80,000, twice the level for all occu-
pations. While all IT/IS occupations show above-average growth, the fastest-
growing occupations are computer support specialists (12 percent), database
administrators (11 percent), systems analysts (21 percent), information security
analysts (18 percent), software engineers (17 percent), and information sys-
tems managers (15 percent) ( Bureau of Labor Statistics, 2015 ). Unexpectedly,
computer programmers will lose 8 percent in this period, in part because the
process of creating computer programs is becoming increasingly efficient with
the growth of online software services and cloud computing. In general, the
management of IT occupations IS showing faster expansion than the technical
occupations in IT. With businesses and government agencies increasingly rely-
ing on the Internet for computing and communication, system and network
security management positions are especially in demand. See the Learning
Track for this chapter titled “Occupational and Career Outlook for Information
Systems Majors 2012–2018” for more details on IS job opportunities.
Organizing the Information Systems Function
There are many types of business firms, and there are many ways in which
the IT function is organized within the firm. A very small company will not
have a formal information systems group. It might have one employee who
is responsible for keeping its networks and applications running, or it might
use consultants for these services. Larger companies will have a separate infor-
mation systems department, which may be organized along several different
lines, depending on the nature and interests of the firm. Our Learning Track
describes alternative ways of organizing the information systems function
within the business.
The question of how the information systems department should be orga-
nized is part of the larger issue of IT governance. IT governance includes the
strategy and policies for using information technology within an organization.
It specifies the decision rights and framework for accountability to ensure that
the use of information technology supports the organization’s strategies and
objectives. How much should the information systems function be centralized?
What decisions must be made to ensure effective management and use of infor-
mation technology, including the return on IT investments? Who should make
these decisions? How will these decisions be made and monitored? Firms with
superior IT governance will have clearly thought out the answers.
Chapter 2 Global E-business and Collaboration 97

Review Summary
2- 1 What are business processes? How are they related to information systems?
A business process is a logically related set of activities that defines how specific business tasks are
performed, and it represents a unique way in which an organization coordinates work, information,
and knowledge. Managers need to pay attention to business processes because they determine how
well the organization can execute its business, and they may be a source of strategic advantage. There
are business processes specific to each of the major business functions, but many business processes
are cross-functional. Information systems automate parts of business processes, and they can help
organizations redesign and streamline these processes.
2- 2 How do systems serve the different management groups in a business, and how do systems that link the
enterprise improve organizational performance?
Systems serving operational management are transaction processing systems (TPS), such as pay-
roll or order processing, that track the flow of the daily routine transactions necessary to conduct
business. Management information systems (MIS) produce reports serving middle management by
condensing information from TPS, and these are not highly analytical. Decision-support systems
(DSS) support management decisions that are unique and rapidly changing using advanced analyti-
cal models. All of these types of systems provide business intelligence that helps managers and
enterprise employees make more informed decisions. These systems for business intelligence serve
multiple levels of management and include executive support systems (ESS) for senior management
that provide data in the form of graphs, charts, and dashboards delivered via portals using many
sources of internal and external information.
Enterprise applications are designed to coordinate multiple functions and business processes.
Enterprise systems integrate the key internal business processes of a firm into a single software sys-
tem to improve coordination and decision making. Supply chain management systems help the firm
manage its relationship with suppliers to optimize the planning, sourcing, manufacturing, and deliv-
ery of products and services. Customer relationship management (CRM) systems coordinate the
business processes surrounding the firm’s customers. Knowledge management systems enable firms
to optimize the creation, sharing, and distribution of knowledge. Intranets and extranets are private
corporate networks based on Internet technology that assemble information from disparate systems.
Extranets make portions of private corporate intranets available to outsiders.
2- 3 Why are systems for collaboration and social business so important, and what technologies do they use?
Collaboration is working with others to achieve shared and explicit goals. Social business is the use
of internal and external social networking platforms to engage employees, customers, and suppliers,
and it can enhance collaborative work. Collaboration and social business have become increasingly
important in business because of globalization, the decentralization of decision making, and growth
in jobs where interaction is the primary value-adding activity. Collaboration and social business
enhance innovation, productivity, quality, and customer service. Tools for collaboration and social
business include e-mail and instant messaging, wikis, virtual meeting systems, virtual worlds, cloud-
based file-sharing services, corporate collaboration systems such as Microsoft SharePoint and IBM
Notes, and enterprise social networking tools such as Chatter, Yammer, Jive, and IBM Connections.
2- 4 What is the role of the information systems function in a business?
The information systems department is the formal organizational unit responsible for information
technology services. It is responsible for maintaining the hardware, software, data storage, and net-
works that comprise the firm’s IT infrastructure. The department consists of specialists, such as pro-
grammers, systems analysts, project leaders, and information systems managers, and is often headed
by a CIO.
98 Part One Organizations, Management, and the Networked Enterprise

Key Terms
Business intelligence , 76
Chief data officer (CDO) , 96
Chief information officer (CIO) , 96
Chief knowledge officer (CKO) , 96
Chief privacy officer (CPO) , 96
Chief security officer (CSO) , 96
Collaboration , 85
Customer relationship management (CRM) systems , 83
Decision-support systems (DSS) , 77
Digital dashboard , 79
Electronic business (e-business) , 84
Electronic commerce (e-commerce) , 84
E-government , 84
End users , 96
Enterprise applications , 82
Enterprise systems , 82
Executive support systems (ESS) , 78
Information systems department , 96
Information systems managers , 96
Interorganizational system , 83
IT governance , 97
Knowledge management systems (KMS) , 83
Management information systems (MIS) , 76
Portal , 78
Programmers , 96
Social business , 86
Supply chain management
(SCM) systems , 83
Systems analysts , 96
Teams , 85
Telepresence , 90
Transaction processing systems (TPS) , 74
To complete the problems marked with the MyLab MIS , go to the EOC Discussion Questions in MyLab MIS.
Review Questions
2- 1 What are business processes? How are they
related to information systems?
• Define business processes and describe the
role they play in organizations.
• Describe the relationship between informa-
tion systems and business processes.
2- 2 How do systems serve the different manage-
ment groups in a business, and how do systems
that link the enterprise improve organizational
• Describe the characteristics of transaction
processing systems (TPS) and the roles they
play in a business.
• Describe the characteristics of management
information systems (MIS) and explain how
MIS differ from TPS and from DSS.
• Describe the characteristics of decision-
support systems (DSS) and how they benefit
• Describe the characteristics of executive
support systems (ESS) and explain how
these systems differ from DSS.
• Explain how enterprise applications
improve organizational performance.
• Define enterprise systems, supply chain
management systems, customer relationship
management systems, and knowledge
management systems and describe their
business benefits.
• What is the difference between e-business,
e-commerce, and e-government?
2- 3 Why are systems for collaboration and social
business so important and what technologies
do they use?
• Define collaboration and social business and
explain why they have become so important
in business today.
• List some of the applications of social busi-
ness and explain their business value.
• Describe a supportive organizational culture
and business processes for collaboration.
• List and describe the various types of col-
laboration and social business tools.
2- 4 What is the role of the information systems
function in a business?
• Compare the roles played by programmers,
systems analysts, information systems man-
agers, the chief information officer (CIO),
the chief security officer (CSO), the chief
data officer (CDO), and the chief knowledge
officer (CKO)
• What is IT governance and what type of
questions does it resolve for a firm?
Chapter 2 Global E-business and Collaboration 99

Discussion Questions
2- 5 How could information systems be used to
support the order fulfillment process illus-
trated in Figure 2. 1 ? What are the most impor-
tant pieces of information these systems
should capture? Explain your answer.
2- 6 Identify the steps that are performed in the
process of selecting and checking out a book
from your college library and the information
that flows among these activities. Diagram
the process. Are there any ways this process
could be changed to improve the performance
of your library or your school? Diagram the
improved process.
2- 7 Use the time/space collaboration and social
tool matrix to classify the collaboration and
social technologies used by ABB.
Hands-On MIS Projects
The projects in this section give you hands-on experience analyzing opportunities to improve business pro-
cesses with new information system applications, using a spreadsheet to improve decision making about
suppliers, and using Internet software to plan efficient transportation routes. Visit MyLab MIS’s Multimedia
Library to access this chapter’s Hands-On MIS Projects.
Management Decision Problems
2- 8 Fulbert Timber Merchants in Brixton, UK, features a large selection of building supplies, including tim-
ber, fencing and decking, mouldings, hardwood flooring, sheet materials, windows, doors, ironmongery,
and other materials. The prices of building materials are constantly changing. When a customer inquires
about the price on fixtures, fittings, hangings, and other items, sales representatives consult a manual
price sheet and then call the supplier for the most recent price. The supplier in turn uses a manual price
sheet, which has been updated each day. Often, the supplier must call back Fulbert’s sales reps because
the company does not have the newest pricing information immediately on hand. Assess the business
impact of this situation, describe how this process could be improved with information technology, and
identify the decisions that would have to be made to implement a solution.
2- 9 Quincaillerie is a small family hardware store in Paris, France. The owners must use every square foot of
store space as profitably as possible. They have never kept detailed inventory or sales records. As soon as a
shipment of goods arrives, the items are immediately placed on store shelves. Invoices from suppliers are
only kept for tax purposes. When an item is sold, the item number and price are rung up at the cash regis-
ter. The owners use their own judgment in identifying items that need to be reordered. What is the busi-
ness impact of this situation? How could information systems help the owners run their business? What
data should these systems capture? What decisions could the systems improve?
Improving Decision Making: Using a Spreadsheet to Select Suppliers
Software skills: Spreadsheet date functions, data filtering, DAVERAGE function
Business skills: Analyzing supplier performance and pricing
2- 10 In this exercise, you will learn how to use spreadsheet software to improve management decisions about
selecting suppliers. You will filter transactional data on suppliers based on several different criteria to
select the best suppliers for your company.
You run a company that manufactures aircraft components. You have many competitors who are
trying to offer lower prices and better service to customers, and you are trying to determine whether you
can benefit from better supply chain management. In MyLab MIS, you will find a spreadsheet file that con-
tains a list of all of the items that your firm has ordered from its suppliers during the past three months.
The fields in the spreadsheet file include vendor name, vendor identification number, purchaser’s order
number, item identification number and item description (for each item ordered from the vendor), cost per
item, number of units of the item ordered (quantity), total cost of each order, vendor’s accounts payable
terms, order date, and actual arrival date for each order.
Prepare a recommendation of how you can use the data in this spreadsheet database to improve your
decisions about selecting suppliers. Some criteria to consider for identifying preferred suppliers include the
100 Part One Organizations, Management, and the Networked Enterprise

supplier’s track record for on-time deliveries, suppliers offering the best accounts payable terms, and suppli-
ers offering lower pricing when the same item can be provided by multiple suppliers. Use your spreadsheet
software to prepare reports to support your recommendations.
Achieving Operational Excellence: Using Internet Software to Plan Efficient
Transportation Routes
Software skills: Internet-based software
Business skills: Transportation planning
2- 11 In this exercise, you will use Google Maps to map out transportation routes for a business and select the
most efficient route.
You have just started working as a dispatcher for Trans-Europe Transport, a trucking and deliv-
ery service based in Brussels, Belgium. Your first assignment is to plan a shipment of paintings from the
Museum Aan de Stroom in Antwerp, Belgium, to the Royal Museums of Fine Arts of Belgium in Brussels.
To guide your trucker, you need to know the most efficient route between the two cities. Use Google Maps
to determine the route that is the shortest distance between the two cities, the route that takes the least
time, and the estimated fuel cost for both routes. Compare the results. Which route should Trans-Europe
Transport use?
Collaboration and Teamwork Project
Identifying Management Decisions and Systems
2- 12 With a team of three or four other students, find a description of a manager in a corporation in Business
Week, Forbes, Fortune , the Wall Street Journal , or another business publication or do your research on the web.
Gather information about what the manager does and the role he or she plays in the company. Identify the
organizational level and business function where this manager works. Make a list of the kinds of decisions
this manager has to make and the kind of information the manager would need for those decisions. Suggest
how information systems could supply this information. If possible, use Google Docs and Google Drive or
Google Sites to brainstorm, organize, and develop a presentation of your findings for the class.
Social Business: Full Speed Ahead or Proceed with Caution?
Many of today’s employees are already well versed in
the basics of public social networking using tools such
as Facebook, Twitter, and Instagram. Larry Ellison,
head of the giant software firm Oracle, even went so
far as to declare that social networking should be the
backbone of business applications and that Facebook
is a good model for how business users should inter-
act with software.
According to Gartner, Inc., 50 percent of large orga-
nizations will soon have internal Facebook-like social
networks, and 30 percent of these will be consid-
ered as essential as e-mail and telephones are today.
Enterprise social networks will become the primary
communications channels for noticing, deciding on,
or acting on information relevant to carrying out
work. However, Gartner also notes that through 2015,
80 percent of social business efforts will not achieve
the intended benefits due to inadequate leadership
and an overemphasis on technology.
Social initiatives in a business are different
from other technology deployments. For example,
implementations of enterprise resource planning
or customer relationship management systems are
top-down: Workers are trained in the application and
expected to use it. In contrast, social business tools
require more of a “pull” approach, one that engages
Chapter 2 Global E-business and Collaboration 101

workers and offers them a significantly better way
to work. In most cases, they can’t be forced to use
social apps.
When firms introduce new social media technol-
ogy (as well as other technologies), employees often
resist the new tools, clinging to old ways of work-
ing, such as e-mail, because they are more famil-
iar and comfortable. There are companies where
employees have duplicated communication on both
social media and e-mail, increasing the time and
cost of performing their jobs. BASF, the world’s larg-
est chemical producer with subsidiaries and joint
ventures in more than 80 countries, prohibited
some project teams from using e-mail to encourage
employees to use new social media tools.
Social business requires a change in thinking,
including the ability to view the organization in a
flatter and more horizontal way. A social business is
much more open to everyone’s ideas. A secretary,
assembly line worker, or sales clerk might be the
source of the next big idea.
Social media’s key capabilities for managing social
networks and sharing digital content can help or
hurt an organization. Social networks can provide
rich and diverse sources of information that enhance
organizational productivity, efficiency, and inno-
vation, or they can be used to support preexisting
groups of like-minded people which are reluctant to
communicate and exchange knowledge with outsid-
ers. Productivity and morale will fall if employees
use internal social networks to criticize others or pur-
sue personal agendas.
Social business applications modeled on
consumer-facing platforms such as Facebook and
Twitter will not necessarily work well in an organiza-
tion that has different objectives. Will the firm use
social business for operations, human resources, or
innovation? The social media platform that will work
best depends on its specific business purpose.
This means that instead of focusing on the tech-
nology, businesses should first identify how social
initiatives will actually improve work practices for
employees and managers. They need a detailed
understanding of social networks: how people are
currently working, with whom they are working,
what their needs are, and measures for overcoming
employee biases and resistance.
A successful social business strategy requires
leadership and behavioral changes. Just sponsor-
ing a social project is not enough—managers need
to demonstrate their commitment to a more open,
transparent work style. Employees who are used to
collaborating and doing business in more traditional
ways need an incentive to use social software.
Changing an organization to work in a different way
requires enlisting those most engaged and interested
in helping and designing and building the right work-
place environment for using social technologies.
Management needs to ensure that the internal and
external social networking efforts of the company
are providing genuine value to the business. Content
on the networks needs to be relevant, up-to-date,
and easy to access; users need to be able to connect
to people who have the information they need and
who would otherwise be out of reach or difficult to
reach. Social business tools should be appropriate for
the tasks at hand and the organization’s business pro-
cesses, and users need to understand how and why
to use them. For example, in 2012 NASA’s Goddard
Space Flight Center had to abandon a custom-built
enterprise social network called Spacebook because
no one knew how its social tools would help people
do their jobs. Spacebook was designed to help small
teams collaborate without e-mailing larger groups,
but very few users adopted it.
Despite the challenges associated with launch-
ing an internal social network, there are companies
using these networks successfully. For example,
Bayer Material Sciences, the $11.8 billion material
sciences division of Bayer, made social collabora-
tion a success by making the tools more accessible,
demonstrating the value of these tools in pilot proj-
ects, employing a reverse mentoring program for
senior executives, and training employee experts
to spread know-how of the new social tools and
approaches within the company and demonstrate
their usefulness.
Bayer Material Sciences chose IBM Connections
for its social business toolset. IBM Connections is a
social platform for collaboration, cooperation, and
consolidation typically used in a centralized enter-
prise social network. Featured are tools for employee
profiles; communities of people with common inter-
ests and expertise; blogs; wikis; viewing, organizing,
and managing tasks; forums for exchanging ideas
with others; and polls and surveys of customers and
fellow employees along with a home page for each
user to see what is happening across that person’s
social network and access important social data.
A year after the new collaboration tools were
introduced, adoption had plateaued. Working with
company information technology and business
leaders, management established an ambitious
set of goals for growing social business along with
seven key performance indicators (KPIs) to mea-
sure success. The goals included fostering global
102 Part One Organizations, Management, and the Networked Enterprise

collaboration, creating stronger networks across
regions and departments, creating a less hierarchi-
cal culture of sharing, and reducing the confusion of
which tools are intended for which job.
These efforts are now paying off: 50 percent of
employees are now routinely active in the com-
pany’s enterprise social network. Although ROI on
social business initiatives has been difficult to mea-
sure, Bayer Material Sciences has benefited from
faster knowledge flows, increased efficiency, and
lower operating costs.
Another company that has made social business
work is Carlo’s Bake Shop, an old family-owned busi-
ness that is the star of the Cake Boss reality television
series on the cable television network TL C. The com-
pany has 10 locations in New Jersey, New York, and
Las Vegas, and people can order custom cakes from
its website. Thanks to the popularity of Cake Boss ,
which created a huge upsurge in demand for Carlo’s
products, the firm is looking to create a national
presence over the next few years.
However, store operations were holding the com-
pany back. Carlo’s was heavily paper-based, and the
mountain of paperwork wasted employee time and
led to errors, which sometimes resulted in a need to
fix or remake cakes or offer partial or total refunds to
customers. Custom orders were on paper and carbon
paper, order forms were misplaced or lost, and people
couldn’t read the handwriting from the order taker.
In the latter half of 2012, Carlo’s implemented
Salesforce CRM with the Salesforce social networking
tool Chatter as a solution. Some employees and mem-
bers of Carlo’s management team initially resisted the
new system. They believed that because they already
used e-mail, Facebook, and Twitter, they didn’t need
another social tool. The company was able to demon-
strate the benefits of social business, and bakers and
Chatter changed the way they worked.
Carlo’s produces a very large volume of custom
cakes from a 75,000-square-foot commissary in Jer-
sey City operating around the clock. Chatter is now
the de facto standard for internal communication
from order to delivery. If a key cake decorator is
away, that person is still included in the communi-
cation and discussion process. Upon returning, the
decorator can view any changes in color, shape, or
Because Carlo’s employees now work more
socially, errors are down by more than 30 percent,
and crews are able to produce cakes and other cus-
tom products more rapidly and efficiently. Managers
have access to a data and analytics dashboard that
allows them to instantly view store performance
and which products are hot and which are not. They
can see sales and transaction patterns in depth. As
Carlo’s expands nationally and perhaps globally, the
ability to connect people and view order streams
is critical. Social business tools have transformed
an organization that was gradually sinking under
the weight of paper into a highly efficient digital
Sources: Samuel Greengard, “Changing Your Business into a Social
Business,” Baseline, June 18, 2015; Cordelia Kroob, “The Growth of
an Enterprise Social Network at BASF,” www.simply-communicate.
com , accessed March 12, 2016; Gerald C. Kane, “Enterprise Social
Media: Current Capabilities and Future Possibilities,” MIS Quar-
terly Executive, March 2015; Dion Hinchcliffe, “In Europe’s Biggest
Firms, Social Business Is All Grown Up,” Enterprise Web 2.0, Febru-
ary 12, 2015; Margaret Jones, “Top Four Social Collaboration Soft-
ware Fails,” , accessed
March 17, 2016; Gartner Inc., “Gartner Says 80 Percent of Social
Business Efforts Will Not Achieve Intended Benefits Through 2015,”
January 29, 2013; and Michael Healey, “Why Enterprise Social Net-
working Falls Short,” Information Week, March 4, 2013.
2- 13 Identify the management, organization, and
technology factors responsible for impeding
adoption of internal corporate social networks.
2- 14 Compare the experiences implementing
internal social networks of the two organiza-
tions described in this case. Why were they
successful? What role did management play in
this process?
2- 15 Should all companies implement internal
enterprise social networks? Why or why not?
Go to the Assignments section of MyLab MIS to complete these writing exercises.
2- 16 Identify and describe the capabilities of enterprise social networking software. Describe how a firm could use
each of these capabilities.
2- 17 Describe the systems used by various management groups within the firm in terms of the information they use,
their outputs, and groups served.
Chapter 2 Global E-business and Collaboration 103



Chapter 2 References
Aral, Sinan, Erik Brynjolfsson, and Marshall Van Alstyne.
“Productivity Effects of Information Diffusion in Networks,”
MIT Center for Digital Business (July 2007).
Banker, Rajiv D., Nan Hu, Paul A. Pavlou, and Jerry Luftman.
“CIO Reporting Structure, Strategic Positioning, and Firm
Performance.” MIS Quarterly 35, No. 2 (June 2011).
Bernoff, Josh and Charlene Li. “Harnessing the Power of Social
Applications.” MIT Sloan Management Review (Spring 2008).
Boughzala, Imed and Gert-Jan De Vreede. “Evaluating Team
Collaboration Quality: The Development and Field
Application of a Collaboration Maturity Model.” Journal of
Management Information Systems 32 No. 3 (2015).
Bughin, Jacques, Michael Chui, and Martin Harrysson. “How
Social Tools Can Reshape the Organization.” McKinsey Global
Institute (May 2016).
Bureau of Labor Statistics. “Occupational Outlook Handbook.”
Bureau of Labor Statistics (December 2015).
Compare Products. “Videoconferencing Trends of 2016.” (2015).
Dimension Data. “2016 Connected Enterprise Report.” (2016).
Forrester Consulting. “Total Economic Impact of IBM Social
Collaboration Tools” (September 2010).
Forrester Research. “Social Business: Delivering Critical Business
Value” (April 2012).
Frenkel, Karen A. “How the CIO’s Role Will Change by 2018.” CIO
Insight (January 31, 2014).
Frost and Sullivan. “Meetings Around the World II: Charting the
Course of Advanced Collaboration.” (October 14, 2009).
Gast, Arne, and Raul Lansink. “Digital Hives: Creating a Surge
Around Change.” McKinsey Quarterly (April 2015).
Greengard, Samuel. “Collaboration: At the Center of Effective
Business.” Baseline (January 24, 2014).
___________ . “The Social Business Gets Results.” Baseline (June 19,
Guillemette, Manon G. and Guy Pare. “Toward a New Theory of
the Contribution of the IT Function in Organizations.” MIS
Quarterly 36, No. 2 (June 2012).
Johnson, Bradford, James Manyika, and Lareina Yee. “The Next
Revolution in Interactions,” McKinsey Quarterly No. 4 (2005).
Kane, Gerald C. “Enterprise Social Media: Current Capabilities and
Future Possibilities.” MIS Quarterly Executive 14, No. 1 (2015).
Kane, Gerald C., Doug Palmer, Anh Nguyen Phillips, and David
Kiron. “Finding the Value in Social Business. MIT Sloan
Management Review 55, No. 3 (Spring 2014).
Kiron, David, Doug Palmer, Anh Nguyen Phillips, and Nina
Kruschwitz. “What Managers Really Think About Social
Business.” MIT Sloan Management Review 53, No. 4 (Summer
Kolfschoten, Gwendolyn L., Fred Niederman, Robert O. Briggs,
and Gert-Jan De Vreede. “Facilitation Roles and
Responsibilities for Sustained Collaboration Support in
Organizations.” Journal of Management Information Systems 28,
No. 4 (Spring 2012).
Li, Charlene. “Making the Business Case for Enterprise Social
Networks.” Altimeter Group (February 22, 2012).
Malone, Thomas M., Kevin Crowston, Jintae Lee, and Brian
Pentland. “Tools for Inventing Organizations: Toward a
Handbook of Organizational Processes.” Management Science
45, No. 3 (March 1999).
Maruping, Likoebe M. and Massimo Magni. “Motivating
Employees to Explore Collaboration Technology in Team
Contexts.” MIS Quarterly 39, No.1 (March 2015).
McKinsey & Company. “Transforming the Business Through
Social Tools.” (2015).
McKinsey Global Institute. “The Social Economy: Unlocking Value
and Productivity Through Social Technologies.” McKinsey &
Company (July 2012).
Microsoft Corporation. “Customer Stories: Southern Valve.”
(January 18, 2015).
Mortensen, Mark. “Technology Alone Won’t Solve Our
Collaboration Problems.” Harvard Business Review (March 26,
Poltrock, Steven and Mark Handel. “Models of Collaboration as the
Foundation for Collaboration Technologies.” Journal of
Management Information Systems 27, No. 1 (Summer 2010).
Ricards, Tuck, Kate Smaje, and Vik Sohoni. “‘Transformer in Chief’:
The New Chief Digital Officer.” McKinsey Digital (September
Saunders, Carol, A. F. Rutkowski, Michiel van Genuchten, Doug
Vogel, and Julio Molina Orrego. “Virtual Space and Place:
Theory and Test.” MIS Quarterly 35, No. 4 (December 2011).
Siebdrat, Frank, Martin Hoegl, and Holger Ernst. “How to Manage
Virtual Teams.” MIT Sloan Management Review 50, No. 4
(Summer 2009).
Tallon, Paul P., Ronald V.Ramirez, and James E. Short. “The
Information Artifact in IT Governance: Toward a Theory of
Information Governance.” Journal of Management Information
Systems 30, No. 3 (Winter 2014).
Violino, Bob. “What Is Driving the Need for Chief Data Officers?”
Information Management (February 3, 2014).
Weill, Peter and Jeanne W. Ross. IT Governance . Boston: Harvard
Business School Press (2004).
104 Part One Organizations, Management, and the Networked Enterprise

MyLab MIS™
Visit for simulations, tutorials, and end-of-chapter problems.
Learning Objectives
After reading this chapter , you will be able to answer the following questions:
3- 1 Which features of organizations do managers need to know about to build
and use information systems successfully?
3- 2 What is the impact of information systems on organizations?
3- 3 How do Porter’s competitive forces model, the value chain model,
synergies, core competencies, and network economics help companies
develop competitive strategies using information systems?
3- 4 What are the challenges posed by strategic information systems, and how
should they be addressed?
GE Becomes a Digital Firm: The Emerging Industrial Internet
National Basketball Association: Competing on Global Delivery with
Akamai OS Streaming
Tate & Lyle Devise a Global IT Strategy
Can Technology Replace Managers?
Smart Products, Smart Companies
Deutsche Bank: The Cost of Legacy Systems

3 Information Systems, Organizations, and Strategy

F ounded in 1859 in Liverpool as a sugar refiner, today Tate & Lyle is a global provider of specialty food and other ingredients to four markets: food and beverage manufacturers (sweeteners, texturants, and fiber),
the paper manufacturers (starches), animal feed producers (corn meal), and
cosmetic manufacturers (cosmetics and creams). It operates over 30 manu-
facturing facilities in four regions: the Americas, Europe, the Middle East,
and Africa. Throughout its history Tate & Lyle grew through acquisitions of
many companies in its operating regions, and in the 1970s began to diversify
from the sugar business to more specialized agricultural food products. In
2016 the company had
€2.6 billion in sales and
€189 million in profits.
Tate & Lyle’s 2020 stra-
tegic plan is to expand
the specialty food seg-
ment, broaden the geo-
graphic mix of sales to
include Asia Pacific and
Latin America, and
generate over €200 mil-
lion in sales from new
products. As a multina-
tional agribusiness, the
firm faces stiff competi-
tion from giant global
c o m p e t i t o r s l i k e
ConAgra, Archer Dan-
iels Midland, and BASF.
In the process of
growing over many decades, Tate & Lyle had gathered a large collection of
financial accounting systems across four regions and thirty operating facili-
ties. The accounts produced by all these financial systems were reconciled
through manual means, using spreadsheets produced by individual units,
telephone calls, paper records, fax, and emails to clarify disparities. Each
region had its own manual processes for reconciling accounts. Reconciliation
refers to the business processes used by firms to ensure that recorded expen-
ditures and revenues are accurately reflected in cash outflow and income
statements. The existing manual system stored records in different locations
around the globe, which led to errors and made it difficult to produce monthly
and annual financial statements. Senior managers understood that the firm
Tate & Lyle Devise a Global IT Strategy
© Gajus/Fotolia

could not achieve its business strategic objectives without a major re-thinking
of its basic financial accounting systems.
The solution management decided on was to centralize financial accounting
at a single location in Lodz, Poland, and to develop an Account Reconciliation
and Task Management system. This new system is based on SAP’s ERP (Enter-
prise Resource Planning) system, which brings together thousands of general
ledger accounts and transactions located the four regions into a single system.
SAP’s ERP utilizes their HANA relational database software, which stores and
retrieves data, and provides many other enterprise capabilities, including pre-
dictive analytics, management dashboards, and text search.
The consulting firm Black Line was hired to implement the new system
and coordinate with Tate & Lyle financial groups. Implementing the system
required two years of intensive planning and the integration of legacy sys-
tems into the new single system. The major requirements for the new system
included standardized templates, electronic approval of workflows, an easy-to-
use interface so managers could quickly obtain the information on firm perfor-
mance that they needed, as well as the ability to handle multiple currencies,
produce basic reports in a timely fashion, and integrate data in the SAP system
with non-SAP accounting systems already in use at the regional level.
Implementing the new system also gave managers the opportunity to revise
and simplify business processes based on industry best practices, and to enforce
their use across all the four regions. The result is a reconciliation system that
is accurate, timely, transparent, and able to produce end-of-day results, report
on progress towards month-end closing targets, identify outstanding tasks, and
communicate with the teams responsible for completing the tasks.
Sources: Ken Murphy, “How Tate & Lyle Makes Food Extraordinary with Improved Finance
Functions,” SAP Insider Profiles, December 8, 2016; Anahad O’Connor, “Study Tied to Food
Industry Tries to Discredit Sugar Guidelines,” New York Times, December 19, 2016; Tate &
Lyle, “Annual Report 2016,”, March 15, 2016; Ryan Phillips, “Tate & Lyle
Announces $25M Consolidation Plan at Splenda Plant in McIntosh,” Birmingham Business
Journal, April 23, 2015; Sean Walters, “Dissolving Confidence in Tate & Lyle,” Wall Street Jour-
nal, September 23, 2016; Ryan Knutson, “Verizon Swings to a Profit, but Pace of Growth
Slows,” Wall Street Journal, January 21, 2016; Douglas MacMillan and Ryan Knutson, “Verizon
Tops Pack of Suitors Chasing Yahoo,” New York Times, April 17, 2016.
The story of Tate & Lyle illustrates some of the ways that information sys-tems are integrally related to business strategies. The specialty food ingre-
dients segment of agribusiness is highly competitive. To grow the business,
firms need a global scale of operations and the ability to operate efficiently
across many regions, languages, currencies, and time zones. In short, global IT
systems are a requirement for global business success. Tate & Lyle needed a
single global system to perform its basic financial reporting tasks.
In order to implement this strategic IT system, Tate & Lyle changed their
organization by centralizing the financial system in Lodz. Management had to
review, document, and then redesign the key financial business processes of
the firm. Managers had to select a suitable enterprise platform vendor (SAP)
and select a consulting firm (Black Line) from among many possible vendors.
Here some questions to think about: How will the Account Reconciliation
and Task Management system help Tate & Lyle remain competitive? Why did
managers choose a single, global system? What specific problems did this sys-
tem solve?
108 Part One Organizations, Management, and the Networked Enterprise

3- 1 Which features of organizations do managers
need to know about to build and use
information systems successfully?
Information systems and organizations influence one another. Information sys-
tems are built by managers to serve the interests of the business firm. At the
same time, the organization must be aware of and open to the influences of
information systems to benefit from new technologies.
The interaction between information technology and organizations is com-
plex and is influenced by many mediating factors, including the organization’s
structure, business processes, politics, culture, surrounding environment,
and management decisions (see Figure 3. 1 ). You will need to understand how
Increase revenue
Increase service
Determine business
Design new products
and services
Implement strategy
Partner with other
Mine customer data
Satellite TV
Cable Internet
Wireless networks
Mobile video
Cloud computing
Opportunities from new
Intense competition
Digital Products and Services
Bundled TV, Internet, wireless
services and content
Mobile video
Digital advertising
Organizations InformationTechnology
Mediating Factors
Business Processes
Management Decisions
This complex two-way relationship is mediated by many factors, not the least of which are the deci-
sions made—or not made—by managers. Other factors mediating the relationship include the organi-
zational culture, structure, politics, business processes, and environment.
Chapter 3 Information Systems, Organizations, and Strategy 109

information systems can change social and work life in your firm. You will
not be able to design new systems successfully or understand existing systems
without understanding your own business organization.
As a manager, you will be the one to decide which systems will be built, what
they will do, and how they will be implemented. You may not be able to antici-
pate all of the consequences of these decisions. Some of the changes that occur
in business firms because of new information technology (IT) investments can-
not be foreseen and have results that may or may not meet your expectations.
Who would have imagined 15 years ago, for instance, that e-mail and instant
messaging would become a dominant form of business communication and
that many managers would be inundated with more than 200 e-mail messages
each day?
What Is an Organization?
An organization is a stable, formal social structure that takes resources from
the environment and processes them to produce outputs. This technical defi-
nition focuses on three elements of an organization. Capital and labor are pri-
mary production factors provided by the environment. The organization (the
firm) transforms these inputs into products and services in a production func-
tion. The products and services are consumed by environments in return for
supply inputs (see Figure 3. 2 ).
An organization is more stable than an informal group (such as a group of
friends that meets every Friday for lunch) in terms of longevity and routine-
ness. Organizations are formal legal entities with internal rules and procedures
that must abide by laws. Organizations are also social structures because they
are a collection of social elements, much as a machine has a structure—a par-
ticular arrangement of valves, cams, shafts, and other parts.
This definition of organizations is powerful and simple, but it is not very
descriptive or even predictive of real-world organizations. A more realistic
behavioral definition of an organization is a collection of rights, privileges, obli-
gations, and responsibilities delicately balanced over a period of time through
conflict and conflict resolution (see Figure 3. 3 ).
In this behavioral view of the firm, people who work in organizations develop
customary ways of working; they gain attachments to existing relationships;
Inputs from the
Outputs to the
Production process
In the microeconomic definition of organizations, capital and labor (the primary production factors
provided by the environment) are transformed by the firm through the production process into prod-
ucts and services (outputs to the environment). The products and services are consumed by the envi-
ronment, which supplies additional capital and labor as inputs in the feedback loop.
110 Part One Organizations, Management, and the Networked Enterprise

and they make arrangements with subordinates and superiors about how work
will be done, the amount of work that will be done, and under what conditions
work will be done. Most of these arrangements and feelings are not discussed
in any formal rulebook.
How do these definitions of organizations relate to information systems
technology? A technical view of organizations encourages us to focus on how
inputs are combined to create outputs when technology changes are introduced
into the company. The firm is seen as infinitely malleable, with capital and
labor substituting for each other quite easily. But the more realistic behavioral
definition of an organization suggests that building new information systems,
or rebuilding old ones, involves much more than a technical rearrangement
of machines or workers—that some information systems change the organi-
zational balance of rights, privileges, obligations, responsibilities, and feelings
that have been established over a long period of time.
Changing these elements can take a long time, be very disruptive, and
requires more resources to support training and learning. For instance, the
length of time required to implement a new information system effectively is
much longer than usually anticipated simply because there is a lag between
implementing a technical system and teaching employees and managers how
to use the system.
Technological change requires changes in who owns and controls infor-
mation, who has the right to access and update that information, and who
makes decisions about whom, when, and how. This more complex view
forces us to look at the way work is designed and the procedures used to
achieve outputs.
The technical and behavioral definitions of organizations are not contradic-
tory. Indeed, they complement each other: The technical definition tells us
how thousands of firms in competitive markets combine capital, labor, and
information technology, whereas the behavioral model takes us inside the
individual firm to see how that technology affects the organization’s inner
workings. Section 3 -2 describes how each of these definitions of organiza-
tions can help explain the relationships between information systems and
Division of labor
Rules, procedures
Business processes
The behavioral view of organizations emphasizes group relationships, values, and structures.
Chapter 3 Information Systems, Organizations, and Strategy 111

Features of Organizations
All modern organizations share certain characteristics. They are bureaucracies
with clear-cut divisions of labor and specialization. Organizations arrange spe-
cialists in a hierarchy of authority in which everyone is accountable to someone
and authority is limited to specific actions governed by abstract rules or proce-
dures. These rules create a system of impartial and universal decision making.
Organizations try to hire and promote employees on the basis of technical qual-
ifications and professionalism (not personal connections). The organization is
devoted to the principle of efficiency: maximizing output using limited inputs.
Other features of organizations include their business processes, organizational
culture, organizational politics, surrounding environments, structure, goals,
constituencies, and leadership styles. All of these features affect the kinds of
information systems used by organizations.
Routines and Business Processes
All organizations, including business firms, become very efficient over time
because individuals in the firm develop routines for producing goods and ser-
vices. Routines—sometimes called standard operating procedures —are precise
rules, procedures, and practices that have been developed to cope with virtually
all expected situations. As employees learn these routines, they become highly
productive and efficient, and the firm is able to reduce its costs over time as effi-
ciency increases. For instance, when you visit a doctor’s office, receptionists have
a well-developed set of routines for gathering basic information from you, nurses
have a different set of routines for preparing you for an interview with a doctor,
and the doctor has a well-developed set of routines for diagnosing you. Business
processes , which we introduced in Chapters 1 and 2 , are collections of such rou-
tines. A business firm, in turn, is a collection of business processes ( Figure 3. 4 ).
Organizational Politics
People in organizations occupy different positions with different specialties,
concerns, and perspectives. As a result, they naturally have divergent view-
points about how resources, rewards, and punishments should be distributed.
These differences matter to both managers and employees, and they result in
political struggle for resources, competition, and conflict within every orga-
nization. Political resistance is one of the great difficulties of bringing about
organizational change—especially the development of new information sys-
tems. Virtually all large information systems investments by a firm that bring
about significant changes in strategy, business objectives, business processes,
and procedures become politically charged events. Managers who know how
to work with the politics of an organization will be more successful than less-
skilled managers in implementing new information systems. Throughout this
book, you will find many examples where internal politics defeated the best-
laid plans for an information system.
Organizational Culture
All organizations have bedrock, unassailable, unquestioned (by the mem-
bers) assumptions that define their goals and products. Organizational culture
encompasses this set of assumptions about what products the organization
should produce, how it should produce them, where, and for whom. Generally,
these cultural assumptions are taken totally for granted and are rarely publicly
announced or discussed. Business processes—the actual way business firms
produce value—are usually ensconced in the organization’s culture.
112 Part One Organizations, Management, and the Networked Enterprise

You can see organizational culture at work by looking around your univer-
sity or college. Some bedrock assumptions of university life are that professors
know more than students, the reason students attend college is to learn, and
classes follow a regular schedule. Organizational culture is a powerful unify-
ing force that restrains political conflict and promotes common understand-
ing, agreement on procedures, and common practices. If we all share the same
basic cultural assumptions, agreement on other matters is more likely.
At the same time, organizational culture is a powerful restraint on change,
especially technological change. Most organizations will do almost anything
to avoid making changes in basic assumptions. Any technological change that
threatens commonly held cultural assumptions usually meets a great deal of
resistance. However, there are times when the only sensible way for a firm to
move forward is to employ a new technology that directly opposes an existing
organizational culture. When this occurs, the technology is often stalled while
the culture slowly adjusts.
Organizational Environments
Organizations reside in environments from which they draw resources and to
which they supply goods and services. Organizations and environments have
a reciprocal relationship. On the one hand, organizations are open to and
Process 1
Process 2
Process 3
Process N
Routines, Business Processes, and Firms
All organizations are composed of individual routines and behaviors, a collection of which make up a
business process. A collection of business processes make up the business firm. New information sys-
tem applications require that individual routines and business processes change to achieve high levels
of organizational performance.
Chapter 3 Information Systems, Organizations, and Strategy 113

dependent on the social and physical environment that surrounds them. With-
out financial and human resources—people willing to work reliably and consis-
tently for a set wage or revenue from customers—organizations could not exist.
Organizations must respond to legislative and other requirements imposed by
government as well as the actions of customers and competitors. On the other
hand, organizations can influence their environments. For example, business
firms form alliances with other businesses to influence the political process;
they advertise to influence customer acceptance of their products.
Figure 3. 5 illustrates the role of information systems in helping organizations
perceive changes in their environments and also in helping organizations act
on their environments. Information systems are key instruments for environ-
mental scanning , helping managers identify external changes that might require
an organizational response.
Environments generally change much faster than organizations. New tech-
nologies, new products, and changing public tastes and values (many of which
result in new government regulations) put strains on any organization’s cul-
ture, politics, and people. Most organizations are unable to adapt to a rapidly
changing environment. Inertia built into an organization’s standard operating
procedures, the political conflict raised by changes to the existing order, and the
threat to closely held cultural values inhibit organizations from making signifi-
cant changes. Young firms typically lack resources to sustain even short periods
of troubled times. It is not surprising that only 10 percent of the Fortune 500
companies in 1919 still exist today.
Disruptive Technologies: Riding the Wave Sometimes a technology and
resulting business innovation come along to radically change the business
landscape and environment. These innovations are loosely called “disruptive”
( Christensen, 2003 ; Christensen, Raynor, and McDonald, 2015 ). What makes a
The Organization and Its Environment
Environmental Resources
and Constraints
Financial Institutions
The Firm
Information Systems
Environments shape what organizations can do, but organizations can influence their environments
and decide to change environments altogether. Information technology plays a critical role in helping
organizations perceive environmental change and in helping organizations act on their environment.
114 Part One Organizations, Management, and the Networked Enterprise

technology disruptive? In some cases, disruptive technologies are substitute
products that perform as well as or better (often much better) than anything
currently produced. The car substituted for the horse-drawn carriage, the word
processor for typewriters, the Apple iPod for portable CD players, and digital
photography for process fi lm photography. Table 3. 1 describes just a few disrup-
tive technologies from the past.
In these cases, entire industries were put out of business. In other cases, dis-
ruptive technologies simply extend the market, usually with less functionality
and much less cost than existing products. Eventually they turn into low-cost
competitors for whatever was sold before. Disk drives are an example: Small
hard disk drives used in PCs extended the market for disk drives by offering
cheap digital storage for small files. Eventually, small PC hard disk drives
became the largest segment of the disk drive marketplace.
Some firms are able to create these technologies and ride the wave to prof-
its; others learn quickly and adapt their business; still others are obliterated
because their products, services, and business models become obsolete. They
may be very efficient at doing what no longer needs to be done! There are also
cases where no firms benefit and all the gains go to consumers (firms fail to cap-
ture any profits). Moreover, not all change or technology is disruptive ( King and
Baatartogtokh, 2015 ). Managers of older businesses often do make the right deci-
sions and find ways to continue competing. Disruptive technologies are tricky.
Firms that invent disruptive technologies as “first movers” do not always ben-
efit if they lack the resources to exploit the technology or fail to see the oppor-
tunity. The MITS Altair 8800 is widely regarded as the first PC, but its inventors
did not take advantage of their first mover status. Second movers, so-called “fast
chips (1971)
Thousands and eventually millions of
transistors on a silicon chip
Microprocessor firms win (Intel, Texas
Instruments), while transistor firms (GE) decline.
Small, inexpensive, but fully
functional desktop computers
PC manufacturers (HP, Apple, IBM) and chip
manufacturers prosper (Intel), while mainframe
(IBM) and minicomputer (DEC) firms lose.
Using CCD (charge-coupled device)
image sensor chips to record images
CCD manufacturers and traditional camera
companies win; manufacturers of film products
World Wide
Web (1989)
A global database of digital files and
“pages” instantly available
Owners of online content and news benefit,
while traditional publishers (newspapers,
magazines, and broadcast television) lose.
Internet music,
video, TV
services (1998)
Repositories of downloadable music,
video, TV broadcasts on the web
Owners of Internet platforms,
telecommunications providers owning Internet
backbone (ATT, Verizon), and local Internet
service providers win, while content owners
and physical retailers (Tower Records,
Blockbuster) lose.
A method for ranking web pages in
terms of their popularity to
supplement web search by key terms
Google is the winner (it owns the patent), while
traditional key word search engines (Alta Vista)
Software as
web service
Using the Internet to provide remote
access to online software
Online software services companies ( Salesforce.
com ) win, while traditional “boxed” software
companies (Microsoft, SAP, Oracle) lose.
Chapter 3 Information Systems, Organizations, and Strategy 115

followers,” such as IBM and Microsoft, reaped the rewards. Citibank’s ATMs rev-
olutionized retail banking, but they were copied by other banks. Now all banks
use ATMs, with the benefits going mostly to the consumers.
Organizational Structure
All organizations have a structure or shape. Mintzberg’s classification,
described in Table 3. 2 , identifies five basic kinds of organizational structure
( Mintzberg, 1971 ).
The kind of information systems you find in a business firm—and the nature
of problems with these systems—often reflects the type of organizational struc-
ture. For instance, in a professional bureaucracy such as a hospital, it is not
unusual to find parallel patient record systems operated by the administra-
tion, another by doctors, and another by other professional staff such as nurses
and social workers. In small entrepreneurial firms, you will often find poorly
designed systems developed in a rush that often quickly outgrow their useful-
ness. In huge multidivisional firms operating in hundreds of locations, you will
often find there is not a single integrating information system, but instead each
locale or each division has its set of information systems.
Other Organizational Features
Organizations have goals and use different means to achieve them. Some
organizations have coercive goals (e.g., prisons); others have utilitarian goals
(e.g., businesses). Still others have normative goals (universities, religious
groups). Organizations also serve different groups or have different constitu-
encies, some primarily benefiting their members, others benefiting clients,
stockholders, or the public. The nature of leadership differs greatly from one
organization to another—some organizations may be more democratic or
authoritarian than others. Another way organizations differ is by the tasks they
perform and the technology they use. Some organizations perform primarily
Young, small firm in a fast-changing environment. It
has a simple structure and is managed by an
entrepreneur serving as its single chief executive
Small start-up
Machine bureaucracy Large bureaucracy existing in a slowly changing
environment, producing standard products. It is
dominated by a centralized management team and
centralized decision making.
manufacturing firm
Combination of multiple machine bureaucracies, each
producing a different product or service, all topped by
one central headquarters.
Fortune 500 firms,
such as General
Knowledge-based organization where goods and
services depend on the expertise and knowledge of
professionals. Dominated by department heads with
weak centralized authority.
Law firms, school
systems, hospitals
Adhocracy Task force organization that must respond to rapidly
changing environments. Consists of large groups of
specialists organized into short-lived multidisciplinary
teams and has weak central management.
Consulting firms, such
as the Rand
116 Part One Organizations, Management, and the Networked Enterprise

routine tasks that can be reduced to formal rules that require little judgment
(such as manufacturing auto parts), whereas others (such as consulting firms)
work primarily with nonroutine tasks.
3- 2 What is the impact of information
systems on organizations?
Information systems have become integral, online, interactive tools deeply
involved in the minute-to-minute operations and decision making of large
organizations. Over the past decade, information systems have fundamentally
altered the economics of organizations and greatly increased the possibilities
for organizing work. Theories and concepts from economics and sociology help
us understand the changes brought about by IT.
Economic Impacts
From the point of view of economics, IT changes both the relative costs of
capital and the costs of information. Information systems technology can be
viewed as a factor of production that can be substituted for traditional capital
and labor. As the cost of information technology decreases, it is substituted for
labor, which historically has been a rising cost. Hence, information technology
should result in a decline in the number of middle managers and clerical work-
ers as information technology substitutes for their labor.
As the cost of information technology decreases, it also substitutes for other
forms of capital such as buildings and machinery, which remain relatively
expensive. Hence, over time we should expect managers to increase their invest-
ments in IT because of its declining cost relative to other capital investments.
IT also affects the cost and quality of information and changes the economics
of information. Information technology helps firms contract in size because it
can reduce transaction costs—the costs incurred when a firm buys on the mar-
ketplace what it cannot make itself. According to transaction cost theory , firms
and individuals seek to economize on transaction costs, much as they do on pro-
duction costs. Using markets is expensive because of costs such as locating and
communicating with distant suppliers, monitoring contract compliance, buying
insurance, obtaining information on products, and so forth ( Coase, 1937 ; William-
son, 1985 ). Traditionally, firms have tried to reduce transaction costs through ver-
tical integration, by getting bigger, hiring more employees, and buying their own
suppliers and distributors, as both General Motors and Ford used to do.
Information technology, especially the use of networks, can help firms lower
the cost of market participation (transaction costs), making it worthwhile for firms
to contract with external suppliers instead of using internal sources. As a result,
firms can shrink in size (numbers of employees) because it is far less expensive
to outsource work to a competitive marketplace rather than hire employees.
For instance, by using computer links to external suppliers, automakers such
as Chrysler, Toyota, and Honda can achieve economies by obtaining more than
70 percent of their parts from the outside. Information systems make it possible
for companies such as Cisco Systems and Dell Inc. to outsource their produc-
tion to contract manufacturers such as Flextronics instead of making their prod-
ucts themselves.
As transaction costs decrease, firm size (the number of employees) should
shrink because it becomes easier and cheaper for the firm to contract for the
Chapter 3 Information Systems, Organizations, and Strategy 117

purchase of goods and services in the marketplace rather than to make the
product or offer the service itself. Firm size can stay constant or contract even
as the company increases its revenues. For example, when Eastman Chemical
Company split off from Kodak in 1994, it had $3.3 billion in revenue and 24,000
full-time employees. In 2015, it generated more than $9.6 billion in revenue
with only 15,000 employees.
Information technology also can reduce internal management costs. Accord-
ing to agency theory , the firm is viewed as a “nexus of contracts” among self-
interested individuals rather than as a unified, profit-maximizing entity ( Jensen
and Meckling, 1976 ). A principal (owner) employs “agents” (employees) to per-
form work on his or her behalf. However, agents need constant supervision and
management; otherwise, they will tend to pursue their own interests rather
than those of the owners. As firms grow in size and scope, agency costs or coor-
dination costs rise because owners must expend more and more effort supervis-
ing and managing employees.
Information technology, by reducing the costs of acquiring and analyzing
information, permits organizations to reduce agency costs because it becomes
easier for managers to oversee a greater number of employees. By reducing
overall management costs, information technology enables firms to increase
revenues while shrinking the number of middle managers and clerical work-
ers. We have seen examples in earlier chapters where information technol-
ogy expanded the power and scope of small organizations by enabling them to
perform coordinating activities such as processing orders or keeping track of
inventory with very few clerks and managers.
Because IT reduces both agency and transaction costs for firms, we should
expect firm size to shrink over time as more capital is invested in IT. Firms
should have fewer managers, and we expect to see revenue per employee
increase over time.
Organizational and Behavioral Impacts
Theories based in the sociology of complex organizations also provide some
understanding about how and why firms change with the implementation of
new IT applications.
IT Flattens Organizations
Large, bureaucratic organizations, which primarily developed before the computer
age, are often inefficient, slow to change, and less competitive than newly cre-
ated organizations. Some of these large organizations have downsized, reducing the
number of employees and the number of levels in their organizational hierarchies.
Behavioral researchers have theorized that information technology facili-
tates flattening of hierarchies by broadening the distribution of information
to empower lower-level employees and increase management efficiency (see
Figure 3. 6 ). IT pushes decision-making rights lower in the organization because
lower-level employees receive the information they need to make decisions
without supervision. (This empowerment is also possible because of higher
educational levels among the workforce, which give employees the capabilities
to make intelligent decisions.) Because managers now receive so much more
accurate information on time, they become much faster at making decisions,
so fewer managers are required. Management costs decline as a percentage of
revenues, and the hierarchy becomes much more efficient.
These changes mean that the management span of control has also been
broadened, enabling high-level managers to manage and control more workers
118 Part One Organizations, Management, and the Networked Enterprise

spread over greater distances. Many companies have eliminated thousands of
middle managers as a result of these changes.
Postindustrial Organizations
Postindustrial theories based more on history and sociology than economics
also support the notion that IT should flatten hierarchies. In postindustrial
societies, authority increasingly relies on knowledge and competence and not
merely on formal positions. Hence, the shape of organizations flattens because
professional workers tend to be self-managing, and decision making should
become more decentralized as knowledge and information become more wide-
spread throughout the firm.
Information technology may encourage task force–networked organizations
in which groups of professionals come together—face-to-face or electronically—
for short periods of time to accomplish a specific task (e.g., designing a new
automobile); once the task is accomplished, the individuals join other task
forces. The global consulting firm Accenture is an example. Many of its 373,000
employees move from location to location to work on projects at client loca-
tions in more than 56 different countries.
Who makes sure that self-managed teams do not head off in the wrong direc-
tion? Who decides which person works on which team and for how long? How
can managers evaluate the performance of someone who is constantly rotating
from team to team? How do people know where their careers are headed? New
approaches for evaluating, organizing, and informing workers are required, and
not all companies can make virtual work effective, as described in the Interac-
tive Session on Management.
An organization that has been “flattened” by removing layers of management
A traditional hierarchical organization with many levels of management
Information systems can reduce the number of levels in an organization by providing managers
with information to supervise larger numbers of workers and by giving lower-level employees more
decision-making authority.
Chapter 3 Information Systems, Organizations, and Strategy 119

Start-up companies are known for being innovative,
and one of those innovations appears to be the way
they are being managed. A number of these new
firms are trying to minimize headcount and maxi-
mize agility by eliminating management hierarchy.
In place of managers, they’re turning to technol-
ogy, including user-friendly software and low-cost
web-based services such as ’s Redshift
for storing corporate data, analyzing the data, and
presenting the results in the form of dashboards
that anyone in the firm can use. In the past such
data were difficult to obtain, required more senior
managers to organize and interpret, or could not be
analyzed without expensive business intelligence
systems costing millions of dollars. Today even small
start-ups can afford to store and manipulate nearly
limitless pools of data in near real time.
For example, Chubbies, a rapidly growing clothing
start-up targeting college fraternities, doesn’t have a
CEO. Instead, it has four co-CEOs, each in charge of
his or her own business function. This structure is
repeated all the way down the company’s hierarchy.
All Chubbies employees have access to the same data
as its top managers. According to Tom Montgomery,
one of the Chubbies co-CEOs, when you don’t have
a traditional CEO and final decision maker, you have
to trust people to make the right decisions based on
the information they see. Although it takes time to
build up that trust, once you do, the company can
move much more quickly.
Montgomery points out that in the past, an associ-
ate specializing in events for clients might report to
a manager in the marketing department in charge of
thinking about why the company should be throw-
ing events in the first place. Today, the event plan-
ner working alone can use an array of dashboards to
determine exactly how many Facebook likes, Insta-
gram posts, and sales arose from a particular event,
and she is able to decide on her own whether future
events should be scheduled. With the right data and
tools to back up her decision, she doesn’t need a
manager to validate her choices.
Web retailer Inc. announced in 2013
that it was eliminating managers in order to keep
the 1,500-person company from becoming too rigid,
too unwieldy, and too bureaucratic as it grows.
Zappos adopted a “holocracy” model in which work-
ers manage themselves without the aid of middle
managers. In contrast to a traditional corporate
chain of command, holocracy organizes the busi-
ness as a series of overlapping, self-governing
“ circles. ” Instead of having jobs, holocracies have
“roles.” Each role belongs to a circle rather than
a department. The circles overlap, and individu-
als hold many different roles. Individuals assigned
roles in these circles work together, and their meet-
ing outcomes are recorded using web-based soft-
ware called Glass Frog. This system allows anyone
in the company to view who’s responsible for what
role and what they’re working on. Glass Frog pro-
vides a “to-do” list that teams use to define the work
they’re supposed to be doing and to hold themselves
accountable for those tasks.
Although Zappos CEO Tony Hsieh continues to
trumpet self-management, it is unclear if employees
widely share his enthusiasm. Some employees wel-
comed the opportunity for more independence. With
experience and expertise downplayed, less senior
employees with fresh ideas receive more attention.
Introverts have benefited from the expectation that
everybody speak in meetings. Other employees were
confused and frustrated by numerous mandates,
endless meetings, and uncertainty about who did
what. To whom would they report to if there were
no bosses? What was expected of them if they did
not have a job title, and how would they be compen-
sated? Within weeks after Zappos embraced holoc-
racy, about 14 percent of employees had left the
company. The employee exodus has continued. Zap-
pos’s turnover rate for 2015 was 30 percent, 10 per-
centage points above its typical annual attrition rate.
Treehouse Island Inc., a Portland, Oregon, online
coding school, also had a flat organization. Staff
worked four-day weeks, worked only on projects they
liked, rarely had to send e-mail, and had no direct
bosses. However, the business grew, with about
100,000 students enrolled in its online courses and
100 employees. Some projects weren’t being com-
pleted, and employees were unsure of their responsi-
bilities. Treehouse wasn’t burdened by bureaucracy,
but work still stalled nevertheless. Without managers
to coordinate projects and supervise and encourage
workers, Treehouse employees weren’t as produc-
tive as they could have been. According to Treehouse
founder Ryan Carson, there was no real reason to
work hard because no one knew about it. Some of
Treehouse’s best employees started believing that not
as much was expected of them.
Can Technology Replace Managers?
120 Part One Organizations, Management, and the Networked Enterprise

Understanding Organizational Resistance to Change
Information systems inevitably become bound up in organizational politics
because they influence access to a key resource—namely, information. Infor-
mation systems can affect who does what to whom, when, where, and how in
an organization. Many new information systems require changes in personal,
individual routines that can be painful for those involved and require retraining
and additional effort that may or may not be compensated. Because informa-
tion systems potentially change an organization’s structure, culture, business
processes, and strategy, there is often considerable resistance to them when
they are introduced.
There are several ways to visualize organizational resistance. Research on
organizational resistance to innovation suggests that four factors are para-
mount: the nature of the IT innovation, the organization’s structure, the culture
of people in the organization, and the tasks affected by the innovation (see
Figure 3. 7 ). Here, changes in technology are absorbed, interpreted, deflected,
and defeated by organizational task arrangements, structures, and people. In
this model, the only way to bring about change is to change the technology,
tasks, structure, and people simultaneously. Other authors have spoken about
the need to “unfreeze” organizations before introducing an innovation, quickly
implementing it, and “refreezing” or institutionalizing the change ( Kolb and
Frohman, 1970 ).
Because organizational resistance to change is so powerful, many informa-
tion technology investments flounder and do not increase productivity. Indeed,
research on project implementation failures demonstrates that the most com-
mon reason for failure of large projects to reach their objectives is not the
Questions about which subjects to teach would
spark much analysis and chatter but resulted in
few answers or plans. Michael Watson, who headed
Treehouse finance and operations, estimated that
decisions about matters such as Treehouse’s website
design took twice as long as they should have.
Treehouse partially reversed course in the spring
of 2015. Employees still work four-day weeks, but
they now have managers. Since that change was
made, revenue has increased along with the number
of minutes of video courses the company produces.
The time required for customer support employ-
ees to respond to students who have questions
has dropped to three and a half hours from seven
from a traditional bureaucracy to a flatter
4. Can technology replace managers? Explain your
hours. With roles now clearly defined and managers
tracking assignments, e-mail is actually enhancing
According to Quy Huy, professor of strategy at the
Singapore campus of the prestigious graduate busi-
ness school Insead, middle managers are often vili-
fied as symptoms of corporate bloat, but things fall
apart without them.
Sources: David Gelles, “The Zappos Exodus Continues After a Radical
Management Experiment,” New York Times , January 13, 2016; Bour-
ree Lam, “Why Are So Many Zappos Employees Leaving?” The Atlan-
tic , January 15, 2016; Christopher Mims, “Data Is the New Middle
Manager,” Wall Street Journal , April 19, 2015; and Rachel Feintzeig,
“Radical Idea at the Office: Middle Managers,” Wall Street Journal ,
April 18, 2015.
1. How do flat organizations differ from traditional
bureaucratic hierarchies?
2. How has information technology made it possible
to eliminate middle manager positions?
3. What management, organization, and technology
issues would you consider if you wanted to move
Chapter 3 Information Systems, Organizations, and Strategy 121

failure of the technology but organizational and political resistance to change.
Chapter 14 treats this issue in detail. Therefore, as a manager involved in future
IT investments, your ability to work with people and organizations is just as
important as your technical awareness and knowledge.
The Internet and Organizations
The Internet, especially the World Wide Web, has an important impact on the rela-
tionships between many firms and external entities and even on the organization
of business processes inside a firm. The Internet increases the accessibility, stor-
age, and distribution of information and knowledge for organizations. In essence,
the Internet is capable of dramatically lowering the transaction and agency costs
facing most organizations. For instance, brokerage firms and banks in New York
can now deliver their internal operating procedures manuals to their employees
at distant locations by posting them on the corporate website, saving millions of
dollars in distribution costs. A global sales force can receive nearly instant prod-
uct price information updates using the web or instructions from management
sent by e-mail or text messaging on smartphones or mobile laptops. Vendors of
some large retailers can access retailers’ internal websites directly to find up-to-
the-minute sales information and to initiate replenishment orders instantly.
Businesses are rapidly rebuilding some of their key business processes based
on Internet technology and making this technology a key component of their IT
infrastructures. If prior networking is any guide, one result will be simpler busi-
ness processes, fewer employees, and much flatter organizations than in the past.
Implications for the Design and Understanding of
Information Systems
To deliver genuine benefits, information systems must be built with a clear
understanding of the organization in which they will be used. In our experience,
Information Technology
Organizational Structure
People Job Tasks
Implementing information systems has consequences for task arrangements, structures, and people.
According to this model, to implement change, all four components must be changed simultaneously.
122 Part One Organizations, Management, and the Networked Enterprise

the central organizational factors to consider when planning a new system are
the following:
• The environment in which the organization must function
• The structure of the organization: hierarchy, specialization, routines, and
business processes
• The organization’s culture and politics
• The type of organization and its style of leadership
• The principal interest groups affected by the system and the attitudes of
workers who will be using the system
• The kinds of tasks, decisions, and business processes that the information
system is designed to assist
3- 3 How do Porter’s competitive forces model, the
value chain model, synergies, core
competencies, and network economics help
companies develop competitive strategies using
information systems?
In almost every industry you examine, you will find that some firms do bet-
ter than most others. There’s almost always a standout firm. In the automo-
tive industry, Toyota is considered a superior performer. In pure online retail,
Amazon is the leader; in off-line retail, Walmart, the largest retailer on earth, is
the leader. In online music, Apple’s iTunes is considered the leader with more
than 60 percent of the downloaded music market, and in the related industry of
digital music players, the iPod is the leader. In web search, Google is considered
the leader.
Firms that “do better” than others are said to have a competitive advantage
over others: They either have access to special resources that others do not, or
they are able to use commonly available resources more efficiently—usually
because of superior knowledge and information assets. In any event, they do
better in terms of revenue growth, profitability, or productivity growth (effi-
ciency), all of which ultimately in the long run translate into higher stock mar-
ket valuations than their competitors.
But why do some firms do better than others, and how do they achieve
competitive advantage? How can you analyze a business and identify its
strategic advantages? How can you develop a strategic advantage for your
own business? And how do information systems contribute to strategic
advantages? One answer to that question is Michael Porter’s competitive
forces model.
Porter’s Competitive Forces Model
Arguably, the most widely used model for understanding competitive advan-
tage is Michael Porter’s competitive forces model (see Figure 3. 8 ). This model
provides a general view of the firm, its competitors, and the firm’s environ-
ment. Earlier in this chapter , we described the importance of a firm’s environ-
ment and the dependence of firms on environments. Porter’s model is all about
the firm’s general business environment. In this model, five competitive forces
shape the fate of the firm.
Chapter 3 Information Systems, Organizations, and Strategy 123

Traditional Competitors
All firms share market space with other competitors who are continuously
devising new, more efficient ways to produce by introducing new products and
services, and attempting to attract customers by developing their brands and
imposing switching costs on their customers.
New Market Entrants
In a free economy with mobile labor and financial resources, new companies
are always entering the marketplace. In some industries, there are very low bar-
riers to entry, whereas in other industries, entry is very difficult. For instance,
it is fairly easy to start a pizza business or just about any small retail busi-
ness, but it is much more expensive and difficult to enter the computer chip
business, which has very high capital costs and requires significant expertise
and knowledge that are hard to obtain. New companies have several possible
advantages: They are not locked into old plants and equipment, they often hire
younger workers who are less expensive and perhaps more innovative, they
are not encumbered by old worn-out brand names, and they are “more hun-
gry” (more highly motivated) than traditional occupants of an industry. These
advantages are also their weakness: They depend on outside financing for new
plants and equipment, which can be expensive; they have a less-experienced
workforce; and they have little brand recognition.
Substitute Products and Services
In just about every industry, there are substitutes that your customers might
use if your prices become too high. New technologies create new substitutes
all the time. Ethanol can substitute for gasoline in cars; vegetable oil for diesel
fuel in trucks; and wind, solar, coal, and hydro power for industrial electricity
generation. Likewise, Internet and wireless telephone service can substitute
for traditional telephone service. And, of course, an Internet music service that
allows you to download music tracks to an iPod or smartphone has become a
substitute for CD-based music stores. The more substitute products and ser-
vices in your industry, the less you can control pricing and the lower your
profit margins.
New market entrants
The Firm Competitors
Substitute products
Suppliers Customers
In Porter’s competitive forces model, the strategic position of the firm and its strategies are determined
not only by competition with its traditional direct competitors but also by four other forces in the
industry’s environment: new market entrants, substitute products, customers, and suppliers.
124 Part One Organizations, Management, and the Networked Enterprise

A profitable company depends in large measure on its ability to attract and
retain customers (while denying them to competitors) and charge high
prices. The power of customers grows if they can easily switch to a competi-
tor’s products and services or if they can force a business and its competitors
to compete on price alone in a transparent marketplace where there is little
product differentiation and all prices are known instantly (such as on the
Internet). For instance, in the used college textbook market on the Internet,
students (customers) can find multiple suppliers of just about any current
college textbook. In this case, online customers have extraordinary power
over used-book firms.
The market power of suppliers can have a significant impact on firm profits,
especially when the firm cannot raise prices as fast as can suppliers. The more
different suppliers a firm has, the greater control it can exercise over suppliers
in terms of price, quality, and delivery schedules. For instance, manufacturers
of laptop PCs almost always have multiple competing suppliers of key compo-
nents, such as keyboards, hard drives, and display screens.
Information System Strategies for Dealing
with Competitive Forces
What is a firm to do when it is faced with all these competitive forces? And how
can the firm use information systems to counteract some of these forces? How
do you prevent substitutes and inhibit new market entrants? There are four
generic strategies, each of which often is enabled by using information technol-
ogy and systems: low-cost leadership, product differentiation, focus on market
niche, and strengthening customer and supplier intimacy.
Supermarkets and large retail
stores such as Walmart use
sales data captured at the
checkout counter to deter-
mine which items have sold
and need to be reordered.
Walmart’s continuous replen-
ishment system transmits
orders to restock directly
to its suppliers. The system
enables Walmart to keep
costs low while fine-tuning
its merchandise to meet
customer demands.
© Betty LaRue/Alamy Stock Photo
Chapter 3 Information Systems, Organizations, and Strategy 125

Low-Cost Leadership
Use information systems to achieve the lowest operational costs and the lowest
prices. The classic example is Walmart. By keeping prices low and shelves well
stocked using a legendary inventory replenishment system, Walmart became
the leading retail business in the United States. Walmart’s continuous replenish-
ment system sends orders for new merchandise directly to suppliers as soon as
consumers pay for their purchases at the cash register. Point-of-sale terminals
record the bar code of each item passing the checkout counter and send a pur-
chase transaction directly to a central computer at Walmart headquarters. The
computer collects the orders from all Walmart stores and transmits them to sup-
pliers. Suppliers can also access Walmart’s sales and inventory data using web
Because the system replenishes inventory with lightning speed, Walmart
does not need to spend much money on maintaining large inventories of goods
in its own warehouses. The system also enables Walmart to adjust purchases of
store items to meet customer demands. Competitors, such as Sears, have been
spending 24.9 percent of sales on overhead. But by using systems to keep oper-
ating costs low, Walmart pays only 16.6 percent of sales revenue for overhead.
(Operating costs average 20.7 percent of sales in the retail industry.)
Walmart’s continuous replenishment system is also an example of an effi-
cient customer response system . An efficient customer response system
directly links consumer behavior to distribution and production and supply
chains. Walmart’s continuous replenishment system provides such an efficient
customer response.
Product Differentiation
Use information systems to enable new products and services or greatly change
the customer convenience in using your existing products and services. For
instance, Google continuously introduces new and unique search services on
its website, such as Google Maps. By purchasing PayPal, an electronic payment
system, in 2003, eBay made it much easier for customers to pay sellers and
expanded use of its auction marketplace. Apple created the iPod, a unique por-
table digital music player, plus iTunes, an online music store where songs can
be purchased for $0.69 to $1.29 each. Apple has continued to innovate with its
multimedia iPhone, iPad tablet computer, and iPod video player.
Manufacturers and retailers are using information systems to create prod-
ucts and services that are customized and personalized to fit the precise
specifications of individual customers. For example, Nike sells customized
sneakers through its NIKEiD program on its website. Customers are able
to select the type of shoe, colors, material, outsoles, and even a logo of up
to eight characters. Nike transmits the orders via computers to specially
equipped plants in China and Korea. The sneakers take about three weeks
to reach the customer. This ability to offer individually tailored products or
services using the same production resources as mass production is called
mass customization .
Table 3. 3 lists a number of companies that have developed IT-based products
and services that other firms have found difficult to copy—or at least taken a
long time to copy.
Focus on Market Niche
Use information systems to enable a specific market focus and serve this
narrow target market better than competitors. Information systems support
this strategy by producing and analyzing data for finely tuned sales and
126 Part One Organizations, Management, and the Networked Enterprise

marketing techniques. Information systems enable companies to analyze
customer buying patterns, tastes, and preferences closely so that they effi-
ciently pitch advertising and marketing campaigns to smaller and smaller
target markets.
The data come from a range of sources—credit card transactions, demo-
graphic data, purchase data from checkout counter scanners at supermarkets
and retail stores, and data collected when people access and interact with web-
sites. Sophisticated software tools find patterns in these large pools of data and
infer rules from them to guide decision making. Analysis of such data drives
one-to-one marketing that creates personal messages based on individualized
preferences. For example, Hilton Hotels’ OnQ system analyzes detailed data
collected on active guests in all of its properties to determine the preferences
of each guest and each guest’s profitability. Hilton uses this information to
give its most profitable customers additional privileges, such as late checkouts.
Contemporary customer relationship management (CRM) systems feature
analytical capabilities for this type of intensive data analysis (see Chapters 2
and 9 ) .
Credit card companies are able to use this strategy to predict their most prof-
itable cardholders. The companies gather vast quantities of data about con-
sumer purchases and other behaviors and mine these data to construct detailed
profiles that identify cardholders who might be good or bad credit risks. We
discuss the tools and technologies for data analysis in Chapters 6 and 12 .
Strengthen Customer and Supplier Intimacy
Use information systems to tighten linkages with suppliers and develop inti-
macy with customers. Fiat Chrysler Automobiles LLC uses information systems
to facilitate direct access by suppliers to production schedules and even permits
suppliers to decide how and when to ship supplies to Chrysler and Fiat facto-
ries. This allows suppliers more lead time in producing goods. On the customer
side, Amazon keeps track of user preferences for book and CD purchases and
can recommend titles purchased by others to its customers. Strong linkages to
customers and suppliers increase switching costs (the cost of switching from
one product to a competing product) and loyalty to your firm.
Table 3. 4 summarizes the competitive strategies we have just described.
Some companies focus on one of these strategies, but you will often see com-
panies pursuing several of them simultaneously. For example, Starbucks, the
world’s largest specialty coffee retailer, offers unique high-end specialty coffees
and beverages but is also trying to compete by lowering costs.
Amazon: One-click shopping Amazon holds a patent on one-click shopping that it
licenses to other online retailers.
Online music: Apple iPod and iTunes The iPod is an integrated handheld player backed up
with an online library of more than 43 million songs.
Golf club customization: Ping Customers can select from more than 1 million
different golf club options; a build-to-order system
ships their customized clubs within 48 hours.
Online person-to-person payment: PayPal PayPal enables the transfer of money between
individual bank accounts and between bank accounts
and credit card accounts.
Chapter 3 Information Systems, Organizations, and Strategy 127

The Internet’s Impact on Competitive Advantage
Because of the Internet, the traditional competitive forces are still at work, but
competitive rivalry has become much more intense ( Porter, 2001 ). Internet
technology is based on universal standards that any company can use, making
it easy for rivals to compete on price alone and for new competitors to enter
the market. Because information is available to everyone, the Internet raises
the bargaining power of customers, who can quickly find the lowest-cost pro-
vider on the web. Profits have been dampened. Table 3. 5 summarizes some of
the potentially negative impacts of the Internet on business firms identified by
The Internet has nearly destroyed some industries and has severely threat-
ened more. For instance, the printed encyclopedia industry and the travel
agency industry have been nearly decimated by the availability of substitutes
over the Internet. Likewise, the Internet has had a significant impact on the
Low-cost leadership Use information systems to produce products
and services at a lower price than competitors
while enhancing quality and level of service
Product differentiation Use information systems to differentiate
products, and enable new services and
Uber, Nike, Apple
Focus on market niche Use information systems to enable a focused
strategy on a single market niche; specialize
Hilton Hotels, Harrah’s
Customer and supplier
Use information systems to develop strong
ties and loyalty with customers and suppliers
Toyota Corporation,
Substitute products or services Enables new substitutes to emerge with new approaches to
meeting needs and performing functions
Customers’ bargaining power Availability of global price and product information shifts
bargaining power to customers
Suppliers’ bargaining power Procurement over the Internet tends to raise bargaining power
over suppliers; suppliers can also benefit from reduced barriers to
entry and from the elimination of distributors and other
intermediaries standing between them and their users
Threat of new entrants Internet reduces barriers to entry, such as the need for a sales
force, access to channels, and physical assets; it provides a
technology for driving business processes that makes other things
easier to do
Positioning and rivalry among
existing competitors
Widens the geographic market, increasing the number of
competitors and reducing differences among competitors; makes
it more difficult to sustain operational advantages; puts pressure
to compete on price
128 Part One Organizations, Management, and the Networked Enterprise

retail, music, book, retail brokerage, software, telecommunications, and news-
paper industries.
However, the Internet has also created entirely new markets; formed the
basis for thousands of new products, services, and business models; and pro-
vided new opportunities for building brands with very large and loyal customer
bases. Amazon, Alibaba, eBay, iTunes, YouTube, Facebook, Travelocity, and
Google are examples. In this sense, the Internet is “transforming” entire indus-
tries, forcing firms to change how they do business.
Smart Products and the Internet of Things
The growing use of sensors in industrial and consumer products, often called
the Internet of Things (IoT), is an excellent example of how the Internet is
changing competition within industries and creating new products and services.
Nike, Under Armour, Gatorade, and many other sports and fitness companies
are pouring money into wearable health trackers and fitness equipment that
use sensors to report users’ activities to remote corporate computing centers
where the data can be analyzed (see the Interactive Session on Technology).
Farm tractors from John Deere, Kubota, and Mahindra are loaded with field
radar, GPS transceivers, and hundreds of sensors keeping track of the equip-
ment , as described in the Chapter 1 ending case . GE is creating a new business
out of helping its aircraft and wind turbine clients improve operations by exam-
ining the data generated from the many thousands of sensors in the equipment
(see the Chapter 12 ending case) . The result is what are referred to as “smart
products”—products that are a part of a larger set of information-intensive ser-
vices sold by firms ( Gandhi and Gervet, 2016 ; Davis, 2015 ; Porter and Heppel-
mann, 2014 ; Iansiti and Lakhani, 2014 ).
The impact of smart, Internet-connected products is just now being under-
stood. Smart products offer new functionality, greater reliability, and more
intense use of products while providing detailed information that can be used
to improve both the products and the customer experience. They expand
opportunities for product and service differentiation. When you buy a wear-
able digital health product, you not only get the product itself, you also get a
host of services available from the manufacturer’s cloud servers. Smart prod-
ucts increase rivalry among firms that will either innovate or lose customers
to competitors. Smart products generally raise switching costs and inhibit
new entrants to a market because existing customers are trapped in the dom-
inant firm’s software environment. Finally, smart products may decrease the
power of suppliers of industrial components if, as many believe, the physical
product becomes less important than the software and hardware that make
it run.
The Business Value Chain Model
Although the Porter model is very helpful for identifying competitive forces
and suggesting generic strategies, it is not very specific about what exactly to
do, and it does not provide a methodology to follow for achieving competi-
tive advantages. If your goal is to achieve operational excellence, where do you
start? Here’s where the business value chain model is helpful.
The value chain model highlights specific activities in the business where
competitive strategies can best be applied ( Porter, 1985 ) and where informa-
tion systems are most likely to have a strategic impact. This model identifies
specific, critical leverage points where a firm can use information technology
most effectively to enhance its competitive position. The value chain model
Chapter 3 Information Systems, Organizations, and Strategy 129

If you don’t use a smart product yet, you soon will.
Your shoes, your clothing, your watch, your water
bottle, and even your toothbrush are being rede-
signed to incorporate sensors and metering devices
connected to the Internet so that their performance
can be monitored and analyzed.
What difference does that make? Take Nike,
the world’s biggest sports footwear and apparel
company. Nike has created a series of information
technology–based products and an ecosystem of
gadgets and services built around measurable per-
sonal improvement through exercise. The Nike+
ecosystem links Nike’s corporate computer system
to smart devices such as the Nike+ SportWatch
GPS, the Nike+ FuelBand, and the Nike+ Running
App on Apple and Android mobile devices. This
enables Nike to analyze individual performance
and activity data collected by the devices to help
users train and work out more effectively. It also
adds value to Nike products and a reason to stay
with the brand.
The Nike+ SportWatch GPS keeps track of your
location, pace, distance, laps, calories burned, and
(with the Polar Wearlink+) heart rate. The Nike+
Running App tracks your route, distance, pace, calo-
ries burned, and time using your phone or another
Nike-partnered device, giving you audio feedback
as you run. The Nike+ FuelBand activity tracker is
worn on the wrist and used with an Apple iPhone or
iPad. The FuelBand enables wearers to track their
physical activity, steps taken daily, and amount of
calories burned. The information it collects is inte-
grated into the Nike+ online community and phone
application, allowing wearers to set their own fitness
goals, monitor their progress on the device LED dis-
play, and compare themselves to others within the
Nike community.
Nike’s proprietary software turns all tracked move-
ment from Nike’s smart devices into NikeFuel points,
which can show achievements, can be shared with
friends, or can be used to engage others in competi-
tion. NikeFuel is Nike’s universal way for measur-
ing movement for all kinds of activities using a
metric that enables comparisons—no matter what
height, weight, gender, or activity—to past perfor-
mance, another person, or a daily average (which
Nike defines as 2,000 Fuel points.) Users of multiple
Nike+ devices can visit the site to
Smart Products, Smart Companies
access all their data—including lifetime NikeFuel
points accumulated from all their Nike+ devices.
Nike is developing other fitness technology prod-
ucts to integrate with Nike+. The more people mea-
sure their activity with NikeFuel, the more they are
locked in to the Nike ecosystem and the harder it
will be to switch to other companies’ products. Nike’s
integration of information and technology into its
products keeps people coming back to Nike’s own
website and apps.
Nike believes technology is revolutionizing its rela-
tionship with consumers, turning it into a company
that provides services as well as products. In the past,
when you bought a product, that was the end of the
relationship with the company. Now, the purchase
of any Nike product has become the beginning of
the company’s relationship with the consumer. The
deeper the relationship, the more consumers will
embrace and stay loyal to the Nike brand.
Under Armour, noted for performance clothing
using technologically advanced material, is mak-
ing its products smarter as well. The company has
spent $710 million to scoop up mobile apps such
as MyFitnessPal, MapMyFitness, and Endomondo,
which enable it to tap into the world’s largest digi-
tal health and fitness community. Under Armour
can generate revenue from in-app ads, including
ads from other companies, and purchases from app
users referred to its products. The platform deliv-
ers unprecedented depth of information and insight
about fitness-and health-oriented consumers, creat-
ing numerous opportunities for Under Armour and
other brands to engage with potential and existing
customers. For example, MapMyFitness collects data
about a user’s name, e-mail address, birth date, loca-
tion, performance, and profile if the user connects to
the app using social media. Under Armour does not
sell identifiable personal data about individuals to
third parties but does provide advertisers with aggre-
gate information about app users. Under Armour
is hoping that daily use of its smartphone apps will
build stronger ties to customers that will lead to
stronger sales of its own apparel, footwear, and other
athletic gear.
Under Armour has teamed up with e-commerce
retailer Zappos to send users a pop-up notification
when their sneakers need replacement, based on
workout data logged in MapMyFitness apps. Under
130 Part One Organizations, Management, and the Networked Enterprise

views the firm as a series or chain of basic activities that add a margin of value
to a firm’s products or services. These activities can be categorized as either
primary activities or support activities (see Figure 3. 9 ).
Primary activities are most directly related to the production and distribu-
tion of the firm’s products and services, which create value for the customer.
Primary activities include inbound logistics, operations, outbound logistics,
sales and marketing, and service. Inbound logistics includes receiving and stor-
ing materials for distribution to production. Operations transforms inputs into
finished products. Outbound logistics entails storing and distributing finished
products. Sales and marketing includes promoting and selling the firm’s prod-
ucts. The service activity includes maintenance and repair of the firm’s goods
and services.
Support activities make the delivery of the primary activities possible and
consist of organization infrastructure (administration and management), human
resources (employee recruiting, hiring, and training), technology (improving
products and the production process), and procurement (purchasing input).
Armour sees clothes themselves eventually becom-
ing the means to track movement and biorhythms.
Under Armour developed its own smart footwear
called UA SpeedForm Gemini 2 Record Equipped,
which tracks a runner’s time and date, duration, dis-
tance, and splits without the need for other devices.
The company also partnered with HTC to develop UA
HealthBox, a $400 red box that includes a Wi-Fi scale
(for measuring weight and body fat), a heart rate
chest strap and removable sensor, and a shower-proof
dimpled fitness band to track workouts and sleep.
The data these devices collect are stored on an Under
Armor Record app on an iPhone or Android phone.
Gatorade, with a 78 percent share of the $7.21 bil-
lion sports-drinks market, is developing a microchip-
fitted “smart cap” bottle that communicates digitally
with a bandage-like sweat patch to provide athletes
and fitness buffs constant updates on how much
they should drink. According to Gatorade, individual
hydration needs differ, with sweat loss ranging from
half a liter to more than two liters per hour of exer-
cise. The company is planning to launch as many as
a dozen different formulas for electrolytes and carbo-
hydrates in small pods that snap on to bottles.
Gatorade began testing the smart-cap bottle with
Brazil’s national soccer team ahead of the 2014 World
Cup and is testing a new version with the Boston
Celtics basketball team and FC Barcelona soccer
squad. In the field-tested prototypes, flashing lights
tell players when they need to hydrate. Users can
customize the smart caps with their name, team
logo, and number.
According to Xavi Cortadellas, Gatorade senior
director of global innovation and design, personal-
ized nutrition and integrating technology in sports
are the next frontier of performance. Gatorade’s
parent company, PepsiCo, is actively attempting to
expand into areas outside of sugary sodas, and such
technology-enabled products provide opportunities.
Sources: Kate Taylor, “Gatorade Is Developing a ‘Smart Cap’ That
Keeps Track of Hydration,” Business Insider , March 21, 2016; Mike
Esterl, “Gatorade Sets Its Sights on Digital Fitness,” Wall Street Jour-
nal , March 10, 2016; Edward C. Baig, “Under Armour and HTC
Team Up on Connected Fitness,” USA Today , January 5, 2016; , accessed April 20, 2016; ,
accessed April 19, 2016; John Kell, “Why Under Armour Is Making
a Costly Bet on Connected Fitness,” Fortune, April 21, 2016; and
Jared Linzdon, “The Rise and Fall of Wearable Fitness Trackers,”
The Globe and Mail , January 5, 2015.
1. What competitive strategies are the companies
discussed in this case pursuing?
2. How are information technology and smart prod-
ucts related to these strategies? Describe the role
of information technology in these products.
3. Are there any ethical issues raised by these smart
products such as their impact on consumer pri-
vacy? Explain your answer.
Chapter 3 Information Systems, Organizations, and Strategy 131

Now you can ask at each stage of the value chain, “How can we use infor-
mation systems to improve operational efficiency and improve customer and
supplier intimacy?” This will force you to critically examine how you perform
value-adding activities at each stage and how the business processes might be
improved. You can also begin to ask how information systems can be used to
improve the relationship with customers and with suppliers who lie outside the
firm’s value chain but belong to the firm’s extended value chain where they are
absolutely critical to your success. Here, supply chain management systems
that coordinate the flow of resources into your firm and customer relationship
management systems that coordinate your sales and support employees with
customers are two of the most common system applications that result from a
business value chain analysis. We discuss these enterprise applications in detail
later in Chapter 9 .
Using the business value chain model will also cause you to consider bench-
marking your business processes against your competitors or others in related
industries and identifying industry best practices. Benchmarking involves com-
paring the efficiency and effectiveness of your business processes against strict
standards and then measuring performance against those standards. Industry
best practices are usually identified by consulting companies, research organi-
zations, government agencies, and industry associations as the most successful
Administration and Management:
Electronic scheduling and messaging systems
Human Resources:
Workforce planning systems
Computerized ordering systems
Computer-aided design systems
Sales and
Sourcing and
Suppliers Firm Distributors Customers
Industry Value Chain
This figure provides examples of systems for both primary and support activities of a firm and of its
value partners that can add a margin of value to a firm’s products or services.
132 Part One Organizations, Management, and the Networked Enterprise

solutions or problem-solving methods for consistently and effectively achieving
a business objective.
Once you have analyzed the various stages in the value chain at your busi-
ness, you can come up with candidate applications of information systems.
Then, once you have a list of candidate applications, you can decide which
to develop first. By making improvements in your own business value chain
that your competitors might miss, you can achieve competitive advantage by
attaining operational excellence, lowering costs, improving profit margins, and
forging a closer relationship with customers and suppliers. If your competitors
are making similar improvements, then at least you will not be at a competitive
disadvantage—the worst of all cases!
Extending the Value Chain: The Value Web
Figure 3. 9 shows that a firm’s value chain is linked to the value chains of its
suppliers, distributors, and customers. After all, the performance of most firms
depends not only on what goes on inside a firm but also on how well the firm
coordinates with direct and indirect suppliers, delivery firms (logistics partners,
such as FedEx or UPS), and, of course, customers.
How can information systems be used to achieve strategic advantage at
the industry level? By working with other firms, industry participants can
use information technology to develop industrywide standards for exchang-
ing information or business transactions electronically, which force all market
participants to subscribe to similar standards. Such efforts increase efficiency,
making product substitution less likely and perhaps raising entry costs—thus
discouraging new entrants. Also, industry members can build industrywide,
IT-supported consortia, symposia, and communications networks to coordinate
activities concerning government agencies, foreign competition, and compet-
ing industries.
Looking at the industry value chain encourages you to think about how to
use information systems to link up more efficiently with your suppliers, stra-
tegic partners, and customers. Strategic advantage derives from your ability to
relate your value chain to the value chains of other partners in the process. For
instance, if you are , you want to build systems that:
• Make it easy for suppliers to display goods and open stores on the
Amazon site
• Make it easy for customers to pay for goods
• Develop systems that coordinate the shipment of goods to customers
• Develop shipment tracking systems for customers
Internet technology has made it possible to create highly synchronized
industry value chains called value webs. A value web is a collection of inde-
pendent firms that use information technology to coordinate their value
chains to produce a product or service for a market collectively. It is more
customer driven and operates in a less linear fashion than the traditional
value chain.
Figure 3. 10 shows that this value web synchronizes the business processes
of customers, suppliers, and trading partners among different companies in an
industry or in related industries. These value webs are flexible and adaptive to
changes in supply and demand. Relationships can be bundled or unbundled in
response to changing market conditions. Firms will accelerate time to market
and to customers by optimizing their value web relationships to make quick
decisions on who can deliver the required products or services at the right price
and location.
Chapter 3 Information Systems, Organizations, and Strategy 133

Synergies, Core Competencies, and Network-Based
A large corporation is typically a collection of businesses. Often, the firm is
organized financially as a collection of strategic business units and the returns
to the firm are directly tied to the performance of all the strategic business
units. Information systems can improve the overall performance of these busi-
ness units by promoting synergies and core competencies.
The idea of synergies is that when the output of some units can be used as
inputs to other units or two organizations pool markets and expertise, these
relationships lower costs and generate profits. Bank and financial firm mergers
such as the merger of JPMorgan Chase and Bank of New York as well as Bank
of America and Countrywide Financial Corporation occurred precisely for this
One use of information technology in these synergy situations is to tie
together the operations of disparate business units so that they can act as a
whole. For example, when large national banks acquire mortgage originating
firms they are able to tap into a large pool of new customers who might be
interested in its credit card, consumer banking, and other financial products.
Information systems would help the merged companies consolidate operations,
lower retailing costs, and increase cross-marketing of financial products.
Supply Chain Management
Supplier Extranets
Net Marketplaces
Customer Relationship
Management Systems
Strategic Alliance
and Partner Firms
ERP Systems
Core Transaction
Indirect Suppliers
The value web is a networked system that can synchronize the value chains of business partners
within an industry to respond rapidly to changes in supply and demand.
134 Part One Organizations, Management, and the Networked Enterprise

Enhancing Core Competencies
Yet another way to use information systems for competitive advantage is to
think about ways that systems can enhance core competencies. The argument
is that the performance of all business units will increase insofar as these busi-
ness units develop, or create, a central core of competencies. A core compe-
tency is an activity for which a firm is a world-class leader. Core competencies
may involve being the world’s best miniature parts designer, the best package
delivery service, or the best thin-film manufacturer. In general, a core com-
petency relies on knowledge that is gained over many years of practical field
experience with a technology. This practical knowledge is typically supple-
mented with a long-term research effort and committed employees.
Any information system that encourages the sharing of knowledge across
business units enhances competency. Such systems might encourage or
enhance existing competencies and help employees become aware of new
external knowledge; such systems might also help a business leverage existing
competencies to related markets.
For example, Procter & Gamble, a world leader in brand management and
consumer product innovation, uses a series of systems to enhance its core com-
petencies. An intranet called InnovationNet helps people working on similar
problems share ideas and expertise. InnovationNet connects those working in
research and development (R&D), engineering, purchasing, marketing, legal
affairs, and business information systems around the world, using a portal to
provide browser-based access to documents, reports, charts, videos, and other
data from various sources. It includes a directory of subject matter experts who
can be tapped to give advice or collaborate on problem solving and product
development and links to outside research scientists and entrepreneurs who
are searching for new, innovative products worldwide.
Network-Based Strategies
The availability of Internet and networking technology has inspired strategies
that take advantage of firms’ abilities to create networks or network with each
other. Network-based strategies include the use of network economics, a virtual
company model, and business ecosystems.
Network Economics Network economics refers to market situations where
the economic value being produced depends on the number of people using a
product. For certain products and markets, the real economic value comes from
the fact that other people use the product. In these situations, “network effects”
are at work. For instance, what’s the value of a telephone if it is not connected
to millions of others? Email has value because it allows us to communicate with
millions of others. Business models which are based on network effects have
been highly successful on the Internet, including social networks, software,
messaging apps, and on-demand companies like Uber and Airbnb.
In traditional economics—the economics of factories and agriculture—
production experiences diminishing returns. The more any given resource
is applied to production, the lower the marginal gain in output, until a point
is reached where the additional inputs produce no additional outputs. This is
the law of diminishing returns, and it is the foundation for most of modern
In some situations, the law of diminishing returns does not work. For instance,
in a network, the marginal costs of adding another participant are about zero,
whereas the marginal gain is much larger. The larger the number of subscribers
in a telephone system or the Internet, the greater the value to all participants
Chapter 3 Information Systems, Organizations, and Strategy 135

because each user can interact with more people. It is not much more expen-
sive to operate a television station with 1,000 subscribers than with 10 million
subscribers. The value of a community of people grows with size, whereas the
cost of adding new members is inconsequential. The value of Facebook to users
increases greatly as more people use the social network.
From this network economics perspective, information technology can be
strategically useful. Internet sites can be used by firms to build communities of
users—like-minded customers who want to share their experiences. This builds
customer loyalty and enjoyment and builds unique ties to customers. eBay, the
giant online auction site, is an example. This business is based on a network
of millions of users, and has built an online community by using the Internet.
The more people offering products on eBay, the more valuable the eBay site is
to everyone because more products are listed, and more competition among
suppliers lowers prices. Network economics also provides strategic benefits to
commercial software vendors. The value of their software and complementary
software products increases as more people use them, and there is a larger
installed base to justify continued use of the product and vendor support.
Virtual Company Model Another network-based strategy uses the model
of a virtual company to create a competitive business. A virtual company ,
also known as a virtual organization, uses networks to link people, assets, and
ideas, enabling it to ally with other companies to create and distribute products
and services without being limited by traditional organizational boundaries or
physical locations. One company can use the capabilities of another company
without being organizationally tied to that company. The virtual company
model is useful when a company fi nds it cheaper to acquire products, services,
or capabilities from an external vendor or when it needs to move quickly to
exploit new market opportunities and lacks the time and resources to respond
on its own.
Global fashion companies, such as LVMH, GUESS, Ann Taylor, Levi Strauss,
and Reebok, enlist Hong Kong–based Li & Fung to manage production and ship-
ment of their garments. Li & Fung handles product development, raw mate-
rial sourcing, production planning, quality assurance, and shipping. Li & Fung
does not own any fabric, factories, or machines, outsourcing all of its work to a
network of more than 15,000 suppliers in 40 countries all over the world. Cus-
tomers place orders with Li & Fung over its private extranet. Li & Fung then
sends instructions to appropriate raw material suppliers and factories where
the clothing is produced. The Li & Fung extranet tracks the entire production
process for each order. Working as a virtual company keeps Li & Fung flexible
and adaptable so that it can design and produce the products ordered by its cli-
ents in short order to keep pace with rapidly changing fashion trends.
Business Ecosystems and Platforms The Internet and the emergence of digi-
tal fi rms call for some modifi cation of the industry competitive forces model.
The traditional Porter model assumes a relatively static industry environment;
relatively clear-cut industry boundaries; and a relatively stable set of suppliers,
substitutes, and customers, with the focus on industry players in a market envi-
ronment. Instead of participating in a single industry, some of today’s fi rms are
much more aware that they participate in industry sets—collections of indus-
tries that provide related services and products (see Figure 3. 11 ). Business eco-
system is another term for these loosely coupled but interdependent networks
of suppliers, distributors, outsourcing fi rms, transportation service fi rms, and
technology manufacturers ( Iansiti and Levien, 2004 ).
136 Part One Organizations, Management, and the Networked Enterprise

The concept of a business ecosystem builds on the idea of the value web
described earlier, the main difference being that cooperation takes place across
many industries rather than many firms. For instance, both Microsoft and Face-
book provide platforms composed of information systems, technologies, and
services that thousands of other firms in different industries use to enhance
their own capabilities ( Van Alstyne et al., 2016 ).
Microsoft has estimated that more than 40,000 firms use its Windows plat-
form to deliver their own products, support Microsoft products, and extend the
value of Microsoft’s own firm. Facebook is a platform used by billions of people
and millions of businesses to interact and share information as well as to buy,
market, and sell numerous products and services. Business ecosystems can be
characterized as having one or a few keystone firms that dominate the ecosys-
tem and create the platforms used by other niche firms. Keystone firms in the
Microsoft ecosystem include Microsoft and technology producers such as Intel
and IBM. Niche firms include thousands of software application firms, software
developers, service firms, networking firms, and consulting firms that both sup-
port and rely on the Microsoft products.
Information technology plays a powerful role in establishing business ecosys-
tems. Obviously, many firms use information systems to develop into keystone
firms by building IT-based platforms that other firms can use. In the digital firm
era, we can expect greater emphasis on the use of IT to build industry ecosys-
tems because the costs of participating in such ecosystems will fall and the
benefits to all firms will increase rapidly as the platform grows.
Individual firms should consider how their information systems will enable
them to become profitable niche players in larger ecosystems created by key-
stone firms. For instance, in making decisions about which products to build or
which services to offer, a firm should consider the existing business ecosystems
related to these products and how it might use IT to enable participation in
these larger ecosystems.
A powerful, current example of a rapidly expanding ecosystem is the mobile
Internet platform. In this ecosystem there are four industries: device makers
Industry Ecosystem
and Services
The digital firm era requires a more dynamic view of the boundaries among industries, firms, custom-
ers, and suppliers, with competition occurring among industry sets in a business ecosystem. In the eco-
system model, multiple industries work together to deliver value to the customer. IT plays an important
role in enabling a dense network of interactions among the participating firms.
Chapter 3 Information Systems, Organizations, and Strategy 137

(Apple iPhone, Samsung Galaxy, Motorola, LG, and others), wireless tele-
communication firms (AT&T, Verizon, MTN [South Africa], STC Group [Saudi
Arabia], Vodafone [UK], Orascom [Egypt], and others), independent software
applications providers (generally small firms selling games, applications, and
ring tones), and Internet service providers (who participate as providers of
Internet service to the mobile platform).
Each of these industries has its own history, interests, and driving forces.
But these elements come together in a sometimes cooperative and sometimes
competitive new industry we refer to as the mobile digital platform ecosys-
tem. More than other firms, Apple has managed to combine these industries
into a system. It is Apple’s mission to sell physical devices (iPhones) that
are nearly as powerful as yesterday’s supercomputers. These devices work
only with a high-speed broadband network supplied by the wireless phone
carriers. In order to attract a large customer base, the iPhone had to be more
than just a cell phone. Apple differentiated this product by making it a “smart
phone,” one capable of running more than a million different, useful applica-
tions. Apple could not develop all these applications itself. Instead, it relies
on thousands of generally small, independent software developers to provide
these applications, which can be purchased at the iTunes store. In the back-
ground is the Internet service provider industry, which makes money when-
ever iPhone users connect to the Internet. These four different industries
together form an ecosystem, creating value for consumers that none of them
could acting alone.
3- 4 What are the challenges posed by strategic
information systems, and how should they be
Strategic information systems often change the organization as well as its prod-
ucts, services, and operating procedures, driving the organization into new
behavioral patterns. Successfully using information systems to achieve a com-
petitive advantage is challenging and requires precise coordination of technol-
ogy, organizations, and management.
Sustaining Competitive Advantage
The competitive advantages that strategic systems confer do not necessarily
last long enough to ensure long-term profitability. Because competitors can
retaliate and copy strategic systems, competitive advantage is not always sus-
tainable. Markets, customer expectations, and technology change; globalization
has made these changes even more rapid and unpredictable. The Internet can
make competitive advantage disappear very quickly because virtually all com-
panies can use this technology. Classic strategic systems, such as American Air-
lines’s SABRE computerized reservation system, Citibank’s ATM system, and
FedEx’s package tracking system, benefited by being the first in their indus-
tries. Then rival systems emerged. Amazon was an e-commerce leader but now
faces competition from eBay, Walmart, and Google. Information systems alone
cannot provide an enduring business advantage. Systems originally intended
to be strategic frequently become tools for survival, required by every firm to
138 Part One Organizations, Management, and the Networked Enterprise

stay in business, or they may inhibit organizations from making the strategic
changes essential for future success.
Aligning IT with Business Objectives
The research on IT and business performance has found that (a) the more suc-
cessfully a firm can align information technology with its business goals, the
more profitable it will be, and (b) only one-quarter of firms achieve alignment
of IT with the business. About half of a business firm’s profits can be explained
by alignment of IT with business ( Luftman, 2003 ).
Most businesses get it wrong: Information technology takes on a life of its own
and does not serve management and shareholder interests very well. Instead of
businesspeople taking an active role in shaping IT to the enterprise, they ignore
it, claim not to understand IT, and tolerate failure in the IT area as just a nui-
sance to work around. Such firms pay a hefty price in poor performance. Suc-
cessful firms and managers understand what IT can do and how it works, take
an active role in shaping its use, and measure its impact on revenues and profits.
Management Checklist: Performing a Strategic
Systems Analysis
To align IT with the business and use information systems effectively for com-
petitive advantage, managers need to perform a strategic systems analysis. To
identify the types of systems that provide a strategic advantage to their firms,
managers should ask the following questions:
1. What is the structure of the industry in which the firm is located?
• What are some of the competitive forces at work in the industry? Are there
new entrants to the industry? What is the relative power of suppliers, cus-
tomers, and substitute products and services over prices?
• Is the basis of competition quality, price, or brand?
• What are the direction and nature of change within the industry? From
where are the momentum and change coming?
• How is the industry currently using information technology? Is the organiza-
tion behind or ahead of the industry in its application of information systems?
2. What are the business, firm, and industry value chains for this particular firm?
• How is the company creating value for the customer—through lower prices
and transaction costs or higher quality? Are there any places in the value
chain where the business could create more value for the customer and addi-
tional profit for the company?
• Does the firm understand and manage its business processes using the best
practices available? Is it taking maximum advantage of supply chain manage-
ment, customer relationship management, and enterprise systems?
• Does the firm leverage its core competencies?
• Is the industry supply chain and customer base changing in ways that ben-
efit or harm the firm?
• Can the firm benefit from strategic partnerships, value webs, ecosystems, or
• Where in the value chain will information systems provide the greatest value
to the firm?
3. Have we aligned IT with our business strategy and goals?
• Have we correctly articulated our business strategy and goals?
Chapter 3 Information Systems, Organizations, and Strategy 139

• Is IT improving the right business processes and activities to promote this
• Are we using the right metrics to measure progress toward those goals?
Managing Strategic Transitions
Adopting the kinds of strategic systems described in this chapter generally
requires changes in business goals, relationships with customers and suppli-
ers, and business processes. These sociotechnical changes, affecting both
social and technical elements of the organization, can be considered strategic
transitions —a movement between levels of sociotechnical systems.
Such changes often entail blurring of organizational boundaries, both exter-
nal and internal. Suppliers and customers must become intimately linked and
may share each other’s responsibilities. Managers will need to devise new busi-
ness processes for coordinating their firms’ activities with those of customers,
suppliers, and other organizations. The organizational change requirements
surrounding new information systems are so important that they merit atten-
tion throughout this text. Chapter 14 examines organizational change issues in
more detail.
Review Summary
3- 1 Which features of organizations do managers need to know about to build and use information systems
All modern organizations are hierarchical, specialized, and impartial, using explicit routines to max-
imize efficiency. All organizations have their own cultures and politics arising from differences in
interest groups, and they are affected by their surrounding environment. Organizations differ in goals,
groups served, social roles, leadership styles, incentives, types of tasks performed, and type of struc-
ture. These features help explain differences in organizations’ use of information systems. Informa-
tion systems and the organizations in which they are used interact with and influence each other.
3- 2 What is the impact of information systems on organizations?
The introduction of a new information system will affect organizational structure, goals, work
design, values, competition between interest groups, decision making, and day-to-day behavior. At the
same time, information systems must be designed to serve the needs of important organizational
groups and will be shaped by the organization’s structure, business processes, goals, culture, politics,
and management. Information technology can reduce transaction and agency costs, and such changes
have been accentuated in organizations using the Internet. New systems disrupt established patterns
of work and power relationships, so there is often considerable resistance to them when they are
3- 3 How do Porter’s competitive forces model, the value chain model, synergies, core competencies, and network
economics help companies develop competitive strategies using information systems?
In Porter’s competitive forces model, the strategic position of the firm and its strategies are deter-
mined by competition with its traditional direct competitors, but they are also greatly affected by new
market entrants, substitute products and services, suppliers, and customers. Information systems help
companies compete by maintaining low costs, differentiating products or services, focusing on market
niche, strengthening ties with customers and suppliers, and increasing barriers to market entry with
high levels of operational excellence.
The value chain model highlights specific activities in the business where competitive strategies
and information systems will have the greatest impact. The model views the firm as a series of
140 Part One Organizations, Management, and the Networked Enterprise

primary and support activities that add value to a firm’s products or services. Primary activities are
directly related to production and distribution, whereas support activities make the delivery of pri-
mary activities possible. A firm’s value chain can be linked to the value chains of its suppliers, distribu-
tors, and customers. A value web consists of information systems that enhance competitiveness at the
industry level by promoting the use of standards and industrywide consortia and by enabling busi-
nesses to work more efficiently with their value partners.
Because firms consist of multiple business units, information systems achieve additional efficien-
cies or enhance services by tying together the operations of disparate business units. Information
systems help businesses leverage their core competencies by promoting the sharing of knowledge
across business units. Information systems facilitate business models based on large networks of users
or subscribers that take advantage of network economics. A virtual company strategy uses networks to
link to other firms so that a company can use the capabilities of other companies to build, market, and
distribute products and services. In business ecosystems, multiple industries work together to deliver
value to the customer. Information systems support a dense network of interactions among the partici-
pating firms.
3- 4 What are the challenges posed by strategic information systems, and how should they be addressed?
Implementing strategic systems often requires extensive organizational change and a transition
from one sociotechnical level to another. Such changes are called strategic transitions and are often
difficult and painful to achieve. Moreover, not all strategic systems are profitable, and they can be
expensive to build. Many strategic information systems are easily copied by other firms so that strate-
gic advantage is not always sustainable.
Key Terms
Agency theory , 118
Benchmarking , 132
Best practices , 132
Business ecosystem , 136
Competitive forces model , 123
Core competency , 135
Disruptive technologies , 115
Efficient customer response system , 126
Mass customization , 126
Network economics , 135
Organization , 110
Platform , 137
Primary activities , 131
Product differentiation , 125
Routines , 112
Strategic transitions , 140
Support activities , 131
Switching costs , 127
Transaction cost theory , 117
Value chain model , 129
Value web , 133
Virtual company , 136
Review Questions
3- 1 Which features of organizations do managers
need to know about to build and use informa-
tion systems successfully?
• Define an organization and compare the
technical definition of organizations with
the behavioral definition.
• Identify and describe the features of organi-
zations that help explain differences in orga-
nizations’ use of information systems.
• Define disruptive technology and list three
To complete the problems with the MyLab MIS , go to the EOC Discussion Questions in MyLab MIS.
3- 2 What is the impact of information systems on
• Describe the major economic theories that
help explain how information systems affect
• Describe the major behavioral theories that
help explain how information systems affect
Chapter 3 Information Systems, Organizations, and Strategy 141

• Explain why there is considerable organiza-
tional resistance to the introduction of infor-
mation systems.
• Describe the impact of the Internet and dis-
ruptive technologies on organizations.
3- 3 How do Porter’s competitive forces model, the
value chain model, synergies, core competen-
cies, and network economics help companies
develop competitive strategies using informa-
tion systems?
• Define Porter’s competitive forces model
and explain how it works.
• Describe what the competitive forces model
explains about competitive advantage.
• List and describe four competitive strategies
enabled by information systems that firms
can pursue.
• Describe how information systems can sup-
port each of these competitive strategies
and give examples.
• Explain why aligning IT with business objec-
tives is essential for strategic use of
• Define and describe the value chain model.
• Explain how the value chain model can be
used to identify opportunities for informa-
tion systems.
• Define the value web and show how it is
related to the value chain.
• Explain how the value web helps businesses
identify opportunities for strategic informa-
tion systems.
• Describe how the Internet has changed
competitive forces and competitive
• Explain how information systems promote
synergies and core competencies.
• Describe how promoting synergies and core
competencies enhances competitive
• Explain how businesses benefit by using
network economics and ecosystems.
• Define and describe a virtual company and
the benefits of pursuing a virtual company
• Define and describe business ecosystems
and platforms.
3- 4 What are the challenges posed by strategic
information systems, and how should they be
• List and describe the management chal-
lenges posed by strategic information
• Explain how to perform a strategic systems
Discussion Questions
3- 5 It has been said that there is no such thing as
a sustainable strategic advantage. Do you
agree? Why or why not?
3- 6 What is meant by the phrase “IT should flat-
ten hierarchies?”
3- 7 What are some of the issues to consider in
determining whether the Internet would pro-
vide your business with a competitive
Hands-On MIS Projects
The projects in this section give you hands-on experience identifying information systems to support a busi-
ness strategy and to solve a customer retention problem, using a database to improve decision making about
business strategy, and using web tools to configure and price an automobile. Visit MyLabMIS’s Multimedia
Library to access this chapter’s Hands-On MIS Projects.
Management Decision Problems
3- 8 Marks & Spencer Group is a leading department store chain in the United Kingdom. Its retail stores sell a
range of merchandise. Senior management has decided that Marks & Spencer should tailor merchandise
more to local tastes, and that the colors, sizes, brands, and styles of clothing and other merchandise should
be based on the sales patterns in each individual store. How could information systems help management
142 Part One Organizations, Management, and the Networked Enterprise

implement this new strategy? What pieces of data should these systems collect to help management make
merchandising decisions that support this strategy?
3- 9 T-Mobile has launched aggressive campaigns to attract customers with lower mobile phone prices, and it
has added to its customer base. However, management wants to know if there are other ways of luring and
keeping customers. Are customers concerned about the level of customer service, uneven network cover-
age, or data plans? How can the company use information systems to help find the answer? What manage-
ment decisions could be made using information from these systems?
Improving Decision Making: Using a Database to Clarify Business Strategy
Software skills: Database querying and reporting; database design
Business skills: Reservation systems; customer analysis
3- 10 In this exercise, you will use database software to analyze the reservation transactions for a hotel and use
that information to fine-tune the hotel’s business strategy and marketing activities.
In MyLab MIS, you will find a database for hotel reservation transactions developed in Microsoft
Access with information about the President’s Inn in Cape May, New Jersey. At the Inn, 10 rooms overlook
side streets, 10 rooms have bay windows that offer limited views of the ocean, and the remaining 10 rooms
in the front of the hotel face the ocean. Room rates are based on room choice, length of stay, and number
of guests per room. Room rates are the same for one to four guests. Fifth and sixth guests must pay an
additional $20 charge each per person per day. Guests staying for seven days or more receive a 10 percent
discount on their daily room rates.
The owners currently use a manual reservation and bookkeeping system, which has caused many
problems. Use the database to develop reports on average length of stay, average visitors per room, base
revenue per room (i.e., length of visit multiplied by the daily rate), and strongest customer base. After
answering these questions, write a brief report about the Inn’s current business situation and suggest future
Improving Decision Making: Using Web Tools to Configure and Price an Automobile
Software skills: Internet-based software
Business skills: Researching product information and pricing
3- 11 In this exercise, you will use software at car websites to find product information about a car of your choice
and use that information to make an important purchase decision. You will also evaluate two of these sites
as selling tools.
You are interested in purchasing a new Vauxhall Corsa (or some other car of your choice). Go to
the Web site of ( and begin your investigation. Locate the Vauxhall
Corsa. Research the various models, choose one you prefer in terms of price, features, and safety ratings.
Locate and read at least two reviews. Surf the Web site of the manufacturer, in this case Vauxhall (www. Compare the information available on Vauxhall’s Web site with that of for
the Vauxhall Corsa. Try to locate the lowest price for the car you want in a local dealer’s inventory. Suggest
improvements for and
Collaboration and Teamwork Project
Identifying Opportunities for Strategic Information Systems
3- 12 With your team of three or four other students, select a company described in the Wall Street Journal , For-
tune , Forbes , or another business publication or do your research on the web. Visit the company’s website
to find additional information about that company and to see how the firm is using the web. On the basis of
this information, analyze the business. Include a description of the organization’s features, such as impor-
tant business business processes, culture, structure, and environment as well as its business strategy. Sug-
gest strategic information systems appropriate for that particular business, including those based on
Internet technology, if appropriate. If possible, use Google Docs and Google Drive or Google Sites to brain-
storm, organize, and develop a presentation of your findings for the class.
Chapter 3 Information Systems, Organizations, and Strategy 143

Deutsche Bank: The Cost of Legacy Systems
Deutsche Bank AG, founded in 1870, is one of the
world’s top financial companies, with 2,790 branches
in 70 countries. It offers a range of financial products
and services, including retail and commercial bank-
ing, foreign exchange, and services for mergers and
acquisitions. The bank provides products for mort-
gages, consumer finance, credit cards, life insurance,
and corporate pension plans; financing for interna-
tional trade; and customized wealth management ser-
vices for wealthy private clients. Deutsche Bank is
also the largest bank in Germany, with 1,845 retail
branch locations, and plays a central role in German
economic life. In many ways, Deutsche Bank is the
embodiment of the global financial system.
Deutsche has the world’s largest portfolio of deriva-
tives, valued at around $46 trillion. A financial deriv-
ative is a contract between two or more parties whose
value is dependent upon or derived from one or
more underlying assets, such as stocks, bonds, com-
modities, currencies, and interest rates. Although
Deutsche Bank had survived the 2008 banking crisis,
which was partly triggered by flawed derivatives, it
is now struggling with seismic changes in the bank-
ing industry, including recent regulatory change and
fears of a global economic downturn. The bank was
forced to pay $7.2 billion to resolve U.S. regulator
complaints about its sale of toxic mortgage securities
that contributed to the 2008 financial crisis. In addi-
tion, the Commodity Futures Trading Commission
(CTFC) complained that Deutsche Bank submitted
incomplete and untimely credit default swap data,
failed to properly supervise employees responsible
for swap data reporting, and lacked an adequate busi-
ness continuity and disaster recovery plan. A credit
default swap is a type of credit insurance contract in
which an insurer promises to compensate an insured
party (such as a bank) for losses incurred when a
debtor (such as a corporation) defaults on a debt and
which can be purchased or sold by either party on the
financial market. Credit default swaps are very com-
plex financial instruments.
Deutsche Bank is in trouble with U.S. regulators
for its inability to fulfill swap reporting requirements
under the Commodity Exchange Act and CFTC Regu-
lations. The CFTC complained that on April 16, 2016,
Deutsche Bank’s swap data reporting system expe-
rienced a system outage that prevented Deutsche
Bank from reporting any swap data for multiple asset
classes for approximately five days. Deutsche Bank’s
subsequent efforts to end the system outage repeat-
edly exacerbated existing reporting problems and
led to the discovery and creation of new reporting
For example, Deutsche Bank’s swap data reported
before and after the system outage revealed persis-
tent problems with the integrity of certain data fields,
including numerous invalid legal entity identifiers. (A
Legal Entity Identifier [LEI] is an identification code
to uniquely identify all legal entities that are parties to
financial transactions.) The CFTC complaint alleged
that a number of these reporting problems persist
today, affecting market data that is made available to
the public as well as data that is used by the CFTC
to evaluate systemic risk throughout the swaps mar-
kets. The CFTC complaint also alleged that Deutsche
Bank’s system outage and subsequent reporting prob-
lems occurred in part because Deutsche Bank failed
to have an adequate business continuity and disaster
recovery plan and other appropriate supervisory sys-
tems in place.
In addition to incurring high costs associated with
coping with regulators and paying fines, Deutsche
Bank was a very unwieldy and expensive bank
to operate. The U.S. regulators have pointed out
Deutsche Bank’s antiquated technology as one rea-
son why the bank was not always able to provide the
correct information for running its business properly
and responding to regulators. Poor information sys-
tems may have even contributed to the financial cri-
sis. Banks often had trouble untangling the complex
financial products they had bought and sold to deter-
mine their underlying value.
Banks, including Deutsche Bank, are intensive
users of information technology and they rely on
technology to spot misconduct. If Deutsche Bank was
such an important player in the German and world
financial systems, why were its systems not up to the
It turns out that Deutsche Bank, like other leading
global financial companies, had undergone decades
of mergers and expansion. When these banks merged
or acquired other financial companies, they often
did not make the requisite (and often far-reaching)
changes to integrate their information systems with
those of their acquisitions. The effort and costs
required for this integration, including coordination
144 Part One Organizations, Management, and the Networked Enterprise

across many management teams, were too great. So
the banks left many old systems in place to handle
the workload for each of their businesses. This cre-
ated what experts call “spaghetti balls” of overlapping
and often incompatible technology platforms and
software programs. These antiquated legacy systems
were designed to handle large numbers of transac-
tions and sums of money, but they were not well-
suited to managing large bank operations. They often
did not allow information to be shared easily among
departments or provide senior management with a
coherent overview of bank operations.
Deutsche Bank had more than one hundred differ-
ent booking systems for trades in London alone, and
no common set of codes for identifying clients in each
of these systems. Each of these systems might use a
different number or code for identifying the same cli-
ent, so it would be extremely difficult or impossible to
show how the same client was treated in all of these
systems. Individual teams and traders each had their
own incompatible platforms. The bank had employed
a deliberate strategy of pitting teams against each
other to spur them on, but this further encouraged
the use of different systems because competing trad-
ers and teams were reluctant to share their data. Yet
the Bank ultimately had to reconcile the data from
these disparate systems, often by hand, before trades
could be processed and recorded.
This situation has made it very difficult for banks to
undertake ambitious technology projects for the sys-
tems that they need today or to comply with regula-
tory requirements. U.S. regulators criticized Deutsche
Bank for its inability to provide essential information
because of its antiquated technology. Regulators are
demanding that financial institutions improve the
way they manage risk. The banks are under pressure
to make their aging computer systems comply, but
the IT infrastructures at many traditional financial
institutions are failing to keep up with these regula-
tory pressures as well as changing consumer expecta-
tions. Deutsche Bank and its peers must also adapt
to new innovative technology competitors such as
Apple that are muscling into banking services.
In July 2015 John Cryan became Deutsche Bank’s
CEO. He has been trying to reduce costs and improve
efficiency, laying off thousands of employees. And
he is focusing on overhauling Deutsche Bank’s frag-
mented, antiquated information systems, which are
a major impediment to controlling costs and finding
new sources of profit and growth. Cryan noted that
the bank’s cost base was swollen by poor and inef-
fective business processes, inadequate technology,
and too many tasks being handled manually. He has
called for standardizing the bank’s systems and pro-
cedures, eliminating legacy software, standardizing
and enhancing data, and improving reporting.
Cryan appointed technology specialist Kim Ham-
monds as Chief Operating Officer to oversee the re-
engineering of the bank’s information systems and
operations. Hammonds had been Deutsche Bank’s
Global Chief Information Officer and, before that,
Chief Information Officer at Boeing. Hammonds
observed that Deutsche Bank’s information systems
operated by trial and error, as if her former employer
Boeing launched aircraft into the sky, watched them
crash, and then tried to learn from the mistakes.
In February 2015 Deutsche announced a 10-year
multi-billion dollar deal with Hewlett-Packard (HP) to
standardize and simplify its IT infrastructure, reduce
costs, and create a more modern and agile technology
platform for launching new products and services.
Deutsche Bank is migrating to a cloud computing
infrastructure through which it will run its informa-
tion systems in HP’s remote data centers. HP will
provide computing services, hosting, and storage.
Deutsche Bank will still be in charge of application
development and information security technolo-
gies, which it considers as proprietary and crucial for
competitive differentiation. Deutsche Bank will most
likely build mobile, Web, and other applications tai-
lored to its customers’ banking preferences, as well as
computer-based trading software.
Deutsche Bank is withdrawing from high-risk cli-
ent relationships, improving its control framework,
and automating manual reconciliations. To modern-
ize its IT infrastructure, the bank will reduce the
number of its individual operating systems that con-
trol the way a computer works from 45 to 4, replace
scores of outdated computers, and replace antiquated
software applications. Thousands of its applications
and functions will be shifted from Deutsche Bank’s
mainframes to HP cloud computing services. Auto-
mating manual processes will promote efficiency and
better control. These improvements are expected
to reduce “run the bank” costs by 800 million Euros.
Eliminating 6,000 contractors will create total savings
of 1 billion Euros.
Deutsche Bank is not the only major bank to be
hampered by system problems. IT shortcomings were
one reason Banco Santander’s U.S. unit in 2016 failed
the U.S. Federal reserve’s annual “stress tests,” which
gauge how big banks would fare in a new financial
crisis. According to Peter Roe, Research Director with
TechMarketView LLP in the UK, banks now spend
about 75 percent of their IT budgets on maintaining
Chapter 3 Information Systems, Organizations, and Strategy 145

existing systems and operations, and only 25 percent
on innovation.
A 2015 Accenture consultants report found that
only 6 percent of board of director members and
3 percent of CEOs at the world’s largest banks had
professional technology experience. More than two-
fifths (43 percent) of the banks have no board mem-
bers with professional technology experience. Since
many of the biggest challenges facing banking are
technology-related, that means that many banks lack
sufficient understanding of technology required for
making informed technology decisions. Financial
technology innovations, security, IT resilience, and
technology implications of regulatory changes are
now all critical issues for bank boards of directors,
but many lack the expertise to assess these issues and
make decisions about strategy, investment, and how
best to allocate technology resources.

Sources: Geoffrey Smith, “Things You Should Know About the
Deutsche Bank Train Wreck,” Fortune, September 28, 2016; Hay-
ley McDowell, “System Outage Sees Deutsche Bank Charged over
Reporting Failures,” The Trade News, August 19, 2016; Derek du
Preez, “US Regulator Charges Deutsche Bank over Multiple Sys-
tems Failures,” Diginomica, August 19, 2016; Kat Hall, “Deutsche
Bank’s Creaking IT Systems Nervously Eyeing Bins,” The Register,
October 27, 2015; Martin Arnold and Tom Braithwaite, “Banks’
Ageing IT Systems Buckle Under Strain,” Financial Times, June
18, 2015; Martin Arnold, “Deutsche Bank to Rip Out IT Systems
Blamed for Problems,” Financial Times, October 26, 2015; Ben
Moshinsky, “Deutsche Bank Has a Technology Problem,” Busi-
ness Insider, October 20, 2015; Edward Robinson and Nicholas
Comfort, “Cryan’s Shakeup at Deutsche Bank Sees Tech Restart,”
Bloomberg, December 20, 2015; Accenture, “Bank Boardrooms
Lack Technology Experience, Accenture Global Research Finds,”
October 28, 2015.
3- 13 Identify the problem described in this case
study. What people, organization, and technol-
ogy factors contributed to this problem?
3- 14 What was the role of information technology at
Deutsche Bank? How was IT related to the
bank’s operational efficiency, decision-making
capability, and business strategy?
3- 15 Was Deutsche Bank using technology effec-
tively to pursue its business strategy? Explain
your answer.
3- 16 What solution for Deutsche Bank was pro-
posed? How effective do you think it will be?
Explain your answer.
Go to the Assignments section of MyLab MIS to complete these writing exercises.
3- 17 Describe the impact of the Internet on each of the five competitive forces.
3- 18 What are the main factors that mediate the relationship between information technology and organizations and
that managers need to take into account when developing new information systems? Give a business example of
how each factor would influence the development of new information systems.
146 Part One Organizations, Management, and the Networked Enterprise

Chapter 3 References
Amladi, Pradip. “The Digital Economy: How It Will Transform
Your Products and Your Future.” Big Data Quarterly (March
25, 2016).
Attewell, Paul, and James Rule. “Computing and Organizations:
What We Know and What We Don’t Know.” Communications of
the ACM 27, No. 12 (December 1984).
Bernstein, Ethan, John Bunch, Niko Canner, and Michael
Lee.”Beyond the Holocracy Hype.” Harvard Business Review
(July–August 2016).
Bresnahan, Timothy F., Erik Brynjolfsson, and Lorin M. Hitt,
“Information Technology, Workplace Organization, and the
Demand for Skilled Labor.” Quarterly Journal of Economics 117
(February 2002).
Cash, J. I., and Benn R. Konsynski. “IS Redraws Competitive
Boundaries.” Harvard Business Review (March–April 1985).
Ceccagnoli, Marco, Chris Forman, Peng Huang, and D. J. Wu.
“Cocreation of Value in a Platform Ecosystem: The Case of
Enterprise Software. MIS Quarterly 36, No. 1 (March 2012).
Chen, Daniel Q., Martin Mocker, David S. Preston, and Alexander
Teubner. “Information Systems Strategy: Reconceptualization,
Measurement, and Implications.” MIS Quarterly 34, No. 2
(June 2010).
Christensen, Clayton M. The Innovator’s Dilemma : The
Revolutionary Book That Will Change the Way You Do Business .
New York: HarperCollins (2003).
Christensen, Clayton. “The Past and Future of Competitive
Advantage.” Sloan Management Revie w 42, No. 2 (Winter
Christensen, Clayton M., Michael E. Raynor, and Rory McDonald.
“What Is Disruptive Innovation?” Harvard Business Review
(December 2015).
Clemons, Eric. “The Power of Patterns and Pattern Recognition
When Developing Information-Based Strategy. Journal of
Management Information Systems 27, No. 1 (Summer 2010).
Coase, Ronald H. “The Nature of the Firm.” (1937). In Putterman,
Louis and Randall Kroszner. The Economic Nature of the Firm:
A Reader . Cambridge University Press, 1995.
Davis, Euan. “The Rise of the Smart Product Economy.” Cognizant
Drucker, Peter. “The Coming of the New Organization.” Harvard
Business Review (January–February 1988).
Feintzeig, Rachel.” So Busy at Work, No Time to Do the Job.” Wall
Street Journal (June 28, 2016).
Gandhi, Suketo and Eric Gervet. “Now That Your Products Can
Talk, What Will They Tell You?” MIT Sloan Management
Review (Spring 2016).
Gurbaxani, V. and S. Whang, “The Impact of Information Systems
on Organizations and Markets.” Communications of the ACM
34, No. 1 (January 1991).
Hagiu, Andrei and Simon Rothman. “Network Effects Aren’t
Enough.” Harvard Business Review (April 2016).
Hitt, Lorin M. “Information Technology and Firm Boundaries:
Evidence from Panel Data.” Information Systems Research 10,
No. 2 (June 1999).
Hitt, Lorin M., and Erik Brynjolfsson. “Information Technology
and Internal Firm Organization: An Exploratory Analysis.”
Journal of Management Information Systems 14, No. 2 (Fall
Iansiti, Marco and Karim R. Lakhani. “Digital Ubiquity: How
Connections, Sensors, and Data Are Revolutionizing
Business.” Harvard Business Review (November 2014).
Iansiti, Marco, and Roy Levien. “Strategy as Ecology.” Harvard
Business Review (March 2004).
Jensen, M. C. and W. H. Meckling. “Specific and General
Knowledge and Organizational Science.” In Contract
Economics , edited by L. Wetin and J. Wijkander. Oxford: Basil
Blackwell (1992).
Jensen, Michael C. and William H. Meckling. “Theory of the Firm:
Managerial Behavior, Agency Costs, and Ownership
Structure.” Journal of Financial Economics 3 (1976).
Kane, Gerald C., Doug Palmer, Anh Nguyen Phillips, and David
Kiron. “Is Your Business Ready for a Digital Future?” MIT
Sloan Management Review (Summer 2015).
Karimi, Jahangir and Zhiping Walter. “The Role of Dynamic
Capabilities in Responding to Digital Disruption: A Factor-
Based Study of the Newspaper Industry.” Journal of
Management Information Systems 32, No. 1 (2015).
Kauffman, Robert J. and Yu-Ming Wang. “The Network
Externalities Hypothesis and Competitive Network Growth.”
Journal of Organizational Computing and Electronic Commerce
12, No. 1 (2002).
King, Andrew A. and Baljir Baatartogtokh. “How Useful Is the
Theory of Disruptive Innovation?” MIT Sloan Management
Review (Fall 2015).
King, J. L., V. Gurbaxani, K. L. Kraemer, F. W. McFarlan,
K. S. Raman, and C. S. Yap. “Institutional Factors in
Information Technology Innovation.” Information Systems
Research 5, No. 2 (June 1994).
Kling, Rob. “Social Analyses of Computing: Theoretical
Perspectives in Recent Empirical Research.” Computing
Survey 12, No. 1 (March 1980).
Kolb, D. A., and A. L. Frohman. “An Organization Development
Approach to Consulting.” Sloan Management Review 12,
No. 1 (Fall 1970).
Kraemer, Kenneth, John King, Debora Dunkle, and Joe Lane.
Managing Information Systems . Los Angeles: Jossey-Bass
Lamb, Roberta and Rob Kling. “Reconceptualizing Users as Social
Actors in Information Systems Research.” MIS Quarterly 27,
No. 2 (June 2003).
Laudon, Kenneth C. “A General Model of the Relationship Between
Information Technology and Organizations.” Center for
Research on Information Systems, New York University.
Working paper, National Science Foundation (1989).
___________. “Environmental and Institutional Models of Systems
Development.” Communications of the ACM 28, No. 7 (July
___________. Dossier Society: Value Choices in the Design of National
Information Systems . New York: Columbia University Press
Laudon, Kenneth C. and Kenneth L. Marr, “Information
Technology and Occupational Structure.” (April 1995).
Leavitt, Harold J. “Applying Organizational Change in Industry:
Structural, Technological, and Humanistic Approaches.” In
Handbook of Organizations , edited by James G. March.
Chicago: Rand McNally (1965).
Leavitt, Harold J. and Thomas L. Whisler. “Management in the
1980s.” Harvard Business Review (November–December 1958).
Ling Xue, Gautam Ray, and Vallabh Sambamurthy. “Efficiency or
Innovation: How Do Industry Environments Moderate the
Effects of Firms’ IT Asset Portfolios.” MIS Quarterly 36, No. 2
(June 2012).
Chapter 3 Information Systems, Organizations, and Strategy 147

Luftman, Jerry. Competing in the Information Age: Align in the Sand
(2nd ed.). Oxford University Press USA (August 6, 2003).
March, James G. and Herbert A. Simon. Organizations . New York:
Wiley (1958).
McAfee, Andrew and Erik Brynjolfsson. “Investing in the IT That
Makes a Competitive Difference.” Harvard Business Review
(July/August 2008).
McFarlan, F. Warren. “Information Technology Changes the Way
You Compete.” Harvard Business Review (May–June 1984).
McLaren, Tim S., Milena M. Head, Yufei Yuan, and Yolande
E. Chan. “A Multilevel Model for Measuring Fit Between a
Firm’s Competitive Strategies and Information Systems
Capabilities.” MIS Quarterly 35, No. 4 (December 2011).
Mintzberg, Henry. “Managerial Work: Analysis from Observation.”
Management Science 18 (October 1971).
Piccoli, Gabriele and Blake Ives. “Review: IT-Dependent Strategic
Initiatives and Sustained Competitive Advantage: A Review
and Synthesis of the Literature.” MIS Quarterly 29, No. 4
(December 2005).
Porter, Michael E. Competitive Advantage . New York: Free Press
___________ . Competitive Strategy . New York: Free Press (1980).
___________ . “Strategy and the Internet.” Harvard Business Review
(March 2001).
___________ . “The Five Competitive Forces That Shape Strategy.”
Harvard Business Review (January 2008).
Porter, Michael E. and James E. Heppelmann. “How Smart,
Connected Products Are Transforming Competition.” Harvard
Business Review (November 2014).
Porter, Michael E. and Scott Stern. “Location Matters.” Sloan
Management Review 42, No. 4 (Summer 2001).
Shapiro, Carl and Hal R. Varian. Information Rules . Boston, MA:
Harvard Business School Press (1999).
Starbuck, William H. “Organizations as Action Generators.”
American Sociological Review 48 (1983).
Tallon, Paul P. “Value Chain Linkages and the Spillover Effects of
Strategic Information Technology Alignment: A Process-Level
View.” Journal of Management Information Systems 28, No. 3
(Winter 2014).
Van Alstyne, Marshall W., Geoffrey G. Parer, and Sangeet Paul
Choudary. “Pipelines, Platforms, and the New Rules of
Strategy.” Harvard Business Review (April 2016).
Tushman, Michael L. and Philip Anderson. “Technological
Discontinuities and Organizational Environments.”
Administrative Science Quarterly 31 (September 1986).
Weber, Max. The Theory of Social and Economic Organization .
Translated by Talcott Parsons. New York: Free Press (1947).
Williamson, Oliver E. The Economic Institutions of Capitalism . New
York: Free Press, (1985).
Zhu, Feng and Nathan Furr. “Products to Platforms: Making the
Leap.” Harvard Business Review (April 2016).
148 Part One Organizations, Management, and the Networked Enterprise

MyLab MIS™
Visit for simulations, tutorials, and end-of-chapter problems.
Learning Objectives
After reading this chapter , you will be able to answer the following questions:
4-1 What ethical, social, and political issues are raised by information systems?
4-2 What specific principles for conduct can be used to guide ethical
4-3 Why do contemporary information systems technology and the Internet
pose challenges to the protection of individual privacy and intellectual
4-4 How have information systems affected laws for establishing accountability
and liability and the quality of everyday life?
What Net Neutrality Means for You
Facebook and Google Privacy: What Privacy?
United States v. Terrorism: Data Mining for Terrorists and Innocents
Instructional Video:
Viktor Mayer Schönberger on the Right to Be Forgotten
The Dark Side of Big Data
Monitoring in the Workplace
Are We Relying Too Much on Computers to Think for Us?
Facebook Privacy: What Privacy?

4 Ethical and Social Issues in Information Systems

Organizations today are furiously mining big data, looking for ways to benefit from this technology. There are many big data success stories. For example, the Berg biopharmaceutical company is mining big data
on patient tissue samples, clinical history, and demographic characteristics to
pinpoint potential biomarkers for pancreatic cancer so that it can be detected
much earlier and treated more effectively. The city of Barcelona has reduced
its annual water bill by 25 percent by analyzing data from sensors installed in
local parks to monitor soil moisture.
But there’s a dark side to big data, and it has to do with privacy. We can now
collect or analyze data on a much larger scale than ever before and use what
we have learned about individuals in ways that may be harmful to them. The
following are some examples.
Predictive policing In February 2014, the Chicago Police Department sent
uniformed officers to make custom notification visits to individuals—especially
gang members—whom a computer system had identified as likely to commit a
crime in the future. The intent was to prevent crime by providing the targeted
individuals with information about job training programs or informing them
about increased penalties for people with certain backgrounds. Many commu-
nity groups protested the practice as another form of racial profiling.
Insurance rates Auto insurance companies such as Progressive offer a small
device to install in your car to analyze your driving habits, ostensibly to give you a
better insurance rate. However, some of the criteria for lower auto insurance rates
The Dark Side of Big Data

© Sangoiri/123RF

are considered discriminatory. For example, insurance companies like people who
don’t drive late at night and don’t spend much time in their cars. However, poorer
people are more likely to work a late shift and to have longer commutes to work,
which would increase their auto insurance rates.
Deloitte Consulting LLP developed a predictive modeling system for insur-
ance applicants that predicts life expectancy by using data about individual
consumers’ buying habits as well as their personal and family medical histories.
The company claims it can accurately predict whether people have any 1 of 17
diseases, including diabetes, tobacco-related cancer, cardiovascular disease, and
depression, by analyzing their buying habits. What you pick up at the drugstore
might increase your health insurance rates.
Computerized hiring More and more companies are turning to computer-
ized systems to filter and hire job applicants, especially for lower-wage, service-
sector jobs. The algorithms these systems use to evaluate job candidates may be
preventing qualified applicants from obtaining these jobs. For example, some of
these algorithms have determined that, statistically, people with shorter com-
mutes are more likely to stay in a job longer than those with longer commutes
or less reliable transportation or those who haven’t been at their address for
very long. If asked, “How long is your commute?” applicants with long com-
muting times will be scored lower for the job. Although such considerations
may be statistically accurate, is it fair to screen job applicants this way?
Targeting financially vulnerable individuals Data brokers have been around
for decades, but their tools for collecting and finely analyzing huge quantities of
personal data grow ever more powerful. These data brokers now sell reports that
specifically highlight and target financially vulnerable individuals. For example, a
data broker might provide a report on retirees with little or no savings to a com-
pany offering reverse mortgages, high-cost loans, or other financially risky prod-
ucts. Very few rules or regulations exist to prevent targeting of vulnerable groups.
Privacy laws and regulations haven’t caught up with big data technology.
Sources: Brian Brinkmann, “Big Data Privacy: What Privacy?” Business2Community,
March 2, 2016; Bernard Marr, “The 5 Scariest Ways Big Data Is Used Today,” DataInformed ,
May 20, 2015; Victoria Craig, “Berg Hopes Big Data Will Lead to Breakthrough for Pancreatic
Cancer, Fox Business , June 11, 2015; and “Police Gang-warning Tactic of ‘Custom Notifica-
tions’ Is Working,” Chicago Sun-Times , March 27, 2014.
The challenges of big data to privacy described in the chapter -opening case show that technology can be a double-edged sword. It can be the source of
many benefits, including the ability to combat disease and crime and to achieve
major cost savings and efficiencies for business. At the same time, digital tech-
nology creates new opportunities for invading your privacy and using informa-
tion that could cause you harm.
The chapter -opening diagram calls attention to important points this case
and this chapter raise. Developments in data management technology and ana-
lytics have created opportunities for organizations to use big data to improve
operations and decision making. One popular use of big data analysis is for pre-
dictive modeling—sifting through data to identify how specific individuals will
behave and react in the future. The organizations described here are benefiting
from using predictive modeling to fight crime, select the best employees, and
152 Part One Organizations, Management, and the Networked Enterprise

lower insurance and credit lending risks. However, their use of big data is also
taking benefits away from individuals. Individuals might be subject to job dis-
crimination, racial profiling, or higher insurance rates because organizations
have new tools to assemble and analyze huge quantities of data about them.
New privacy protection laws and policies need to be developed to keep up with
the technologies for assembling and analyzing big data.
This case illustrates an ethical dilemma because it shows two sets of interests
at work, the interests of organizations that have raised profits or even helped
many people with medical breakthroughs and those who fervently believe that
businesses and public organizations should not use big data analysis to invade
privacy or harm individuals. As a manager, you will need to be sensitive to
both the positive and negative impacts of information systems for your firm,
employees, and customers. You will need to learn how to resolve ethical dilem-
mas involving information systems.
Here are some questions to think about: Does analyzing big data about peo-
ple create an ethical dilemma? Why or why not? Should there be new privacy
laws to protect individuals from being targeted by companies analyzing big
data? Why or why not?
4-1 What ethical, social, and political issues
are raised by information systems?
In the past 10 years, we have witnessed, arguably, one of the most ethically
challenging periods for U.S. and global business. Table 4.1 provides a small sam-
ple of recent cases demonstrating failed ethical judgment by senior and middle
managers. These lapses in ethical and business judgment occurred across a
broad spectrum of industries.
In today’s new global legal environment, managers who violate the law
and are convicted may spend time in prison. U.S. federal sentencing guide-
lines adopted in 1987 mandate that federal judges impose stiff sentences on
Predictive Modeling
• Opportunities from new technology
• Undeveloped legal environment
• Develop privacy
• Develop big data
predictive models
• Predictive policing
• Predict insurance risks
• Identify employment risks
• Target financially vulnerable
• Invade privacy?
• Increase efficiency
• Lower costs
• Big data mining
• Big data analytics
• Develop big data

Chapter 4 Ethical and Social Issues in Information Systems 153

business executives based on the monetary value of the crime, the presence of
a conspiracy to prevent discovery of the crime, the use of structured financial
transactions to hide the crime, and failure to cooperate with prosecutors (U.S.
Sentencing Commission, 2004). International treaties and Interpol, enabled
by global information systems, have made it possible to extradite, prosecute,
arrest, and imprison business managers suspected of criminal activity on a
global basis.
Although business firms would, in the past, often pay for the legal defense of
their employees enmeshed in civil charges and criminal investigations, firms
are now encouraged to cooperate with prosecutors to reduce charges against
the entire firm for obstructing investigations. These developments mean that,
more than ever, as a manager or an employee, you will have to decide for your-
self what constitutes proper legal and ethical conduct.
Although these major instances of failed ethical and legal judgment were not
masterminded by information systems departments, information systems were
instrumental in many of these frauds. In many cases, the perpetrators of these
crimes artfully used financial reporting information systems to bury their deci-
sions from public scrutiny in the vain hope they would never be caught.
We deal with the issue of control in information systems in Chapter 8 . In this
chapter , we will talk about the ethical dimensions of these and other actions
based on the use of information systems.
Ethics refers to the principles of right and wrong that individuals, acting as
free moral agents, use to make choices to guide their behaviors. Information
systems raise new ethical questions for both individuals and societies because
Volkswagen (2015) Volkswagen agrees to pay $14.7 billion to consumers and agencies in
the U.S. and replace nearly 500,000 diesel cars with faulty emission
software. Faces additional fines worldwide.
General Motors Inc. (2015) General Motors CEO admits the firm covered up faulty ignition switches
for more than a decade, resulting in the deaths of at least 114 customers.
More than 100 million vehicles worldwide need to be replaced.
Takata Corporation (2015) Takata executives admit they covered up faulty airbags used in millions
of cars over many years. To date, 100 million cars need airbags replaced.
Citigroup, JPMorgan Chase,
Barclays, UBS (2012)
Four of the largest money center banks in the world plead guilty to
criminal charges that they manipulated the LIBOR interest rate used to
establish loan rates throughout the world.
SAC Capital (2013) SAC Capital, a hedge fund led by founder Steven Cohen, pleads guilty to
insider trading charges and agrees to pay a record $1.2 billion penalty.
The firm was also forced to leave the money management business.
Individual traders for SAC were found guilty of criminal charges and
were sentenced to prison.
GlaxoSmithKline LLC (2012) The global healthcare giant admitted to unlawful and criminal promotion
of certain prescription drugs, its failure to report certain safety data, and
its civil liability for alleged false price reporting practices. Fined $3 billion,
the largest healthcare fraud settlement in U.S. history and the largest
payment ever by a drug company.
McKinsey & Company (2012) CEO Rajat Gupta heard on tapes leaking insider information. The former
CEO of prestigious management consulting firm McKinsey & Company
was found guilty in 2012 and sentenced to two years in prison.
154 Part One Organizations, Management, and the Networked Enterprise

they create opportunities for intense social change and, thus, threaten existing
distributions of power, money, rights, and obligations. Like other technologies,
such as steam engines, electricity, the telephone, and the radio, information
technology can be used to achieve social progress, but it can also be used to
commit crimes and threaten cherished social values. The development of infor-
mation technology will produce benefits for many and costs for others.
Ethical issues in information systems have been given new urgency by the
rise of the Internet and e-commerce. Internet and digital firm technologies
make it easier than ever to assemble, integrate, and distribute information,
unleashing new concerns about the appropriate use of customer information,
the protection of personal privacy, and the protection of intellectual property.
Other pressing ethical issues that information systems raise include estab-
lishing accountability for the consequences of information systems, setting
standards to safeguard system quality that protects the safety of the individual
and society, and preserving values and institutions considered essential to the
quality of life in an information society. When using information systems, it is
essential to ask, “What is the ethical and socially responsible course of action?”
A Model for Thinking About Ethical, Social, and
Political Issues
Ethical, social, and political issues are closely linked. The ethical dilemma you
may face as a manager of information systems typically is reflected in social
and political debate. One way to think about these relationships is shown in
Figure 4.1 . Imagine society as a more or less calm pond on a summer day,
System Quality
Ethical Issues
Social Issues
Political Issues
Quality of Life
and Control
Rights and
Property Rights
and Obligations
Technology and
The introduction of new information technology has a ripple effect, raising new ethical, social, and
political issues that must be dealt with on the individual, social, and political levels. These issues have
five moral dimensions: information rights and obligations, property rights and obligations, system
quality, quality of life, and accountability and control.
Chapter 4 Ethical and Social Issues in Information Systems 155

a delicate ecosystem in partial equilibrium with individuals and with social and
political institutions. Individuals know how to act in this pond because social
institutions (family, education, organizations) have developed well-honed rules
of behavior, and these are supported by laws developed in the political sector
that prescribe behavior and promise sanctions for violations. Now toss a rock
into the center of the pond. What happens? Ripples, of course.
Imagine instead that the disturbing force is a powerful shock of new informa-
tion technology and systems hitting a society more or less at rest. Suddenly,
individual actors are confronted with new situations often not covered by the
old rules. Social institutions cannot respond overnight to these ripples—it may
take years to develop etiquette, expectations, social responsibility, politically
correct attitudes, or approved rules. Political institutions also require time
before developing new laws and often require the demonstration of real harm
before they act. In the meantime, you may have to act. You may be forced to act
in a legal gray area.
We can use this model to illustrate the dynamics that connect ethical, social,
and political issues. This model is also useful for identifying the main moral
dimensions of the information society, which cut across various levels of
action—individual, social, and political.
Five Moral Dimensions of the Information Age
The major ethical, social, and political issues that information systems raise
include the following moral dimensions.
• Information rights and obligations What information rights do individu-
als and organizations possess with respect to themselves? What can they
• Property rights and obligations How will traditional intellectual property rights
be protected in a digital society in which tracing and accounting for owner-
ship are difficult and ignoring such property rights is so easy?
• Accountability and control Who can and will be held accountable and liable for
the harm done to individual and collective information and property rights?
• System quality What standards of data and system quality should we demand
to protect individual rights and the safety of society?
• Quality of life What values should be preserved in an information- and knowl-
edge-based society? Which institutions should we protect from violation?
Which cultural values and practices does the new information technology
We explore these moral dimensions in detail in Section 4 .3 .
Key Technology Trends that Raise Ethical Issues
Ethical issues long preceded information technology. Nevertheless, information
technology has heightened ethical concerns, taxed existing social arrangements,
and made some laws obsolete or severely crippled. Five key technological
trends are responsible for these ethical stresses, summarized in Table 4.2 .
The doubling of computing power every 18 months has made it possible
for most organizations to use information systems for their core production
processes. As a result, our dependence on systems and our vulnerability to
system errors and poor data quality have increased. Social rules and laws have
not yet adjusted to this dependence. Standards for ensuring the accuracy and
reliability of information systems (see Chapter 8 ) are not universally accepted
or enforced.
156 Part One Organizations, Management, and the Networked Enterprise

Advances in data storage techniques and rapidly declining storage costs have
been responsible for the multiplying databases on individuals—employees,
customers, and potential customers—maintained by private and public orga-
nizations. These advances in data storage have made the routine violation of
individual privacy both inexpensive and effective. Enormous data storage sys-
tems for terabytes and petabytes of data are now available on-site or as online
services for firms of all sizes to use in identifying customers.
Advances in data analysis techniques for large pools of data are another
technological trend that heightens ethical concerns because companies and
government agencies can find out highly detailed personal information about
individuals. With contemporary data management tools (see Chapter 6 ) , com-
panies can assemble and combine the myriad pieces of information about you
stored on computers much more easily than in the past.
Think of all the ways you generate digital information about yourself—credit
card purchases; telephone calls; magazine subscriptions; video rentals; mail-
order purchases; banking records; local, state, and federal government records
(including court and police records); and visits to websites. Put together and
mined properly, this information could reveal not only your credit information
Computing power doubles
every 18 months
More organizations depend on computer systems for critical operations
and become more vulnerable to system failures.
Data storage costs rapidly
Organizations can easily maintain detailed databases on individuals. There
are no limits on the data collected about you.
Data analysis advances Companies can analyze vast quantities of data gathered on individuals to
develop detailed profiles of individual behavior. Large-scale population
surveillance is enabled.
Networking advances The cost of moving data and making it accessible from anywhere falls
exponentially. Access to data becomes more difficult to control.
Mobile device growth
Individual cell phones may be tracked without user consent or knowledge.
The always-on device becomes a tether.
Credit card purchases can make
personal information available to
market researchers, telemarket-
ers, and direct mail companies.
Advances in information tech-
nology facilitate the invasion of
© Andriy Popov/123RF
Chapter 4 Ethical and Social Issues in Information Systems 157

but also your driving habits, your tastes, your associations, what you read and
watch, and your political interests.
Companies purchase relevant personal information from these sources to
help them more finely target their marketing campaigns. Chapters 6 and 12
describe how companies can analyze large pools of data from multiple sources to
identify buying patterns of customers rapidly and suggest individual responses.
The use of computers to combine data from multiple sources and create digital
dossiers of detailed information on individuals is called profiling .
For example, several thousand of the most popular websites allow Double-
Click (owned by Google), an Internet advertising broker, to track the activities
of their visitors in exchange for revenue from advertisements based on visitor
information DoubleClick gathers. DoubleClick uses this information to create
a profile of each online visitor, adding more detail to the profile as the visitor
accesses an associated DoubleClick site. DoubleClick creates a detailed dossier
of a person’s spending and computing habits on the web that is sold to compa-
nies to help them target their web ads more precisely.
LexisNexis Risk Solutions (formerly ChoicePoint) gathers data from police,
criminal, and motor vehicle records, credit and employment histories, current
and previous addresses, professional licenses, and insurance claims to assem-
ble and maintain dossiers on almost every adult in the United States. The com-
pany sells this personal information to businesses and government agencies.
Demand for personal data is so enormous that data broker businesses such as
Risk Solutions are flourishing.
A data analysis technology called nonobvious relationship awareness
(NORA) has given both the government and the private sector even more
powerful profiling capabilities. NORA can take information about people from
many disparate sources, such as employment applications, telephone records,
customer listings, and wanted lists, and correlate relationships to find obscure
connections that might help identify criminals or terrorists (see Figure 4.2 ).
NORA technology scans data and extracts information as the data are being
generated so that it could, for example, instantly discover a man at an airline
ticket counter who shares a phone number with a known terrorist before that
person boards an airplane.
Finally, advances in networking, including the Internet, promise to reduce
greatly the costs of moving and accessing large quantities of data and open
the possibility of mining large pools of data remotely by using small desktop
machines, mobile devices, and cloud servers, permitting an invasion of privacy
on a scale and with a precision heretofore unimaginable.
4-2 What specific principles for conduct can be
used to guide ethical decisions?
Ethics is a concern of humans who have freedom of choice. Ethics is about indi-
vidual choice: When faced with alternative courses of action, what is the correct
moral choice? What are the main features of ethical choice?
158 Part One Organizations, Management, and the Networked Enterprise

Basic Concepts: Responsibility, Accountability,
and Liability
Ethical choices are decisions made by individuals who are responsible for the
consequences of their actions. Responsibility is a key element of ethical action.
Responsibility means that you accept the potential costs, duties, and obligations
for the decisions you make. Accountability is a feature of systems and social
institutions; it means that mechanisms are in place to determine who took action
and who is responsible. Systems and institutions in which it is impossible to find
out who took what action are inherently incapable of ethical analysis or ethical
action. Liability extends the concept of responsibility further to the area of laws.
Liability is a feature of political systems in which a body of laws is in place that
permits individuals to recover the damages done to them by other actors, sys-
tems, or organizations. Due process is a related feature of law-governed societies
and is a process in which laws are known and understood, and ability exists to
appeal to higher authorities to ensure that the laws are applied correctly.
These basic concepts form the underpinning of an ethical analysis of infor-
mation systems and those who manage them. First, information technologies
are filtered through social institutions, organizations, and individuals. Systems
do not have impacts by themselves. Whatever information system effects exist
Incident and
Arrest Systems
“Watch” Lists
Name standardization
NORA Alerts
NORA technology can take information about people from disparate sources and find obscure,
nonobvious relationships. It might discover, for example, that an applicant for a job at a casino shares
a telephone number with a known criminal and issue an alert to the hiring manager.
Chapter 4 Ethical and Social Issues in Information Systems 159

are products of institutional, organizational, and individual actions and behav-
iors. Second, responsibility for the consequences of technology falls clearly on
the institutions, organizations, and individual managers who choose to use the
technology. Using information technology in a socially responsible manner
means that you can and will be held accountable for the consequences of your
actions. Third, in an ethical, political society, individuals and others can recover
damages done to them through a set of laws characterized by due process.
Ethical Analysis
When confronted with a situation that seems to present ethical issues, how
should you analyze it? The following five-step process should help.
1. Identify and describe the facts clearly Find out who did what to whom and where,
when, and how. In many instances, you will be surprised at the errors in the
initially reported facts, and often you will find that simply getting the facts
straight helps define the solution. It also helps to get the opposing parties
involved in an ethical dilemma to agree on the facts.
2. Define the conflict or dilemma and identify the higher-order values involved Ethical,
social, and political issues always reference higher values. The parties to a dis-
pute all claim to be pursuing higher values (e.g., freedom, privacy, protection of
property, and the free enterprise system). Typically, an ethical issue involves a
dilemma: two diametrically opposed courses of action that support worthwhile
values. For example, the chapter -opening case study illustrates two competing
values: the need to make organizations more efficient and cost-effective and the
need to respect individual privacy.
3. Identify the stakeholders Every ethical, social, and political issue has stakehold-
ers: players in the game who have an interest in the outcome, who have
invested in the situation, and usually who have vocal opinions. Find out the
identity of these groups and what they want. This will be useful later when
designing a solution.
4. Identify the options that you can reasonably take You may find that none of the
options satisfy all the interests involved but that some options do a better job
than others. Sometimes arriving at a good or ethical solution may not always be
a balancing of consequences to stakeholders.
5. Identify the potential consequences of your options Some options may be ethically
correct but disastrous from other points of view. Other options may work in one
instance but not in similar instances. Always ask yourself, “What if I choose this
option consistently over time?”
Candidate Ethical Principles
Once your analysis is complete, what ethical principles or rules should you use
to make a decision? What higher-order values should inform your judgment?
Although you are the only one who can decide which among many ethical prin-
ciples you will follow, and how you will prioritize them, it is helpful to consider
some ethical principles with deep roots in many cultures that have survived
throughout recorded history.
1. Do unto others as you would have them do unto you (the Golden Rule ). Put-
ting yourself in the place of others, and thinking of yourself as the object of the
decision, can help you think about fairness in decision making.
2. If an action is not right for everyone to take, it is not right for anyone ( Imman-
uel Kant’s categorical imperative ). Ask yourself, “If everyone did this,
could the organization, or society, survive?”
160 Part One Organizations, Management, and the Networked Enterprise

3. If an action cannot be taken repeatedly, it is not right to take at all. This is the
slippery slope rule : An action may bring about a small change now that is
acceptable, but if it is repeated, it would bring unacceptable changes in the long
run. In the vernacular, it might be stated as “once started down a slippery path,
you may not be able to stop.”
4. Take the action that achieves the higher or greater value ( utilitarian princi-
ple ). This rule assumes you can prioritize values in a rank order and under-
stand the consequences of various courses of action.
5. Take the action that produces the least harm or the least potential cost ( risk
aversion principle ). Some actions have extremely high failure costs of very
low probability (e.g., building a nuclear generating facility in an urban area) or
extremely high failure costs of moderate probability (speeding and automobile
accidents). Avoid actions which have extremely high failure costs; focus on
reducing the probability of accidents occurring.
6. Assume that virtually all tangible and intangible objects are owned by someone
else unless there is a specific declaration otherwise. (This is the ethical no-free-
lunch rule .) If something someone else has created is useful to you, it has
value, and you should assume the creator wants compensation for this work.
Actions that do not easily pass these rules deserve close attention and a great
deal of caution. The appearance of unethical behavior may do as much harm to
you and your company as actual unethical behavior.
Professional Codes of Conduct
When groups of people claim to be professionals, they take on special rights
and obligations because of their special claims to knowledge, wisdom, and
respect. Professional codes of conduct are promulgated by associations of pro-
fessionals such as the American Medical Association (AMA), the American
Bar Association (ABA), the Association of Information Technology Profes-
sionals (AITP), and the Association for Computing Machinery (ACM). These
professional groups take responsibility for the partial regulation of their
professions by determining entrance qualifications and competence. Codes
of ethics are promises by professions to regulate themselves in the general
interest of society. For example, avoiding harm to others, honoring property
rights (including intellectual property), and respecting privacy are among
the General Moral Imperatives of the ACM’s Code of Ethics and Professional
Some Real-World Ethical Dilemmas
Information systems have created new ethical dilemmas in which one set of
interests is pitted against another. For example, many companies use voice rec-
ognition software to reduce the size of their customer support staff by enabling
computers to recognize a customer’s responses to a series of computerized
questions. Many companies monitor what their employees are doing on the
Internet to prevent them from wasting company resources on nonbusiness
activities. Facebook monitors its subscribers and then sells the information to
advertisers and app developers (see the chapter -ending case study).
In each instance, you can find competing values at work, with groups lined
up on either side of a debate. A company may argue, for example, that it has a
right to use information systems to increase productivity and reduce the size
of its workforce to lower costs and stay in business. Employees displaced by
information systems may argue that employers have some responsibility for
Chapter 4 Ethical and Social Issues in Information Systems 161

their welfare. Business owners might feel obligated to monitor employee e-mail
and Internet use to minimize drains on productivity. Employees might believe
they should be able to use the Internet for short personal tasks in place of the
telephone. A close analysis of the facts can sometimes produce compromised
solutions that give each side half a loaf. Try to apply some of the principles of
ethical analysis described to each of these cases. What is the right thing to do?
4-3 Why do contemporary information systems
technology and the Internet pose challenges to
the protection of individual privacy and
intellectual property?
In this section, we take a closer look at the five moral dimensions of informa-
tion systems first described in Figure 4.1 . In each dimension, we identify the
ethical, social, and political levels of analysis and use real-world examples to
illustrate the values involved, the stakeholders, and the options chosen.
Information Rights: Privacy and Freedom in the
Internet Age
Privacy is the claim of individuals to be left alone, free from surveillance or
interference from other individuals or organizations, including the state. Claims
to privacy are also involved at the workplace. Millions of employees are subject
to digital and other forms of high-tech surveillance. Information technology
and systems threaten individual claims to privacy by making the invasion of
privacy cheap, profitable, and effective.
The claim to privacy is protected in the United States, Canadian, and German
constitutions in a variety of ways and in other countries through various stat-
utes. In the United States, the claim to privacy is protected primarily by the
First Amendment guarantees of freedom of speech and association, the Fourth
Amendment protections against unreasonable search and seizure of one’s per-
sonal documents or home, and the guarantee of due process.
Table 4.3 describes the major U.S. federal statutes that set forth the condi-
tions for handling information about individuals in such areas as credit report-
ing, education, financial records, newspaper records, and electronic and digital
communications. The Privacy Act of 1974 has been the most important of these
laws, regulating the federal government’s collection, use, and disclosure of
information. At present, most U.S. federal privacy laws apply only to the fed-
eral government and regulate very few areas of the private sector. There were
20 major privacy bills before Congress in 2015, although few of them are likely
to be passed in the near future (Kosseff, 2014).
Most American and European privacy law is based on a regime called Fair
Information Practices (FIP) first set forth in a report written in 1973 by a
federal government advisory committee and updated most recently in 2010 to
take into account new privacy-invading technology (Federal Trade Commission
[FTC], 2010; U.S. Department of Health, Education, and Welfare, 1973). FIP is a
set of principles governing the collection and use of information about individ-
uals. FIP principles are based on the notion of a mutuality of interest between
the record holder and the individual. The individual has an interest in engag-
ing in a transaction, and the record keeper—usually a business or government
162 Part One Organizations, Management, and the Networked Enterprise

agency—requires information about the individual to support the transac-
tion. After information is gathered, the individual maintains an interest in the
record, and the record may not be used to support other activities without the
individual’s consent. In 1998, the Federal Trade Commission (FTC) restated and
extended the original FIP to provide guidelines for protecting online privacy.
Table 4.4 describes the FTC’s Fair Information Practice principles.
The FTC’s FIP principles are being used as guidelines to drive changes in pri-
vacy legislation. In July 1998, the U.S. Congress passed the Children’s Online
Privacy Protection Act (COPPA), requiring websites to obtain parental permis-
sion before collecting information on children under the age of 13. The FTC
has recommended additional legislation to protect online consumer privacy in
Freedom of Information Act of 1966 as
Amended (5 USC 552)
Fair Credit Reporting Act of 1970
Privacy Act of 1974 as Amended
(5 USC 552a)
Family Educational Rights and Privacy Act of 1974
Electronic Communications Privacy Act
of 1986
Right to Financial Privacy Act of 1978
Computer Matching and Privacy
Protection Act of 1988
Privacy Protection Act of 1980
Computer Security Act of 1987 Cable Communications Policy Act of 1984
Federal Managers Financial Integrity
Act of 1982
Electronic Communications Privacy Act of 1986
Driver’s Privacy Protection Act of 1994 Video Privacy Protection Act of 1988
E-Government Act of 2002 The Health Insurance Portability and Accountability Act
(HIPAA) of 1996 Childrens Online Privacy Protection Act
(COPPA) of 1998 Financial Modernization Act (Gramm-Leach-
Bliley Act) of 1999
Notice/awareness (core principle). Websites must disclose their information practices before collecting
data. Includes identification of collector; uses of data; other recipients of data; nature of collection (active/
inactive); voluntary or required status; consequences of refusal; and steps taken to protect confidentiality,
integrity, and quality of the data.
Choice/consent (core principle). A choice regime must be in place allowing consumers to choose how their
information will be used for secondary purposes other than supporting the transaction, including internal
use and transfer to third parties.
Access/participation. Consumers should be able to review and contest the accuracy and completeness of
data collected about them in a timely, inexpensive process.
Security. Data collectors must take responsible steps to ensure that consumer information is accurate and
secure from unauthorized use.
Enforcement. A mechanism must be in place to enforce FIP principles. This can involve self-regulation,
legislation giving consumers legal remedies for violations, or federal statutes and regulations.
Chapter 4 Ethical and Social Issues in Information Systems 163

advertising networks that collect records of consumer web activity to develop
detailed profiles, which other companies then use to target online ads. In 2010,
the FTC added three practices to its framework for privacy. Firms should adopt
privacy by design, building products and services that protect privacy, firms
should increase the transparency of their data practices, and firms should
require consumer consent and provide clear options to opt out of data collec-
tion schemes (FTC, 2012). Other proposed Internet privacy legislation focuses
on protecting the online use of personal identification numbers, such as social
security numbers; protecting personal information collected on the Internet
that deals with individuals not covered by COPPA; and limiting the use of data
mining for homeland security.
In 2012, the FTC extended its FIP doctrine to address the issue of behav-
ioral targeting. The FTC held hearings to discuss its program for voluntary
industry principles for regulating behavioral targeting. The online advertising
trade group Network Advertising Initiative (discussed later in this section),
published its own self-regulatory principles that largely agreed with the FTC.
Nevertheless, the government, privacy groups, and the online ad industry are
still at loggerheads over two issues. Privacy advocates want both an opt-in pol-
icy at all sites and a national Do Not Track list. The industry opposes these
moves and continues to insist that an opt-out capability is the only way to
avoid tracking. Nevertheless, there is an emerging consensus among all par-
ties that greater transparency and user control (especially making opting out
of tracking the default option) is required to deal with behavioral tracking.
Public opinion polls show an ongoing distrust of online marketers. Although
there are many studies of privacy issues at the federal level, there has been no
significant legislation in recent years. A 2016 survey by the Pew Research Cen-
ter found 91 percent of Americans feel consumers have lost control of their
personal information online and 86 percent have taken steps to protect their
information online.
Privacy protections have also been added to recent laws deregulating finan-
cial services and safeguarding the maintenance and transmission of health
information about individuals. The Gramm-Leach-Bliley Act of 1999, which
repeals earlier restrictions on affiliations among banks, securities firms, and
insurance companies, includes some privacy protection for consumers of finan-
cial services. All financial institutions are required to disclose their policies and
practices for protecting the privacy of nonpublic personal information and to
allow customers to opt out of information-sharing arrangements with nonaffili-
ated third parties.
The Health Insurance Portability and Accountability Act (HIPAA) of 1996,
which took effect on April 14, 2003, includes privacy protection for medical
records. The law gives patients access to their personal medical records that
healthcare providers, hospitals, and health insurers maintain and the right to
authorize how protected information about themselves can be used or dis-
closed. Doctors, hospitals, and other healthcare providers must limit the disclo-
sure of personal information about patients to the minimum amount necessary
to achieve a given purpose.
The European Directive on Data Protection
In Europe, privacy protection is much more stringent than in the United States.
Unlike the United States, European countries do not allow businesses to use
personally identifiable information without consumer’s prior consent. On Octo-
ber 25, 1998, the European Commission’s Directive on Data Protection went
into effect, broadening privacy protection in the European Union (EU) nations.
164 Part One Organizations, Management, and the Networked Enterprise

The directive requires companies to inform people when they collect informa-
tion about them and disclose how it will be stored and used. Customers must
provide their informed consent before any company can legally use data
about them, and they have the right to access that information, correct it, and
request that no further data be collected. Informed consent can be defined as
consent given with knowledge of all the facts needed to make a rational deci-
sion. In 2009, the European Parliament passed new rules governing the use
of third-party cookies for behavioral tracking purposes, and required website
visitors to give explicit consent to be tracked by cookies. Websites are required
to have highly visible warnings on their pages if third-party cookies are being
used (European Parliament, 2009). The Directive developed a safe harbor trans-
border data framework for non-European firms that allowed them to move data
across borders for storage and processing. A safe harbor is a private, self-regu-
lating policy and enforcement mechanism that meets the objectives of govern-
ment regulators and legislation but does not involve government regulation or
In 2015 Europe’s highest court struck down the safe harbor agreement, in
large part because of revelations that U.S. intelligence agencies had gained
access to EU personal data stored in the U.S. The European Council sub-
sequently approved the EU General Data Protection Regulation (GDPR) to
replace the existing Data Protection Directive. The concept of safe harbor was
replaced by a policy now called Privacy Shield. When it takes effect, the GDPR
will apply across all EU countries, rather than the current situation in which
each member-state regulates privacy matters within its own borders. Facebook
and Google, for instance, currently base their European operations in Ireland,
where privacy protections are minimal. The GDPR will apply to any firm oper-
ating in any EU country, require unambiguous consent to use personal data
for purposes like tracking individuals across the Web, limit the ability to use
data for purposes other than those for which it was collected (tertiary uses,
such as constructing user profiles), and strengthen the right to be forgotten,
specifically, by allowing individuals to remove personal data from social plat-
forms like Facebook and prevent them from collecting any new information.
Companies operating in the EU will have to delete personal information once
it no longer serves the purpose for which it was collected. In addition, an inde-
pendent ombudsman was created to investigate complaints and enforce the
policy. The new regulation was finally signed in 2016 and does not interfere
with transborder dataflows.
Internet Challenges to Privacy
Internet technology has posed new challenges for the protection of individual
privacy. Information sent over this vast network of networks may pass through
many computer systems before it reaches its final destination. Each of these
systems is capable of monitoring, capturing, and storing communications that
pass through it.
Websites track searches that have been conducted, the websites and web
pages visited, the online content a person has accessed, and what items that
person has inspected or purchased over the web. This monitoring and tracking
of website visitors occurs in the background without the visitor’s knowledge. It
is conducted not just by individual websites but by advertising networks such
as Microsoft Advertising, Yahoo, and Google’s DoubleClick that are capable of
tracking personal browsing behavior across thousands of websites. Both website
publishers and the advertising industry defend tracking of individuals across the
web because doing so allows more relevant ads to be targeted to users, and it pays
Chapter 4 Ethical and Social Issues in Information Systems 165

for the cost of publishing websites. In this sense, it’s like broadcast television:
advertiser-supported content that is free to the user. The commercial demand
for this personal information is virtually insatiable. However, these practices
also impinge on individual privacy. Cookies are small text files deposited on a
computer hard drive when a user visits websites. Cookies identify the visitor’s
web browser software and track visits to the website. When the visitor returns to
a site that has stored a cookie, the website software searches the visitor’s com-
puter, finds the cookie, and knows what that person has done in the past. It may
also update the cookie, depending on the activity during the visit. In this way,
the site can customize its content for each visitor’s interests. For example, if you
purchase a book on and return later from the same browser, the
site will welcome you by name and recommend other books of interest based on
your past purchases. DoubleClick, described earlier in this chapter , uses cookies
to build its dossiers with details of online purchases and examine the behavior of
website visitors. Figure 4.3 illustrates how cookies work.
Websites using cookie technology cannot directly obtain visitors’ names and
addresses. However, if a person has registered at a site, that information can
be combined with cookie data to identify the visitor. Website owners can also
combine the data they have gathered from cookies and other website monitor-
ing tools with personal data from other sources, such as offline data collected
from surveys or paper catalog purchases, to develop very detailed profiles of
their visitors.
There are now even more subtle and surreptitious tools for surveillance of
Internet users. So-called super cookies or Flash cookies cannot be easily deleted
and can be installed whenever a person clicks a Flash video. Flash uses these
so-called local shared object files to play videos and puts them on the user’s com-
puter without his or her consent. Marketers use web beacons as another tool to
monitor online behavior. Web beacons , also called web bugs (or simply track-
ing files), are tiny software programs that keep a record of users’ online click-
streams. They report this data back to whomever owns the tracking file invisibly
embedded in e-mail messages and web pages that are designed to monitor the
Windows 10
Internet Explorer 11
931032944 Previous buyer
Welcome back, Jane Doe!
1. The Web server reads the user’s web browser and determines the operating system,
browser name, version number, Internet address, and other information.
2. The server transmits a tiny text file with user identification information called a cookie,
which the user’s browser receives and stores on the user’s computer hard drive.
3. When the user returns to the website, the server requests the contents of any cookie
it deposited previously in the user’s computer.
4. The Web server reads the cookie, identifies the visitor, and calls up data on the user.
Cookies are written by a website on a visitor’s hard drive. When the visitor returns to that website,
the web server requests the ID number from the cookie and uses it to access the data stored by that
server on that visitor. The website can then use these data to display personalized information.
166 Part One Organizations, Management, and the Networked Enterprise

behavior of the user visiting a website or sending e-mail. Web beacons are placed
on popular websites by third-party firms who pay the websites a fee for access
to their audience. So how common is web tracking? In a path-breaking series of
articles in the Wall Street Journal , researchers examined the tracking files on 50 of
the most popular U.S websites. What they found revealed a very widespread sur-
veillance system. On the 50 sites, they discovered 3,180 tracking files installed
on visitor computers. Only one site, Wikipedia, had no tracking files. Two-thirds
of the tracking files came from 131 companies whose primary business is iden-
tifying and tracking Internet users to create consumer profiles that can be sold
to advertising firms looking for specific types of customers. The biggest trackers
were Google, Microsoft, and Quantcast, all of whom are in the business of sell-
ing ads to advertising firms and marketers. A follow-up study found tracking on
the 50 most popular sites had risen nearly fivefold due to the growth of online
ad auctions where advertisers buy the data about users’ web-browsing behavior.
Other spyware can secretly install itself on an Internet user’s computer by
piggybacking on larger applications. Once installed, the spyware calls out to
websites to send banner ads and other unsolicited material to the user, and
it can report the user’s movements on the Internet to other computers. More
information is available about intrusive software in Chapter 8 .
Nearly 80 percent of global Internet users use Google Search and other
Google services, making Google the world’s largest collector of online user data.
Whatever Google does with its data has an enormous impact on online privacy.
Most experts believe that Google possesses the largest collection of personal
information in the world—more data on more people than any government
agency. The nearest competitor is Facebook.
After Google acquired the advertising network DoubleClick in 2007, Google
began using behavioral targeting to help it display more relevant ads based on
users’ search activities and to target individuals as they move from one site to
another to show them display or banner ads. Google allows tracking software
on its search pages, and using DoubleClick, it can track users across the Inter-
net. One of its programs enables advertisers to target ads based on the search
histories of Google users, along with any other information the user submits
to Google such as age, demographics, region, and other web activities (such as
blogging). Google’s AdSense program enables Google to help advertisers select
keywords and design ads for various market segments based on search histo-
ries such as helping a clothing website create and test ads targeted at teenage
females. A recent study found that 88 percent of 400,000 websites had at least
one Google tracking bug.
Google also scans the contents of messages users receive of its free web-based
e-mail service called Gmail. Ads that users see when they read their e-mail are
related to the subjects of these messages. Profiles are developed on individual
users based on the content in their e-mail. Google now displays targeted ads
on YouTube and Google mobile applications, and its DoubleClick ad network
serves up targeted banner ads.
The United States has allowed businesses to gather transaction information
generated in the marketplace and then use that information for other market-
ing purposes without obtaining the informed consent of the individual whose
information is being used. These firms argue that when users agree to the sites’
terms of service, they are also agreeing to allow the site to collect information
about their online activities. An opt-out model of informed consent permits
the collection of personal information until the consumer specifically requests
the data not to be collected. Privacy advocates would like to see wider use of
an opt-in model of informed consent in which a business is prohibited from
Chapter 4 Ethical and Social Issues in Information Systems 167

collecting any personal information unless the consumer specifically takes
action to approve information collection and use. Here, the default option is no
collection of user information.
The online industry has preferred self-regulation to privacy legislation for
protecting consumers. The online advertising industry formed the Online Pri-
vacy Alliance to encourage self-regulation to develop a set of privacy guidelines
for its members. The group promotes the use of online seals, such as that of
TRUSTe, certifying websites adhering to certain privacy principles. Members of
the advertising network industry, including Google’s DoubleClick, have created
an additional industry association called the Network Advertising Initiative
(NAI) to develop its own privacy policies to help consumers opt out of advertis-
ing network programs and provide consumers redress from abuses.
Individual firms such as Microsoft, Mozilla Foundation, Yahoo, and Google
have recently adopted policies on their own in an effort to address public con-
cern about tracking people online. Microsoft’s Internet Explorer 11 web browser
was released in 2015 with the opt-out option as the default, but by 2016 Microsoft
removed this feature in large part because most websites ignore the request to
opt out. Other browsers have opt-out options, but users need to turn them on,
and most users fail to do this. AOL established an opt-out policy that allows
users of its site to choose not to be tracked. Yahoo follows NAI guidelines and
allows opt-out for tracking and web beacons (web bugs). Google has reduced
retention time for tracking data.
In general, most Internet businesses do little to protect the privacy of
their customers, and consumers do not do as much as they should to protect
themselves. For commercial websites that depend on advertising to support
themselves, most revenue derives from selling customer information. Of the
companies that do post privacy policies on their websites, about half do not
monitor their sites to ensure that they adhere to these policies. The vast major-
ity of online customers claim they are concerned about online privacy, but
fewer than half read the privacy statements on websites. In general, website
privacy policies require a law degree to understand and are ambiguous about
key terms (Laudon and Traver, 2015). In 2016, what firms such as Facebook and
Google call a privacy policy is in fact a data use policy. The concept of privacy
is associated with consumer rights, which firms do not wish to recognize. A data
use policy simply tells customers how the information will be used without any
mention of rights.
In one of the more insightful studies of consumer attitudes toward Inter-
net privacy, a group of Berkeley students conducted surveys of online users
and of complaints filed with the FTC involving privacy issues. Some of their
results show that people feel they have no control over the information col-
lected about them, and they don’t know who to complain to. Websites collect
all this information but do not let users have access, the website policies are
unclear, and they share data with affiliates but never identify who the affiliates
are and how many there are. Web bug trackers are ubiquitous, and users are
not informed of trackers on the pages they visit. The results of this study and
others suggest that consumers are not saying, “Take my privacy, I don’t care,
send me the service for free.” They are saying, “We want access to the infor-
mation, we want some controls on what can be collected, what is done with
the information, the ability to opt out of the entire tracking enterprise, and
some clarity on what the policies really are, and we don’t want those policies
changed without our participation and permission.” (The full report is avail-
able at .)
168 Part One Organizations, Management, and the Networked Enterprise

Technical Solutions
In addition to legislation, there are a few technologies that can protect user
privacy during interactions with websites. Many of these tools are used for
encrypting e-mail, for making e-mail or surfing activities appear anonymous,
for preventing client computers from accepting cookies, or for detecting and
eliminating spyware. For the most part, technical solutions have failed to pro-
tect users from being tracked as they move from one site to another.
Because of growing public criticism of behavioral tracking, targeting of ads,
and the failure of industry to self-regulate, attention has shifted to browsers.
Many browsers have Do Not Track options. For users who have selected the
Do Not Track browser option, their browser will send a request to websites
requesting the user’s behavior not be tracked, but websites are not obligated to
honor their visitors’ requests not to be tracked. There is no online advertising
industry agreement on how to respond to Do Not Track requests nor, currently,
any legislation requiring websites to stop tracking. Private browser encryption
software or apps on mobile devices provide consumers a powerful opportunity
to at least keep their messages private.
Property Rights: Intellectual Property
Contemporary information systems have severely challenged existing laws
and social practices that protect intellectual property . Intellectual property
is considered to be tangible and intangible products of the mind created by
individuals or corporations. Information technology has made it difficult to
protect intellectual property because computerized information can be so eas-
ily copied or distributed on networks. Intellectual property is subject to a vari-
ety of protections under three legal traditions: trade secrets, copyright, and
patent law.
Trade Secrets
Any intellectual work product—a formula, device, pattern, method of manufac-
ture, or compilation of data—used for a business purpose can be classified as
a trade secret , provided it is not based on information in the public domain.
Protections for trade secrets vary from state to state. In general, trade secret
laws grant a monopoly on the ideas behind a work product, but it can be a very
tenuous monopoly.
Software that contains novel or unique elements, procedures, or compila-
tions can be included as a trade secret. Trade secret law protects the actual
ideas in a work product, not only their manifestation. To make this claim, the
creator or owner must take care to bind employees and customers with nondis-
closure agreements and prevent the secret from falling into the public domain.
The limitation of trade secret protection is that, although virtually all soft-
ware programs of any complexity contain unique elements of some sort, it is
difficult to prevent the ideas in the work from falling into the public domain
when the software is widely distributed.
Copyright is a statutory grant that protects creators of intellectual property
from having their work copied by others for any purpose during the life of
the author plus an additional 70 years after the author’s death. For corporate-
owned works, copyright protection lasts for 95 years after their initial creation.
Congress has extended copyright protection to books, periodicals, lectures, dra-
mas, musical compositions, maps, drawings, artwork of any kind, and motion
Chapter 4 Ethical and Social Issues in Information Systems 169

pictures. The intent behind copyright laws has been to encourage creativity
and authorship by ensuring that creative people receive the financial and
other benefits of their work. Most industrial nations have their own copyright
laws, and there are several international conventions and bilateral agreements
through which nations coordinate and enforce their laws.
In the mid-1960s, the Copyright Office began registering software programs,
and in 1980, Congress passed the Computer Software Copyright Act, which
clearly provides protection for software program code and copies of the original
sold in commerce; it sets forth the rights of the purchaser to use the software
while the creator retains legal title.
Copyright protects against copying entire programs or their parts. Damages
and relief are readily obtained for infringement. The drawback to copyright
protection is that the underlying ideas behind a work are not protected, only
their manifestation in a work. A competitor can use your software, understand
how it works, and build new software that follows the same concepts without
infringing on a copyright.
Look-and-feel copyright infringement lawsuits are precisely about the dis-
tinction between an idea and its expression. For instance, in the early 1990s,
Apple Computer sued Microsoft Corporation and Hewlett-Packard for infringe-
ment of the expression of Apple’s Macintosh interface, claiming that the
defendants copied the expression of overlapping windows. The defendants
countered that the idea of overlapping windows can be expressed only in a
single way and, therefore, was not protectable under the merger doctrine of
copyright law. When ideas and their expression merge, the expression cannot
be copyrighted.
In general, courts appear to be following the reasoning of a 1989 case— Brown
Bag Software v. Symantec Corp —in which the court dissected the elements of
software alleged to be infringing. The court found that similar concept, func-
tion, general functional features (e.g., drop-down menus), and colors are not
protected by copyright law ( Brown Bag Software v. Symantec Corp., 1992).
A patent grants the owner an exclusive monopoly on the ideas behind an inven-
tion for 20 years. The congressional intent behind patent law was to ensure that
inventors of new machines, devices, or methods receive the full financial and
other rewards of their labor and yet make widespread use of the invention pos-
sible by providing detailed diagrams for those wishing to use the idea under
license from the patent’s owner. The granting of a patent is determined by the
United States Patent and Trademark Office and relies on court rulings.
The key concepts in patent law are originality, novelty, and invention. The
Patent Office did not accept applications for software patents routinely until a
1981 Supreme Court decision that held that computer programs could be part of
a patentable process. Since that time, hundreds of patents have been granted,
and thousands await consideration.
The strength of patent protection is that it grants a monopoly on the underly-
ing concepts and ideas of software. The difficulty is passing stringent criteria
of nonobviousness (e.g., the work must reflect some special understanding and
contribution), originality, and novelty as well as years of waiting to receive
In what some call the patent trial of the century, in 2011, Apple sued
Samsung for violating its patents for iPhones, iPads, and iPods. On August 24,
2012, a California jury in federal district court delivered a decisive victory to
Apple and a stunning defeat to Samsung. The jury awarded Apple $1 billion
170 Part One Organizations, Management, and the Networked Enterprise

in damages. The decision established criteria for determining just how close a
competitor can come to an industry-leading and standard-setting product like
Apple’s iPhone before it violates the design and utility patents of the leading
firm. The same court ruled that Samsung could not sell its new tablet computer
(Galaxy 10.1) in the United States. In a later patent dispute, Samsung won an
infringement case against Apple. In June 2013, the United States International
Trade Commission issued a ban for a handful of older iPhone and iPad devices
because they violated Samsung patents from years ago. In 2014, Apple sued
Samsung again, claiming infringement of five patents. The patents cover hard-
ware and software techniques for handling photos, videos, and lists used on
the popular Galaxy 5. Apple sought $2 billion in damages. In 2015, the U.S.
Court of Appeals reaffirmed that Samsung had copied specific design patents,
but dropped the damages Apple was granted to $930 million. In 2016 the case
moved to the Supreme Court to determine whether Samsung will have to turn
over all its profits from the offending phones or just those profits that derived
from the infringing elements in the phones.
To make matters more complicated, Apple has been one of Samsung’s largest
customers for flash memory processors, graphic chips, solid-state drives, and
display parts that are used in Apple’s iPhones, iPads, iPod Touch devices, and
MacBooks. The Samsung and Apple patent cases are indicative of the complex
relationships among the leading computer firms.
Challenges to Intellectual Property Rights
Contemporary information technologies, especially software, pose severe chal-
lenges to existing intellectual property regimes and, therefore, create significant
ethical, social, and political issues. Digital media differ from books, periodi-
cals, and other media in terms of ease of replication; ease of transmission; ease
of alteration; compactness—making theft easy; and difficulties in establishing
The proliferation of digital networks, including the Internet, has made it
even more difficult to protect intellectual property. Before widespread use of
networks, copies of software, books, magazine articles, or films had to be stored
on physical media, such as paper, computer disks, or videotape, creating some
hurdles to distribution. Using networks, information can be more widely repro-
duced and distributed. The BSA Global Software Survey conducted by Inter-
national Data Corporation and The Software Alliance (also known as BSA)
reported that the rate of global software piracy was 39 percent in 2015 (The
Software Alliance, 2016).
The Internet was designed to transmit information freely around the world,
including copyrighted information. You can easily copy and distribute virtually
anything to millions of people worldwide, even if they are using different types
of computer systems. Information can be illicitly copied from one place and
distributed through other systems and networks even though these parties do
not willingly participate in the infringement.
Individuals have been illegally copying and distributing digitized music files
on the Internet for several decades. File-sharing services such as Napster and,
later, Grokster, Kazaa, Morpheus, Megaupload, and The Pirate Bay sprang up to
help users locate and swap digital music and video files, including those pro-
tected by copyright. Illegal file sharing became so widespread that it threatened
the viability of the music recording industry and, at one point, consumed 20
percent of Internet bandwidth. The recording industry won several legal battles
for shutting these services down, but it has not been able to halt illegal file
sharing entirely. The motion picture and cable television industries are waging
Chapter 4 Ethical and Social Issues in Information Systems 171

similar battles. Several European nations have worked with U.S. authorities to
shut down illegal sharing sites, with mixed results.
As legitimate online music stores such as the iTunes Store expanded, some
forms of illegal file sharing have declined. Technology has radically altered
the prospects for intellectual property protection from theft, at least for music,
videos, and television shows (less so for software). The Apple iTunes Store legit-
imated paying for music and entertainment and created a closed environment
from which music and videos could not be easily copied and widely distrib-
uted unless played on Apple devices. Amazon’s Kindle also protects the rights
of publishers and writers because its books cannot be copied to the Internet
and distributed. Streaming of Internet radio, on services such as Pandora and
Spotify, and Hollywood movies (at sites such as Hulu and Netflix) also inhibits
piracy because the streams cannot be easily recorded on separate devices, and
videos can be downloaded so easily. Despite these gains in legitimate online
music platforms, Apple’s iTunes based on downloads of singles and streaming
services’ unwillingness to pay labels and artists a reasonable fee for playing
have resulted in a 50 percent decline in record industry revenues since 2000
and the loss of thousands of jobs.
The Digital Millennium Copyright Act (DMCA) of 1998 also provides
some copyright protection. The DMCA implemented a World Intellectual Prop-
erty Organization Treaty that makes it illegal to circumvent technology-based
protections of copyrighted materials. Internet service providers (ISPs) are
required to take down sites of copyright infringers they are hosting when the
ISPs are notified of the problem. Microsoft and other major software and infor-
mation content firms are represented by the Software and Information Industry
Association (SIIA), which lobbies for new laws and enforcement of existing laws
to protect intellectual property around the world. The SIIA runs an antipiracy
hotline for individuals to report piracy activities, offers educational programs
to help organizations combat software piracy, and has published guidelines for
employee use of software.
4-4 How have information systems affected laws
for establishing accountability and liability
and the quality of everyday life?
Along with privacy and property laws, new information technologies are chal-
lenging existing liability laws and social practices for holding individuals and
institutions accountable. If a person is injured by a machine controlled, in part,
by software, who should be held accountable and, therefore, held liable? Should
a social network site like Facebook or Twitter be held liable and accountable
for the posting of pornographic material or racial insults, or should they be
held harmless against any liability for what users post (as is true of common
carriers, such as the telephone system)? What about the Internet? If you out-
source your information processing to the cloud, and the cloud provider fails
to provide adequate service, what can you do? Cloud providers often claim the
software you are using is the problem, not the cloud servers.
172 Part One Organizations, Management, and the Networked Enterprise

Computer-Related Liability Problems
In late 2013 hackers obtained credit card, debit card, and additional personal
information about 70 to 110 million customers of Target, one of the largest U.S.
retailers. Target’s sales took an immediate hit from which it has still not com-
pletely recovered. Target says it has spent over $60 million to strengthen its
systems. In 2015, Target agreed to pay $10 million to customers and $19 million
to MasterCard. It has paid an even greater price through the loss of sales and
trust. A survey of U.K. retailers found that 70 percent had their customer files
hacked, most notably the hack of Carphone Warehouse involving 2.4 million
customers (Rigby, 2015).
Who is liable for any economic harm caused to individuals or businesses
whose credit cards were compromised? Is Target responsible for allowing the
breach to occur despite efforts it did make to secure the information? Or is this
just a cost of doing business in a credit card world where customers and busi-
nesses have insurance policies to protect them against losses? Customers, for
instance, have a maximum liability of $50 for credit card theft under federal
banking law.
Are information system managers responsible for the harm that corporate
systems can do? Beyond IT managers, insofar as computer software is part of
a machine, and the machine injures someone physically or economically, the
producer of the software and the operator can be held liable for damages. Inso-
far as the software acts like a book, storing and displaying information, courts
have been reluctant to hold authors, publishers, and booksellers liable for con-
tents (the exception being instances of fraud or defamation); hence, courts have
been wary of holding software authors liable for software.
In general, it is very difficult (if not impossible) to hold software producers
liable for their software products that are considered to be like books, regardless
of the physical or economic harm that results. Historically, print publishers of
books and periodicals have not been held liable because of fears that liability
claims would interfere with First Amendment rights guaranteeing freedom of
expression. The kind of harm software failures causes is rarely fatal and typi-
cally inconveniences users but does not physically harm them (the exception
being medical devices).
What about software as a service? ATMs are a service provided to bank cus-
tomers. If this service fails, customers will be inconvenienced and perhaps
harmed economically if they cannot access their funds in a timely manner.
Should liability protections be extended to software publishers and operators of
defective financial, accounting, simulation, or marketing systems?
Software is very different from books. Software users may develop expec-
tations of infallibility about software; software is less easily inspected than a
book, and it is more difficult to compare with other software products for qual-
ity; software claims to perform a task rather than describe a task, as a book
does; and people come to depend on services essentially based on software.
Given the centrality of software to everyday life, the chances are excellent that
liability law will extend its reach to include software even when the software
merely provides an information service.
Telephone systems have not been held liable for the messages transmitted
because they are regulated common carriers. In return for their right to pro-
vide telephone service, they must provide access to all, at reasonable rates, and
achieve acceptable reliability. Likewise, cable networks are considered private
networks not subject to regulation, but broadcasters using the public air waves
are subject to a wide variety of federal and local constraints on content and
Chapter 4 Ethical and Social Issues in Information Systems 173

facilities. In the United States, with few exceptions, websites are not held liable
for content posted on their sites regardless of whether it was placed there by
the website owners or users.
System Quality: Data Quality and System Errors
White Christmas turned into a blackout for millions of Netflix customers and
social network users on December 24, 2012. The blackout was caused by the
failure of Amazon’s cloud computing service (AWS), which provides storage and
computing power for all kinds of websites and services, including Netflix. The
loss of service lasted for a day. Amazon’s cloud computing services have had
several subsequent outages, although not as long-lasting as the Christmas Eve
outage. Outages at cloud computing services are rare but recurring. In 2016
cloud and data center outages occured across the globe, disrupting service at
iTunes, Microsoft Azure, Twitter, Salesforce, and Nest (V3, 2016). These outages
have called into question the reliability and quality of cloud services. Are these
outages acceptable?
The debate over liability and accountability for unintentional consequences
of system use raises a related but independent moral dimension: What is an
acceptable, technologically feasible level of system quality? At what point
should system managers say, “Stop testing, we’ve done all we can to perfect this
software. Let’s go live!” Individuals and organizations may be held responsible
for avoidable and foreseeable consequences, which they have a duty to per-
ceive and correct. The gray area is that some system errors are foreseeable and
correctable only at very great expense, expense so great that pursuing this level
of perfection is not feasible economically—no one could afford the product.
For example, although software companies try to debug their products
before releasing them to the marketplace, they knowingly ship buggy prod-
ucts because the time and cost of fixing all minor errors would prevent these
products from ever being released. What if the product was not offered on the
marketplace? Would social welfare as a whole falter and perhaps even decline?
Carrying this further, just what is the responsibility of a producer of computer
services—should it withdraw the product that can never be perfect, warn the
user, or forget about the risk (let the buyer beware)?
Three principal sources of poor system performance are (1) software bugs
and errors, (2) hardware or facility failures caused by natural or other causes,
and (3) poor input data quality. A Chapter 8 Learning Track discusses why zero
defects in software code of any complexity cannot be achieved and why the
seriousness of remaining bugs cannot be estimated. Hence, there is a techno-
logical barrier to perfect software, and users must be aware of the potential for
catastrophic failure. The software industry has not yet arrived at testing stan-
dards for producing software of acceptable but imperfect performance.
Although software bugs and facility catastrophes are likely to be widely
reported in the press, by far the most common source of business system failure
is data quality. Few companies routinely measure the quality of their data, but
individual organizations report data error rates ranging from 0.5 to 30 percent.
Quality of Life: Equity, Access, and Boundaries
The negative social costs of introducing information technologies and systems
are beginning to mount along with the power of the technology. Many of these
negative social consequences are not violations of individual rights or property
174 Part One Organizations, Management, and the Networked Enterprise

crimes. Nevertheless, they can be extremely harmful to individuals, societies,
and political institutions. Computers and information technologies potentially
can destroy valuable elements of our culture and society even while they bring
us benefits. If there is a balance of good and bad consequences of using infor-
mation systems, who do we hold responsible for the bad consequences? Next,
we briefly examine some of the negative social consequences of systems, con-
sidering individual, social, and political responses.
Balancing Power: Center Versus Periphery
An early fear of the computer age was that huge, centralized mainframe com-
puters would centralize power in the nation’s capital, resulting in a Big Brother
society, as was suggested in George Orwell’s novel 1984 . The shift toward highly
decentralized client–server computing, coupled with an ideology of empower-
ment of Twitter and social media users, and the decentralization of decision
making to lower organizational levels, up until recently reduced the fears of
power centralization in government institutions. Yet much of the empower-
ment described in popular business magazines is trivial. Lower-level employees
may be empowered to make minor decisions, but the key policy decisions may
be as centralized as in the past. At the same time, corporate Internet behemoths
such as Google, Apple, Yahoo, Amazon, and Microsoft have come to dominate
the collection and analysis of personal private information of all citizens. Since
the terrorist attacks against the United States on September 11, 2001, the U.S.
federal government has greatly expanded its use of this private sector informa-
tion under the authority of the Patriot Act of 2001 and subsequent and secret
executive orders. Most European countries, including France, Germany, the
UK, Hungary, and Poland, have passed legislation authorizing both mass and
targeted surveillance programs (Council of Europe, 2016). In this sense, power
has become more centralized in the hands of a few private oligopolies and large
government agencies.
Rapidity of Change: Reduced Response Time to Competition
Information systems have helped to create much more efficient national and
international markets. Today’s more efficient global marketplace has reduced
the normal social buffers that permitted businesses many years to adjust to
competition. Time-based competition has an ugly side; the business you work
for may not have enough time to respond to global competitors and may be
wiped out in a year along with your job. We stand the risk of developing a just-
in-time society with just-in-time jobs and just-in-time workplaces, families, and
vacations. One impact of Uber (see Chapter 10 ) and other on-demand services
firms is to create just-in-time jobs with no benefits or insurance for employees.
Maintaining Boundaries: Family, Work, and Leisure
Parts of this book were produced on trains and planes as well as on vacations
and during what otherwise might have been family time. The danger to ubiq-
uitous computing, telecommuting, nomad computing, mobile computing, and
the do-anything-anywhere computing environment is that it is actually coming
true. The traditional boundaries that separate work from family and just plain
leisure have been weakened.
Although authors have traditionally worked just about anywhere, the advent
of information systems, coupled with the growth of knowledge-work occupa-
tions, means that more and more people are working when traditionally they
would have been playing or communicating with family and friends. The work
umbrella now extends far beyond the eight-hour day into commuting time,
Chapter 4 Ethical and Social Issues in Information Systems 175

vacation time, and leisure time. The explosive growth and use of smartphones
have only heightened the sense of many employees that they are never away
from work.
Even leisure time spent on the computer threatens these close social rela-
tionships. Extensive Internet and cell phone use, even for entertainment or
recreational purposes, takes people away from their family and friends. Among
middle school and teenage children, it can lead to harmful antisocial behavior,
such as the recent upsurge in cyberbullying.
Dependence and Vulnerability
Today, our businesses, governments, schools, and private associations, such
as churches, are incredibly dependent on information systems and are, there-
fore, highly vulnerable if these systems fail. Most critical systems involving
national infrastructure, from electricity and water to hospitals and schools,
are dependent on the Internet. Secondary schools, for instance, increasingly
use and rely on educational software. Test results are often stored off campus.
If these systems were to shut down, there is no backup educational structure
or content that can make up for the loss of the system. With systems now as
ubiquitous as the telephone system, it is startling to remember that there are
no regulatory or standard-setting forces in place that are similar to telephone,
electrical, radio, television, or other public utility technologies.
Computer Crime and Abuse
New technologies, including computers, create new opportunities for commit-
ting crime by creating new, valuable items to steal, new ways to steal them, and
new ways to harm others. Computer crime is the commission of illegal acts by
using a computer or against a computer system. Simply accessing a computer
system without authorization or with intent to do harm, even by accident, is
now a federal crime. The most frequent types of incidents comprise a greatest
hits list of cybercrime: malware, phishing, network interruption, spyware, and
denial of service attacks. (PwC, 2015). The true cost of all computer crime is
unknown, but it is estimated to be in the billions of dollars. You can find a more
detailed discussion of computer crime in Chapter 8 .
Computer abuse is the commission of acts involving a computer that
may not be illegal but are considered unethical. The popularity of the Inter-
net and e-mail has turned one form of computer abuse—spamming—into a
Although some people enjoy
the convenience of working at
home, the do-anything-anywhere
computing environment can blur
the traditional boundaries between
work and family time.
© Hongqi Zhang/123RF
176 Part One Organizations, Management, and the Networked Enterprise

serious problem for both individuals and businesses. Originally, spam was
junk e-mail an organization or individual sent to a mass audience of Internet
users who had expressed no interest in the product or service being mar-
keted. However, as cell phone use has mushroomed, spam was certain to fol-
low. Identity and financial-theft cybercriminals are turning their attention to
smartphones as users check e-mail, do online banking, pay bills, and reveal
personal information. Cell phone spam usually comes in the form of SMS
text messages, but increasingly, users are receiving spam in their Facebook
Newsfeed and messaging service as well. Spammers tend to market pornog-
raphy, fraudulent deals and services, outright scams, and other products not
widely approved in most civilized societies. Some countries have passed laws
to outlaw spamming or restrict its use. In the United States, it is still legal if it
does not involve fraud and the sender and subject of the e-mail are properly
Spamming has mushroomed because it costs only a few cents to send thou-
sands of messages advertising wares to Internet users. The percentage of all
e-mail that is spam was estimated at around 65 percent in 2015 (Kaspersky,
2015). Most spam originates from bot networks, which consist of thousands
of captured PCs that can initiate and relay spam messages. Spam volume has
declined somewhat since authorities took down the Rustock botnet in 2011.
Spam costs for businesses are very high (estimated at more than $50 billion per
year) because of the computing and network resources billions of unwanted
e-mail messages and the time required to deal with them consume.
Spamming is more tightly regulated in Europe than in the United States. In
2002, the European Parliament passed a ban on unsolicited commercial mes-
saging. Digital marketing can be targeted only to people who have given prior
The U.S. CAN-SPAM Act of 2003, which went into effect in 2004, does not out-
law spamming but does ban deceptive e-mail practices by requiring commer-
cial e-mail messages to display accurate subject lines, identify the true senders,
and offer recipients an easy way to remove their names from e-mail lists. It also
prohibits the use of fake return addresses. A few people have been prosecuted
under the law, but it has had a negligible impact on spamming in large part
because of the Internet’s exceptionally poor security and the use of offshore
servers and botnets. Most large-scale spamming has moved offshore to Russia
and Eastern Europe where hackers control global botnets capable of generating
billions of spam messages. The largest spam network in recent years was the
Russian network Festi based in St. Petersburg. Festi is best known as the spam
generator behind the global Viagra-spam industry, which stretches from Rus-
sia to Indian pharmaceutical firms selling counterfeit Viagra. Australia, South
Africa, the European Union, Sweden, and Malaysia are among the countries
that have anti-spam laws (ITU, 2016).
For a many years automobile manufacturers around the globe have tried
to find ways of manipulating mileage and emissions tests to produce more
favorable results on paper than what actually takes place on the road. The
use of software for this purpose recently came to light with revelations that
Volkswagen Group installed deceptive software in some of its diesel car mod-
els to violate the U.S. Clean Air Act, as described in the Interactive Session
on Management.
Chapter 4 Ethical and Social Issues in Information Systems 177

Monitoring in the Workplace
There may be only 11 players on the pitch during a
match, but the Blackburn Rovers Football Club in the
United Kingdom employs more than 800 people. As
with any modern organization, computers are at the
heart of running an efficient business. Most of the
club’s computers are housed with the administra-
tion department at the Ewood Park office, but others
can be found at the club’s training center and soccer
The club decided to install a software product called
Spector 360, which it obtained from the Manchester-
based company Snapguard. According to Snapguard’s
sales literature, the product enables company-wide
monitoring of employee PC and Internet usage.
Previously, the club had tried to introduce an accept-
able use policy (AUP), but initial discussions with
employees stalled, and the policy was never imple-
mented. Early trials of Spector 360 showed that some
employees were abusing the easygoing nature of the
workplace to spend most of their day surfing the Web,
using social networking sites, and taking up a huge
amount of bandwidth for downloads.
Before officially implementing the monitoring soft-
ware, the AUP was resurrected. The policy was also
made part of the terms and conditions of employment.
Understandably, some employees were annoyed at
the concept of being watched, but the software was
installed anyway. According to Ben Hayler, Senior
Systems Administrator at Blackburn Rovers, Spector
360 has definitely restored order, increasing productiv-
ity and reducing activity on non-business apps.
Reports provided by Spector 360 can show manag-
ers the following: excessive use of Facebook, Twitter,
and other social networking sites; visits to adult sites
or shopping sites; use of chat services; the printing or
saving of confidential information; and staff login and
logout times. Managers can also use the software to
drill down to look at patterns of usage, generate screen
snapshots, or even log individual keystrokes.
The software can also be used to benefit employ-
ees. For example, because it can log exactly what an
employee is doing, the system can help in staff train-
ing and troubleshooting, because it is easy to track
exactly what caused a particular problem to occur.
In the United States there is also very little limita-
tion on employee monitoring as long as the monitor-
ing is related to job performance. Employee knowledge
is desirable, but not necessary, especially if criminal
behavior is involved. With portable cameras and an
explosion of sensors that employees may be asked to
wear, so-called “sociometric” badges are being intro-
duced in some locations. These badges are equipped
with microphones, GPS location sensors, and acceler-
ometers to measure the detailed behavior of employ-
ees and their conversations. Among the more recent
findings are that employees are more productive and
far less likely to quit when they have more time to
interact with other employees. More coffee breaks
were recommended! A recent research paper found
that workplace monitoring with video cameras in res-
taurants had very strong positive impacts on revenues,
not by reducing suspected theft, but by increasing the
motivation of wait staff to sell more drinks and spe-
cial foods. On average, restaurant revenues expanded
by nearly $3,000 per month. Employee tips also grew
with the greater sales effort.
However, what is the wider view of the monitor-
ing of employees in the workplace? According to the
Citizens Advice Bureau (a free information and advice
service for UK residents), the following are some of the
ways that employers monitor their employees in the
workplace: recording the workplace on CCTV cameras,
opening mail or e-mail, using automated software to
check e-mail, checking telephone logs or recording
telephone calls, checking logs of Web sites visited, vid-
eoing outside the workplace, getting information from
credit reference agencies, and collecting information
from point-of-sale terminals.
Although this list may look formidable, there is no
argument that the employer has a right to ensure that
his or her employees are behaving in a manner that is
not illegal or harmful to the company. However, under
UK data protection law, the employer must ensure
that the monitoring is justified and take into account
any negative effects the monitoring may have on staff.
Monitoring for the sake of it is not allowed. Secret
monitoring without employees’ knowledge is usually
In a case that went before the European Court
of Human Rights in 2007 (Copeland v. the United
Kingdom), Ms. Copeland, who was an employee of
Carmarthenshire College, claimed that her privacy
had been violated. She was a personal assistant to the
principal and also worked closely with the deputy prin-
178 Part One Organizations, Management, and the Networked Enterprise

cipal, who instigated monitoring and analysis of her
telephone bills, Web sites visited, and e-mail commu-
nication. The deputy principal wanted to determine
whether Copeland was making excessive use of the col-
lege’s services. The European Court ruled in her favor,
stating that her personal Internet usage was deemed
to be under the definitions of the Convention for the
Protection of Rights, covered as “private life.”
The major fault of Carmarthenshire College was
in not having a usage policy in place. Employers and
employees should have an agreed-upon policy as part
of the contract of employment that clarifies what is
and is not acceptable computer usage in the workplace.
The employer can then follow normal disciplinary pro-
cedures if an employee is using workplace equipment
in a manner that is not permitted in the contract of
Whatever the legal situation, it is clear where
potential problems can occur in the workplace regard-
ing information technology use. An e-mail, once sent,
becomes a legally published document that can be
produced as evidence in court cases involving issues
of libel, breach of contract, and so on. Most businesses
rely on their company data to keep ahead of the com-
petition. Therefore, the loss, theft, or sabotage of data
is potentially more dangerous than similar problems
with hardware. If a USB memory stick is lost in a bar
parking lot, replacing the hardware will cost a few dol-
lars, but if it contains the company’s confidential data,
then its loss could put the company out of business .
Sources: Gov.UK, “Data Protection and Your Business,” gov.
uk, February 23, 2015; Ethan Bernstein, “How Being Filmed
Changes Employee Behavior,” Harvard Business Review, Septem-
ber 12, 2014; Steve Lohr, “Unblinking Eyes Track Employees,”
New York Times, June 21, 2014; Lamar Pierce, et al., “Cleaning
House: The Impact of Information Technology Monitoring on
Employee Theft and Productivity, Olin School of Business,
Washington University, 2014. Spencer E. Ante and Lauren Weber,
“Memo to Workers: The Boss Is Watching,” Wall Street Journal, Octo-
ber 22, 2014; Steve Lohr, “Unblinking Eyes Track Employees,” New
York Times, June 21, 2014; Information Commissioners Office,
“Employment Practices Data Protection Code-Supplementary Guid-
ance,”, accessed October 25, 2010; “Spector 360
Helps Blackburn Rovers Show Red Card to PC and Internet Abuse,”
Snapguard,, accessed
October 25, 2010; “Citizens Advice Bureau Advice Guide, Basic
Rights at Work,” Adviceguide, accessed October 25, 2010.
1. Do you consider the approach taken by Blackburn
Rovers to be too strict on employees, too lenient,
or just right?
2. Consider the five moral dimensions described in
the text. Which are involved in the case of Cope-
land v. the United Kingdom?
3. Consider the following scenario. Your 14-year-old
son attends a soccer academy. While there, he
downloads unsuitable images, which he later sells
to his friends. He would not have been able to
download the images at home, because you have
installed parental control software. Who is to
blame for his indiscretion?
Employment: Trickle-Down Technology and Reengineering Job
Reengineering work is typically hailed in the information systems community as
a major benefit of new information technology. It is much less frequently noted
that redesigning business processes has caused millions of mid-level factory man-
agers and clerical workers to lose their jobs, along with millions of blue collar
factory jobs. Several economists have sounded new alarms about information and
computer technology threatening middle-class, white-collar jobs (in addition to
blue-collar factory jobs). Erik Brynjolfsson and Andrew P. McAfee argue that the
pace of automation has picked up in recent years because of a combination of
technologies, including robotics, numerically controlled machines, computerized
inventory control, pattern recognition, voice recognition, and online commerce.
One result is that machines can now do a great many jobs heretofore reserved for
humans, including tech support, call center work, X-ray examination, and even
legal document review (Brynjolfsson and McAfee, 2011). These views contrast
Case contributed by Andy Jones, Staffordshire University.
Chapter 4 Ethical and Social Issues in Information Systems 179

with earlier assessments by economists that both labor and capital would
receive stable shares of income and that new technologies created as many
or more new jobs as they destroyed old ones. However, there is no guarantee
this will happen in the future, and the income wealth share of labor may con-
tinue to fall relative to capital, resulting in a loss of high-paying jobs and further
declines in wages.
Other economists are much more sanguine about the potential job losses.
In some cases, employment has grown or remained unchanged in industries
where investment in IT capital is highest. These economists also believe that
bright, educated workers who are displaced by technology will move to better
jobs in fast-growth industries. Missing from this equation are unskilled, blue-
collar workers and older, less well-educated middle managers. It is not clear
that these groups can be retrained easily for high-quality, high-paying jobs.
Equity and Access: Increasing Racial and Social Class
Does everyone have an equal opportunity to participate in the digital age? Will
the social, economic, and cultural gaps that exist in the United States and other
societies be reduced by information systems technology? Or will the cleavages
be increased, permitting the better off to become even more better off relative
to others?
These questions have not yet been fully answered because the impact of sys-
tems technology on various groups in society has not been thoroughly studied.
What is known is that information, knowledge, computers, and access to these
resources through educational institutions and public libraries are inequitably
distributed along ethnic and social class lines, as are many other information
resources. Although the gap in computer access is narrowing, higher-income
families in each ethnic group are still more likely to have home computers
and broadband Internet access than lower-income families in the same group.
Moreover, the children of higher-income families are far more likely to use
their Internet access to pursue educational goals, whereas lower-income chil-
dren are much more likely to spend time on entertainment and games. This is
called the “time-wasting” gap. Left uncorrected, this digital divide could lead
to a society of information haves, computer literate and skilled, versus a large
group of information have-nots, computer illiterate and unskilled.
Health Risks: RSI, CVS, and Cognitive Decline
A common occupational disease today is repetitive stress injury (RSI) . RSI
occurs when muscle groups are forced through repetitive actions often with
high-impact loads (such as tennis) or tens of thousands of repetitions under
low-impact loads (such as working at a computer keyboard). The incidence of
RSI is estimated to be as much as one-third of the labor force and accounts for
one-third of all disability cases.
The single largest source of RSI is computer keyboards. The most common
kind of computer-related RSI is carpal tunnel syndrome (CTS) , in which
pressure on the median nerve through the wrist’s bony structure, called a
carpal tunnel, produces pain. The pressure is caused by constant repeti-
tion of keystrokes: in a single shift, a word processor may perform 23,000
keystrokes. Symptoms of CTS include numbness, shooting pain, inability to
grasp objects, and tingling. Millions of workers have been diagnosed with
CTS. It affects an estimated 3 percent to 6 percent of the workforce (LeBlanc
and Cestia, 2011).
180 Part One Organizations, Management, and the Networked Enterprise

Are We Relying Too Much on Computers to Think for Us?
Does our ever–burgeoning dependence on computers
foster complacency, suppressing our ability to mar-
shal our mental faculties when required? Although
computerization has undoubtedly mitigated mal-
functions, work stoppages, and breakdowns, are we
concurrently losing our ability to assess alternatives
independently and make optimal choices?
At least one technology writer is sure this is
exactly what is happening. Nicholas Carr’s book,
The Glass Cage: Automation and Us , lays out the case
that our overreliance on computers has dulled our
reflexes and eroded expertise. Two cognitive failures
undermine performance. Complacency—overconfi-
dence in the computer’s ability—causes our attention
to wander. Bias—overconfidence in the accuracy of
the data we are receiving from the computer—causes
us to disregard outside data sources, including con-
flicting sensory stimuli.
When pilots, soldiers, doctors, or even factory
managers lose focus and lack situational aware-
ness, they ignore both suspect data coming from the
computer and the external cues that would refute it.
The results can be catastrophic. In two instances in
2009, commercial airplane pilots misinterpreted the
signals when their autopilot controls disconnected
after receiving warnings that the aircraft would stall.
Rather than pushing the yoke forward to gain veloc-
ity, both pilots heeded faulty control panel data
while ignoring environmental cues and pulled back
on the yoke, lifting the plane’s nose and decreasing
airspeed—the exact opposite of what was required.
Loss of automation triggered confusion and panic.
Sharply curtailed hands-on flight experience (on a
typical passenger flight today, a human pilot mans
the controls for just three minutes) resulted in stalled
aircraft plunging to earth. Fifty died in Buffalo, New
York; 228 perished in the Atlantic Ocean en route
to Paris from Rio de Janeiro. The Federal Aviation
Administration (FAA) is now pressing airlines to
adopt stricter requirements for manual flying hours
to offset the risks posed by complacency and bias.
Carr’s critics point out that air travel is now safer
than ever, with accidents and deaths steadily declin-
ing over decades and fatal airline crashes exceed-
ingly rare. Carr concedes this point but still worries
that pilots have come to rely so much on computers
that they are forgetting how to fly. Andrew McAfee, a
researcher at the MIT Sloan School of Management,
points out that people have lamented the loss of
skills due to technology for many centuries, but on
balance, automation has made the world better off.
There may be a high-profile crash, but he believes
greater automation, not less, is the solution.
Although humans have historically believed that
allocating tasks to machines liberates us from the
mundane and enables us to pursue the extraordi-
nary, computers have ushered in an altogether dif-
ferent era. Massive data compilation and complex
analytical capabilities now mean that decision mak-
ing, heretofore the sole province of the human brain,
is increasingly being accomplished by computers.
Offloading tasks to computers liberates us from com-
plex thinking while requiring us to pursue mundane
tasks such as inputting data, observing output, and
absentmindedly awaiting equipment failure.
Complacency and bias-induced errors are piling
up. For example, computer programs now highlight
suspect spots on mammograms. With the compul-
sion to examine images scrupulously relieved, radi-
ologists are now missing some early-stage tumors
not flagged by the program. Australian researchers
found that accountants at two international firms
using advanced auditing software had a significantly
weaker understanding of the different types of risk
than did those at a firm using simpler software that
required them to make risk assessment decisions
themselves. Even the most rudimentary tasks, such
as editing and spell checking, are now performed dif-
ferently. Rather than actively participating, we are
observers, waiting to be told to correct an error. Are
such short-term efficiencies worth the long-term loss
of knowledge and expertise?
What’s more, software programs are shoulder-
ing ever more capabilities heretofore thought to be
the exclusive domain of the human brain. Sensory
assessment, environmental awareness, coordinated
movement, and conceptual knowledge are included
in programming that has enabled Google to begin
testing its driverless cars on public roads. Some
argue that this is precisely the direction in which
we should be going: autonomous computers with no
human oversight or intervention at all. The solution
to pilot error during automation failures? A wholly
autonomous autopilot. The solution to doctors’
declining diagnostic skills due to complacency and
bias? Cut doctors out of the equation altogether.
Carr sees two problems with this thinking.
First, complex computer systems require complex
Chapter 4 Ethical and Social Issues in Information Systems 181

interdependencies among databases, algorithms,
sensors, software, and hardware. The more mutu-
ally dependent elements there are in a system, the
greater the potential points of failure and the more
difficult they are to find. Second, we have known
for more than three decades that humans are spec-
tacularly bad at precisely the job that increased
computerization has relegated to them: passive
observation. When not actively engaged, our minds
tend to drift off to any topic other than the one we
are supposed to be monitoring. What’s more, because
we now know that “use it or lose it” applies to flying
airplanes, diagnosing illnesses, spell-checking, and
everything in between, restricting humans to obser-
vation reduces experts to rookies, escalating the risk
of improper responses to malfunctions.
One solution is to design programs that promote
engagement and learning, for example, by return-
ing control to the operator at frequent, but irregular,
intervals or by ensuring that challenging tasks are
included. If operators must perform and repeat com-
plex manual and mental tasks, the generation effect
will be reinforced. Unfortunately, introducing these
changes necessarily includes software slowdown and
productivity decline. Businesses are unlikely to value
long-term expertise preservation and development
over short-term profits. Who does this technology
benefit in the long run?
Sources: Patrick Smith, “Why Pilots Still Matter,” New York Times ,
April 10, 2015; Nicholas Carr, “All Can Be Lost: The Risk of Putting
Our Knowledge in the Hands of Machines,” Atlantic , October 23,
2013; John Preston, “Review of Nicholas Carr’s The Glass Cage: Where
Automation Is Taking Us,” Telegraph , January 11, 2015; Daniel Mena-
ker, “ Review of Nicholas Carr’s The Glass Cage ,” New York Times
Book Review , November 7, 2014; John Jones, “The Technophobe’s
Dilemma: Nicholas Carr’s The Glass Cage ,” DML Central , November
10, 2014; Maria Bustillos, “Nicholas Carr’s Latest Anti-technology
Rant, The Glass Cage ,” LA Times , September 19, 2014; Carol Call-
waladr, “ The Glass Cage: Where Automation Is Taking Us Review: On
Course for Disaster,” Guardian , January 19, 2015; Daniel J. Levitin,
“Book Review: The Glass Cage by Nicholas Carr,” Wall Street Journal ,
October 10, 2014.
3. Can the problem of automation reducing cognitive
skills be solved? Explain your answer.
1. Identify the problem described in this case study.
In what sense is it an ethical dilemma?
2. Should more tasks be automated? Why or why
not? Explain your answer.
RSI is avoidable. Designing workstations for a neutral wrist position (using
a wrist rest to support the wrist), proper monitor stands, and footrests all con-
tribute to proper posture and reduced RSI. Ergonomically correct keyboards are
also an option. These measures should be supported by frequent rest breaks
and rotation of employees to different jobs.
RSI is not the only occupational illness computers cause. Back and neck
pain, leg stress, and foot pain also result from poor ergonomic designs of work-
stations. Computer vision syndrome (CVS) refers to any eyestrain condi-
tion related to display screen use in desktop computers, laptops, e-readers,
smartphones, and handheld video games. CVS affects about 90 percent of
people who spend three hours or more per day at a computer. Its symptoms,
which are usually temporary, include headaches, blurred vision, and dry and
irritated eyes.
In addition to these maladies, computer technology may be harming our cog-
nitive functions or at least changing how we think and solve problems. Although
the Internet has made it much easier for people to access, create, and use infor-
mation, some experts believe that it is also preventing people from focusing and
thinking clearly. They argue that exposure to computers reduces intelligence and
actually makes people dumb. One MIT scholar believes exposure to computers
discourages drawing and encourages looking up answers rather than engaging in
real problem solving. Students, in this view, don’t learn much surfing the web or
answering e-mail when compared to listening, drawing, arguing, looking, playing
182 Part One Organizations, Management, and the Networked Enterprise

outdoors, and exploring (Henry, 2011). The Interactive Session on Organizations
describes a related concern: that automation is de-skilling people by removing
opportunities to learn important tasks and impairing their ability to think on
their own.
The computer has become part of our lives—personally as well as socially,
culturally, and politically. It is unlikely that the issues and our choices will
become easier as information technology continues to transform our world.
The growth of the Internet and the information economy suggests that all the
ethical and social issues we have described will be intensified further as we
move further into the first digital century.
Repetitive stress injury (RSI) is
a leading occupational disease
today. The single largest cause of
RSI is computer keyboard work.
© Donna Cuic/Shuttertock
Review Summary
4-1 What ethical, social, and political issues are raised by information systems?
Information technology is introducing changes for which laws and rules of acceptable conduct have
not yet been developed. Increasing computing power, storage, and networking capabilities—including
the Internet—expand the reach of individual and organizational actions and magnify their impacts. The
ease and anonymity with which information is now communicated, copied, and manipulated in online
environments pose new challenges to the protection of privacy and intellectual property. The main
ethical, social, and political issues information systems raise center on information rights and obliga-
tions, property rights and obligations, accountability and control, system quality, and quality of life.
4-2 What specific principles for conduct can be used to guide ethical decisions?
Six ethical principles for judging conduct include the Golden Rule, Immanuel Kant’s categorical
imperative, the slippery slope rule, the utilitarian principle, the risk aversion principle, and the ethi-
cal no-free-lunch rule. These principles should be used in conjunction with an ethical analysis.
4-3 Why do contemporary information systems technology and the Internet pose challenges to the protection of
individual privacy and intellectual property?
Contemporary data storage and data analysis technology enable companies to gather personal data
from many sources easily about individuals and analyze these data to create detailed digital profiles
Chapter 4 Ethical and Social Issues in Information Systems 183

about individuals and their behaviors. Data flowing over the Internet can be monitored at many
points. Cookies and other web monitoring tools closely track the activities of website visitors. Not all
websites have strong privacy protection policies, and they do not always allow for informed consent
regarding the use of personal information. Traditional copyright laws are insufficient to protect
against software piracy because digital material can be copied so easily and transmitted to many loca-
tions simultaneously over the Internet.
4-4 How have information systems affected laws for establishing accountability and liability and the quality of
everyday life?
New information technologies are challenging existing liability laws and social practices for hold-
ing individuals and institutions accountable for harm done to others. Although computer systems
have been sources of efficiency and wealth, they have some negative impacts. Computer errors can
cause serious harm to individuals and organizations. Poor data quality is also responsible for disrup-
tions and losses for businesses. Jobs can be lost when computers replace workers or tasks become
unnecessary in reengineered business processes. The ability to own and use a computer may be
exacerbating socioeconomic disparities among different racial groups and social classes. Widespread
use of computers increases opportunities for computer crime and computer abuse. Computers can
also create health and cognitive problems such as repetitive stress injury, computer vision syndrome,
and the inability to think clearly and perform complex tasks.
Key Terms
Accountability , 159
Carpal tunnel syndrome (CTS) , 180
Computer abuse , 177
Computer crime , 177
Computer vision syndrome (CVS) , 182
Cookies , 166
Copyright , 170
Digital divide , 181
Digital Millennium Copyright Act (DMCA) , 173
Due process , 159
Ethical no-free-lunch rule , 161
Ethics , 154
Fair Information Practices (FIP) , 162
Golden Rule , 160
Immanuel Kant’s categorical imperative , 160
Information rights , 156
Informed consent , 165
Intellectual property , 169
Liability , 159
Nonobvious relationship awareness
(NORA) , 158
Opt-in , 168
Opt-out , 168
Patent , 170
Privacy , 162
Profiling , 158
Repetitive stress injury (RSI) , 180
Responsibility , 159
Risk aversion principle , 161
Safe harbor , 165
Slippery slope rule , 161
Spam , 177
Spyware , 167
Trade secret , 169
Utilitarian principle , 161
Web beacons , 167
Review Questions
4-1 What ethical, social, and political issues are
raised by information systems?
• Explain how ethical, social, and political
issues are connected and give some
• List and describe the key technological
trends that heighten ethical concerns.
• Define profiling and nonobvious relation-
ship awareness and explain the ethical con-
cerns they raise.
4-2 What specific principles for conduct can be
used to guide ethical decisions?
• Differentiate between responsibility,
accountability, and liability.
• List and describe the five steps in an ethical
• Identify and describe six ethical principles.
To complete the problems with the MyLab MIS , go to the EOC Discussion Questions in MyLab MIS.
184 Part One Organizations, Management, and the Networked Enterprise

4-3 Why do contemporary information systems
technology and the Internet pose challenges to
the protection of individual privacy and intel-
lectual property?
• Define privacy and Fair Information Practices.
• Explain how the Internet challenges the
protection of individual privacy and intel-
lectual property.
• Explain how informed consent, legislation,
industry self-regulation, and technology
tools help protect the individual privacy of
Internet users.
• List and define the three legal traditions that
protect intellectual property rights.
4-4 How have information systems affected laws
for establishing accountability and liability and
the quality of everyday life?
• Explain why it is so difficult to hold software
services liable for failure or injury.
• List and describe the principal causes of sys-
tem quality problems.
• Define computer crime and computer abuse
and describe their impacts on computer
• Define and describe computer vision syn-
drome and repetitive stress injury (RSI) and
explain their relationship to information
Discussion Questions
4-5 What is the digital divide and how do you
think it should be dealt with?
4-6 Should companies be responsible for unem-
ployment their information systems cause?
Why or why not?
4-7 Discuss the pros and cons of allowing compa-
nies to amass personal data for behavioral tar-
Hands-On MIS Projects
The projects in this section give you hands-on experience in analyzing the privacy implications of using
online data brokers, developing a corporate policy for employee web usage, using blog creation tools to cre-
ate a simple blog, and analyzing web browser privacy. Visit MyLab MIS’s Multimedia Library to access this
chapter’s Hands-On MIS Projects.
Management Decision Problems
4-8 The Malaysian government is a major healthcare provider. The government plans to have 33 paperless
public hospitals in Malaysia in the next few years. These paperless hospitals will be backed by information
systems that will collect, process, and retrieve data. This will not only help to increase the operating effi-
ciency of these hospitals but will also be environment-friendly. So far, the government has been successful
in making two public hospitals paperless, and work to make 31 other hospitals paperless is in progress.
Although the government has formulated a code of conduct for doctors to be good practitioners, there is no
code in place for information ethics. There is an urgent need to regulate the collection, storage, and com-
munication of medical data and patient information to prevent misuse. What concerns might patients
have? What can hospitals do to prevent misuse? Given the scenario outlined above, what do you think
should be part of an ethical code of conduct for securing the sensitive information gathered by healthcare
service providers?
4-9 As the head of a small insurance company with six employees, you are concerned about how effectively
your company is using its networking and human resources. Budgets are tight, and you are struggling to
meet payrolls because employees are reporting many overtime hours. You do not believe that the employees
have a sufficiently heavy workload to warrant working longer hours and are looking into the amount of
time they spend on the Internet.
Each employee uses a computer with Internet access on the job. Review a sample of your company’s
weekly report of employee web usage, which can be found in MyLab MIS.
• Calculate the total amount of time each employee spent on the web for the week and the total amount
of time that company computers were used for this purpose. Rank the employees in the order of the
amount of time each spent online.
Chapter 4 Ethical and Social Issues in Information Systems 185

• Do your findings and the contents of the report indicate any ethical problems employees are creating?
Is the company creating an ethical problem by monitoring its employees’ use of the Internet?
• Use the guidelines for ethical analysis presented in this chapter to develop a solution to the problems
you have identified.
Achieving Operational Excellence: Creating a Simple Blog
Software skills: Blog creation
Business skills: Blog and web page design
4-10 In this project, you’ll learn how to build a simple blog of your own design using the online blog creation
software available at . Pick a sport, hobby, or topic of interest as the theme for your blog. Name
the blog, give it a title, and choose a template for the blog. Post at least four entries to the blog, adding a
label for each posting. Edit your posts if necessary. Upload an image, such as a photo from your hard drive
or the web, to your blog. Add capabilities for other registered users, such as team members, to comment on
your blog. Briefly describe how your blog could be useful to a company selling products or services related
to the theme of your blog. List the tools available to Blogger that would make your blog more useful for
business and describe the business uses of each. Save your blog and show it to your instructor.
Improving Decision Making: Analyzing Web Browser Privacy
Software Skills: Web browser software
Business Skills: Analyzing web browser privacy protection features
4-11 This project will help develop your Internet skills for using the privacy protection features of leading web
browser software.
Examine the privacy protection features and settings for two leading web browsers such as Internet
Explorer, Mozilla Firefox, or Google Chrome. Make a table comparing the features of two of these browsers
in terms of functions provided and ease of use.
• How do these privacy protection features protect individuals?
• How do these privacy protection features affect what businesses can do on the Internet?
• Which does the best job of protecting privacy? Why?
Collaboration and Teamwork Project
Developing a Corporate Code of Ethics
4-12 With three or four of your classmates, develop a corporate ethics code on privacy that addresses both
employee privacy and the privacy of customers and users of the corporate website. Be sure to consider
e-mail privacy and employer monitoring of worksites as well as corporate use of information about
employees concerning their off-the-job behavior (e.g., lifestyle, marital arrangements, and so forth). If pos-
sible, use Google Docs and Google Drive or Google Sites to brainstorm, organize, and develop a presenta-
tion of your findings for the class.
Business Problem-Solving Case
In less than a decade, Facebook has morphed from a
small, niche networking site for mostly Ivy League
college students into a publicly traded company with
a market worth of $338 billion in 2016. Facebook
boasts that it is free to join and always will be, so
where’s the money coming from to service 1.65 billion
186 Part One Organizations, Management, and the Networked Enterprise

worldwide subscribers? Just like its fellow tech titan
and rival Google, Facebook’s revenue comes almost
entirely from advertising. Facebook does not have a
diverse array of hot new gadgets like Apple does, a
global network of brick-and-mortar retail outlets like
Walmart does, or a full inventory of software for sale.
All Facebook has to sell is your personal information
and the information of hundreds of millions of others
with Facebook accounts.
Advertisers have long understood the value of
Facebook’s unprecedented trove of personal informa-
tion. They can serve ads using highly specific details
such as relationship status, location, employment
status, favorite books, movies, or TV shows and a
host of other categories. For example, an Atlanta
woman who posts that she has become engaged
might be offered an ad for a wedding photogra-
pher on her Facebook page. When advertisements
are served to finely targeted subsets of users, the
response is much more successful than traditional
types of advertising.
A growing number of companies both big and
small have taken notice. In 2015, Facebook generated
$17.9 billion in revenue, 94 percent of which ($16.8
billion) was from selling ads and the remainder from
selling games and virtual goods. Facebook’s revenues
in 2015 grew by 43 percent over the previous year,
driven mostly by adding new users and showing 40
percent more ads than a year earlier. A major con-
tributor to revenue growth in 2015 is ads sold in the
mobile News Feed.
That was good news for Facebook, which is
expected to continue to increase its revenue in com-
ing years, but is it good news for you, the Facebook
user? More than ever, companies such as Facebook
and Google, which made approximately $67 billion
in advertising revenue in 2015, are using your online
activity to develop a frighteningly accurate picture of
your life. Facebook’s goal is to serve advertisements
that are more relevant to you than anywhere else
on the web, but the personal information it gathers
about you both with and without your consent can
also be used against you in other ways.
Facebook has a diverse array of compelling and
useful features. Facebook’s partnership with the
Department of Labor helps connect job seekers and
employers; Facebook has helped families find lost
pets; Facebook allows active-duty soldiers to stay in
touch with their families; it gives smaller companies a
chance to further their e-commerce efforts and larger
companies a chance to solidify their brands; and, per-
haps most obviously, Facebook allows you to keep in
touch with your friends, relatives, local restaurants,
and in short, just about all things you are interested
in more easily. These are the reasons so many people
use Facebook—it provides value to users.
However, Facebook’s goal is to get its users to
share as much data as possible because the more
Facebook knows about you, the more accurately
it can serve relevant advertisements to you. Face-
book CEO Mark Zuckerberg often says that people
want the world to be more open and connected. It’s
unclear whether that is truly the case, but it is cer-
tainly true that Facebook wants the world to be more
open and connected because it stands to make more
money in that world. Critics of Facebook are con-
cerned that the existence of a repository of personal
data of the size that Facebook has amassed requires
protections and privacy controls that extend far
beyond those that Facebook currently offers.
Facebook wanting to make more money is under-
standable, but the company has a checkered past of
privacy violations and missteps that raise doubts about
whether it should be responsible for the personal data
of hundreds of millions of people. There are no laws
in the United States that give consumers the right to
know what data companies like Facebook have com-
piled. You can challenge information in credit reports,
but you can’t even see what data Facebook has gath-
ered about you, let alone try to change it. It’s different
in Europe: you can request Facebook to turn over a
report of all the information it has about you.
More than ever, your every move, every click, on
social networks is being used by outside entities to
assess your interests and behavior and then pitch
you an ad based on this knowledge. Law enforce-
ment agencies use social networks to gather evi-
dence on tax evaders and other criminals; employers
use social networks to make decisions about prospec-
tive candidates for jobs; and data aggregators are
gathering as much information about you as they can
sell to the highest bidder. Facebook has admitted that
it uses a software bug or code to track users across
the Internet even if they are not using Facebook.
Think you own your face? Febook’s newest pri-
vacy issue involves its facial recognition software
used for photo tagging of users. This “tag sugges-
tions” feature is automatically on when you sign up,
and there is no user consent. A federal court in 2016
allowed a lawsuit to go forward contesting Facebook’s
right to photo tag without user consent. This feature
is in violation of several state laws that seek to secure
the privacy of biometric data.
A recent Consumer Reports study found that of
150 million Americans on Facebook, ever day, at
least 4.8 million are willingly sharing information
Chapter 4 Ethical and Social Issues in Information Systems 187

that could be used against them in some way. That
includes plans to travel on a particular day, which
burglars could use to time robberies, or Liking a page
about a particular health condition or treatment,
which insurers could use to deny coverage. Thirteen
million users have never adjusted Facebook’s privacy
controls, which allow friends using Facebook appli-
cations to transfer your data unwittingly to a third
party without your knowledge.
Credit card companies and similar organizations
have begun engaging in weblining, taken from the
phrase redlining, by altering their treatment of you
based on the actions of other people with profiles
similar to yours. Employers can assess your personal-
ity and behavior by using your Facebook likes. In one
survey, 93 percent of people polled believe that Inter-
net companies should be forced to ask for permission
before using your personal information, and 72 per-
cent want the ability to opt out of online tracking.
Why, then, do so many people share sensitive
details of their life on Facebook? Often it’s because
users do not realize that their data are being col-
lected and transmitted in this way. A Facebook user’s
friends are not notified if information about them is
collected by that user’s applications. Many of Face-
book’s features and services are enabled by default
when they are launched without notifying users,
and a study by Siegel+Gale found that Facebook’s
privacy policy is more difficult to comprehend than
government notices or typical bank credit card agree-
ments, which are notoriously dense. Did you know
that whenever you log into a website using Facebook,
Facebook shares some personal information with
that site, and can track your movements in that site.
Next time you visit Facebook, click Privacy Settings
and see whether you can understand your options.
Facebook’s value and growth potential are deter-
mined by how effectively it can leverage the personal
data it aggregated about its users to attract advertisers.
Facebook also stands to gain from managing and avoid-
ing the privacy concerns its users and government
regulators raise. For Facebook users who value the pri-
vacy of their personal data, this situation appears grim,
but there are some signs that Facebook might become
more responsible with its data collection processes,
whether by its own volition or because it is forced to
do so. As a publicly traded company, Facebook now
invites more scrutiny from investors and regulators
because, unlike in the past, its balance sheets, assets,
and financial reporting documents are readily available.
In August 2012, Facebook settled a lawsuit with
the Federal Trade Commission (FTC) in which it was
barred from misrepresenting the privacy or security
of users’ personal information. Facebook was charged
with deceiving its users by telling them they could
keep their information on Facebook private but then
repeatedly allowing it to be shared and made public.
Facebook agreed to obtain user consent before mak-
ing any change to that user’s privacy preferences and
to submit to biannual privacy audits by an indepen-
dent firm for the next 20 years.
Privacy advocate groups such as the Electronic
Privacy Information Center (EPIC) want Facebook
to restore its more robust privacy settings from 2009
as well as to offer complete access to all data it keeps
about its users. Facebook has also come under fire
from EPIC for collecting information about users who
are not even logged on to Facebook or may not even
have accounts on Facebook. Facebook keeps track of
activity on other sites that have Like buttons or rec-
ommendations widgets and records the time of your
visit and your IP address when you visit a site with
those features, regardless of whether you click them.
Although U.S. Facebook users have little recourse
to access data that Facebook has collected on them,
users from other countries have made inroads in
this regard. In Europe, over 100,000 Facebook users
have already requested their data, and European
law requires Facebook to respond to these requests
within 40 days. Government privacy regulators from
France, Spain, Italy, Germany, Belgium, and the
Netherlands have been actively investigating Face-
book’s privacy controls as the European Union pur-
sues more stringent privacy protection legislation, In
June 2015, Belgium’s data-protection watchdog sued
Facebook over privacy practices such as how Face-
book tracks users across the web through Like and
Share buttons on external websites. In 2016 an Aus-
trian student’s class-action suit against Facebook’s
privacy rules has been referred to the European
Court of Justice. The suit alleges Facebook’s privacy
policies violate European data protection laws.
In January 2014, Facebook shut down its Spon-
sored Stories feature, which served advertisements in
the user’s news feed highlighting products and busi-
nesses that Facebook friends were using. Sponsored
Stories had been one of the most effective forms of
advertising on Facebook because they don’t seem like
advertisements at all to most users. However, this fea-
ture triggered many lawsuits, attempted settlements,
and criticism from privacy groups, the FTC, and
annoyed parents whose children’s photos were being
used throughout Facebook to sell products.
Although Facebook has shut down one of its
more egregious privacy-invading features, the com-
pany’s Data Use policies make it very clear that,
188 Part One Organizations, Management, and the Networked Enterprise

as a condition of using the service, users grant the
company wide latitude in using their information in
advertising. This includes a person’s name, photo,
comments, and other information. Facebook’s exist-
ing policies make clear that users are required to
grant the company wide permission to use their
personal information in advertising as a condition of
using the service. This includes social advertising, by
which your personal information is broadcast to your
friends and, indeed, the entire Facebook service if
the company sees fit. Although users can limit some
uses, an advanced degree in Facebook data features
is required.
Ad-based firms like Facebook, and hundreds of
others, including Google, justify their collection of
personal information by arguing that consumers, by
virtue of using the service, implicitly know about the
data collection efforts and the role of advertisers in
paying for the service and must, therefore, believe
they are receiving real economic value from ads.
This line of reasoning received a blow when in June
2015, researchers at the Annenberg School of Com-
munication at the University of Pennsylvania found
that 65 percent of Americans feel they have lost con-
trol over their information to advertisers, 84 percent
want to control their information, and 91 percent do
not believe it is fair for companies to offer discounts
or coupons in exchange for their personal informa-
tion without their knowledge.
In June 2015, Facebook held its first ever privacy
conference as part of a growing effort to convince
users it really is concerned about privacy and aware
of public criticism of the firm. It has hired more than
50 privacy experts focused on Facebook’s privacy
practices. Critics asked Facebook why it doesn’t offer
an ad-free service—like music streaming sites—for
a monthly fee. Others wanted to know why Face-
book does not allow users just to opt out of tracking.
But these kinds of changes would be very difficult
for Facebook because its business model depends
entirely on the unfettered use of its users’ personal
private information, just like it declares in its data
use policy. That policy declares very openly that if
you use Facebook, you don’t have any privacy with
respect to any data you provide to it.
Sources: Samuel Gibbs, “WhatsApp, Facebook and Google Face
Tough New Privacy Rules Under EC Proposal,” The Guardian, Jan-
uary 10, 2017; Stephanie Bodoni, “Google, Facebook Face Tighter
EU Grip With New Privacy Law,” Bloomberg News, January 10,
2017; Hannah Kuchler and Duncan Robinson, “Facebook Privacy
Case Referred to Europe’s Top Court,” Financial Times, September
16, 2016; “‘Privacy Shield,’ the New Deal Governing How Europe’s
User Data Is Sent to the US,” Reuters, February 29, 2016; Katie
Collins, “Facebook’s Newest Privacy Problem: ‘Faceprint’ Data,”
CNET, May 16, 2016; United States District Court Northern Dis-
trict of California in Re Facebook Biometric Information Privacy
Litigation. Case No. 15-cv-03747-JD Order Re Motion to Dismiss
and Summary Judgment, May 6, 2016; Jessica Guynn, “Facebook
to Face Privacy Lawsuit over Photo Tagging,” USA Today , May 6,
2016; Natasha Singer, “Sharing Data, but Not Happily,” New York
Times , June 4, 2015; Sam Schechner and Natalia Drozdiak, “Bel-
gium Takes Facebook to Court over Privacy, User Tracking,” Wall
Street Journal , June 16, 2015; Deepa Seethharaman, “At Facebook
Summit, Little Consensus on Privacy,” New York Times , June 4,
2015; Zeynep Tufecki, “Let Me Pay for Facebook,” New York Times ,
June, 4, 2015; IBM, “IBM and Facebook Team Up to Deliver Per-
sonalized Brand Experiences through People-Based Marketing,”
press release, May 6, 2015; Lisa Fleisher, “Admitting Tracking Bug,
Facebook Defends European Privacy Practices,” Wall Street Journal ,
April 9, 2015; Facebook, Inc., SEC Form 10K filed with the Securi-
ties and Exchange Commission for the fiscal year ending Decem-
ber 31, 2014, January 29, 2015; Anna North, “How Your Facebook
Likes Could Cost You a Job,” New York Times , January 20, 2015;
Natasha Singer, “Didn’t Read Those Terms of Service? Here’s What
You Agreed to Give Up,” New York Times , April 28, 2014.
4-13 Perform an ethical analysis of Facebook. What
is the ethical dilemma presented by this case?
4-14 What is the relationship of privacy to Face-
book’s business model?
4-15 Describe the weaknesses of Facebook’s privacy
policies and features. What people, organiza-
tion, and technology factors have contributed
to those weaknesses?
4-16 Will Facebook be able to have a successful busi-
ness model without invading privacy? Explain
your answer. Could Facebook take any mea-
sures to make this possible?
Go to the Assignments section of MyLab MIS to complete these writing exercises.
4-17 What are the five principles of Fair Information Practices? For each principle, describe a business situation in
which the principle comes into play and how you think managers should react.
4-18 What are five digital technology trends in American business today that raise ethical issues for business firms
and managers? Provide an example from business or personal experience when an ethical issue resulted from
each of these trends.
Chapter 4 Ethical and Social Issues in Information Systems 189

Aeppel, Timothy. “What Clever Robots Mean for Jobs.” Wall Street
Journal (February 24, 2015).
Belanger, France and Robert E. Crossler. “Privacy in the Digital Age:
A Review of Information Privacy Research in Information
Systems.” MIS Quarterly 35, No. 4 (December 2011).
Bernstein, Amy and Anand Raman. “The Great Decoupling: An
Interview with Erik Brynjolfsson and Andrew McAfee.”
Harvard Business Review (June 2015).
Bernstein, Ethan, Saravanan Kesavan, and Bradley Staats. “How to
Manage Scheduling Software Fairly.” Harvard Business Review
(December 2014).
Bertolucci, Jeff. “Big Data Firm Chronicles Your Online, Offline
Lives.” Information Week (May 7, 2013).
Bilski v. Kappos , 561 US (2010).
Brown Bag Software vs. Symantec Corp . 960 F2D 1465 (Ninth
Circuit, 1992).
Brynjolfsson, Erik and Andrew McAfee. Race Against the Machine .
Digital Frontier Press (2011).
Chan, Jason, Anindya Ghose, and Robert Seamans. “The Internet
and Racial Hate Crimes: Offline Spillovers from Online
Access.” MIS Quarterly 40, No. 2 (June 2016).
Clemons, Eric K. and Joshua S. Wilson. “Family Preferences
Concerning Online Privacy, Data Mining, and Targeted Ads:
Regulatory Implications.” Journal of Management Information
Systems 32, No. 2 (2015).
Council of Europe, “European Court of Human Rights Case Law.”
Thematic Fact Sheet, (February 2016).
Culnan, Mary J. and Cynthia Clark Williams. “How Ethics Can
Enhance Organizational Privacy.” MIS Quarterly 33, No. 4
(December 2009).
Davenport, Thomas H. and Julia Kirby. “Beyond Automation.”
Harvard Business Review (June 2015).
European Parliament. “Directive 2009/136/EC of the European
Parliament and of the Council of November 25, 2009.”
European Parliament (2009).
Federal Trade Commission. “Protecting Consumer Privacy in an
Era of Rapid Change.” Washington, DC. (2012).
Goldfarb, Avi and Catherine Tucker. “Why Managing Consumer
Privacy Can Be an Opportunity.” MIT Sloan Management
Review 54, No. 3 (Spring 2013).
Henry, Patrick. “Why Computers Make Us Stupid.” Slice of MIT
(March 6, 2011).
Hsieh, J. J. Po-An, Arun Rai, and Mark Keil. “Understanding
Digital Inequality: Comparing Continued Use Behavioral
Models of the Socio-Economically Advantaged and
Disadvantaged.” MIS Quarterly 32, No. 1 (March 2008).
Hutter, Katja, Johann Fuller, Julia Hautz, Volker Bilgram, and Kurt
Matzler. “Machiavellianism or Morality: Which Behavior Pays
Off In Online Innovation Contests?” Journal of Management
Information Systems 32, No. 3 (2015).
ITU. “ITU Survey on Anti-Spam Legislation Worldwide.”
International Telecommunication Union, (2016).
Chapter 4 References
Kaspersky Lab. “Spam and Phishing Statistics Report Q1-2015.”
Kosseff, Joseph. “Twenty Privacy Bills to Watch in 2014.” (January
15, 2014).
Laudon, Kenneth C. and Carol Guercio Traver. E-Commerce 2016:
Business, Technology, Society (12th ed .). Upper Saddle River,
NJ: Prentice-Hall (2017).
Laudon, Kenneth C. Dossier Society: Value Choices in the Design of
National Information Systems . New York: Columbia University
Press (1986).
Leblanc, K. E., and W. Cestia. “Carpal Tunnel Syndrome.” American
Family Physician , 83 , No. 8 (2011).
Lee, Dong-Joo, Jae-Hyeon Ahn, and Youngsok Bang. “Managing
Consumer Privacy Concerns in Personalization: A Strategic
Analysis of Privacy Protection.” MIS Quarterly 35, No. 2 (June
MacCrory, Frank, George Westerman, Erik Brynjolfsson, and
Yousef Alhammadi. “Racing with and Against the Machine:
Changes in Occupational Skill Composition in an Era of
Rapid Technological Advance.” (2014).
PwC. “US State of Cybercrime Survey 2015.” (June 2015),
Pew Research Center. “The State of Privacy in America.” (January
20, 2016).
Rigby, Chloe. “How Can Ecommerce and Multichannel Retailers
Respond to the Carphone Warehouse Data Breach?” (August 11, 2015).
Robinson, Francis. “EU Unveils Web-Privacy Rules.” Wall Street
Journal (January 26, 2012).
Smith, H. Jeff. “The Shareholders vs. Stakeholders Debate.” MIS
Sloan Management Review 44, No. 4 (Summer 2003).
Sojer, Manuel, Oliver Alexy, Sven Kleinknecht, and Joachim
Henkel. “Understanding the Drivers of Unethical
Programming Behavior: The Inappropriate Reuse of Internet-
Accessible Code.” Journal of Management Information Systems
31, No. 3 (Winter 2014 ).
Tarafdar. Monideepa, John D’Arcy, Ofir Turel, and Ashish Gupta.
“The Dark Side of Information Technology.” MIT Sloan
Management Review 56, No. 2 (Winter 2015).
The Software Alliance. “BSA Global Software Survey 2016.” (May
United States Department of Health, Education, and Welfare.
Records, Computers, and the Rights of Citizens. Cambridge: MIT
Press (1973).
U.S. Senate. “Do-Not-Track Online Act of 2011.” Senate 913 (May 9,
U.S. Sentencing Commission. “Sentencing Commission Toughens
Requirements for Corporate Compliance Programs.” (April
13, 2004).
V3. “Top 10 Cloud Outages from Twitter and iTunes to Azure and
AWS,” (accessed November 2016).

190 Part One Organizations, Management, and the Networked Enterprise

Information Technology
Chapter 5
IT Infrastructure and Emerging
Chapter 6
Foundations of Business Intelligence:
Databases and Information Management
Chapter 7
Telecommunications, the Internet,
and Wireless Technology
Chapter 8
Securing Information Systems
PART TWO provides the technical foundation for understanding information systems by
examining hardware, software, database, and networking technologies along with tools and
techniques for security and control. This part answers questions such as: What technologies
do businesses today need to accomplish their work? What do I need to know about these
technologies to make sure they enhance the performance of the firm? How are these tech-
nologies likely to change in the future? What technologies and procedures are required to
ensure that systems are reliable and secure?

Learning Objectives
After reading this chapter , you will be able to answer the following questions:
5- 1 What is IT infrastructure, and what are the stages and drivers of IT
infrastructure evolution?
5- 2 What are the components of IT infrastructure?
5- 3 What are the current trends in computer hardware platforms?
5- 4 What are the current computer software platforms and trends?
5- 5 What are the challenges of managing IT infrastructure and management
Rockwell Automation Fuels the Oil and Gas Industry with the Internet
of Things (IoT) : The Future of Sports Broadcasting in the Cloud
Netflix: Building a Business in the Cloud
EasyJet Flies High with Cloud Computing
Wearable Computers Change How We Work
Glory Finds Solutions in the Cloud
BYOD: Business Opportunity or Big Headache?

5 IT Infrastructure and Emerging Technologies
MyLab MIS™
Visit for simulations, tutorials, and end-of-chapter problems.

EasyJet is the largest airline in the United Kingdom and the second-largest short-haul airline carrier in the world (behind Ryanair) with more than 800 domestic and international routes in 32 countries. Based in Luton,
England, EasyJet has expanded rapidly since its founding in 1995, propelled
by a series of acquisitions as well as fulfilling an important market need for
low-cost airline services. EasyJet carries more than 70 million passengers per
year. Obviously, having a reliable and robust system for booking and manag-
ing reservations while keeping costs low is a key business requirement.
EasyJet’s customers, like those of other airlines, like the idea of being able
to select their seats on a given flight when they made their reservations online.
However, EasyJet’s existing reservation system did not have the capability to
add this new feature, which required investing in an additional computer cen-
ter and modifying its IT infrastructure.
EasyJet’s IT department found a better solution. It retained the core reser-
vation system as is and hosted the seat allocation service in the cloud using
Microsoft’s Azure cloud service. EasyJet had tried other public cloud comput-
ing platforms, but Microsoft’s offered a better integration of on-premises and
cloud services. EasyJet had used the Microsoft Azure cloud service to build
services that communicate wirelessly at airports without running up major
airport charges for new services desks.
Microsoft’s Azure cloud enabled EasyJet’s information system developers
to write their own software program code for seat allocation and use as much
or as little processing power as needed to test the service. It then turned
out to be much faster and cost-effective to have the public cloud actually
host the new seat allocation service rather than use EasyJet’s internal IT
EasyJet is adopting a hybrid
cloud strategy. It is not moving
its entire IT infrastructure to the
cloud, only specific functions
that its internal IT infrastruc-
ture can’t easily handle. The new
capabilities are integrated with
the company’s existing IT Infra-
structure. By enhancing its sys-
tems by adding new features in
the cloud, the company is able to
get more value out of its earlier
IT investments, which amounted
to many millions of dollars.
EasyJet Flies High with Cloud Computing

© CPC Collection/Alamy Stock Photo

When an EasyJet customer books a reservation, EasyJet’s information sys-
tems integrate three different technologies. EasyJet’s web servers handle the
process of customers entering their desired travel dates and destinations for
flight bookings. The company’s reservation system residing in a different com-
puter center presents data on alternative times and prices of flights for custom-
ers to choose from. Finally, the aircraft diagram where users can select their
seats is fully hosted on Microsoft’s Azure cloud service. The entire experience
appears seamless to users.
By enhancing its systems to offer allocated seating, EasyJet was able to
increase customer satisfaction by 5 percent and add 7 percent to its revenue
growth according to the company’s 2013 annual earnings report. In the fol-
lowing two years, the company increased customer conversion to its website
by 13 percent. Selecting seats and boarding flights have become much more
EasyJet’s management believes that good customer experience combined
with low prices clearly differentiates the company from competitors. The busi-
ness benefits of offering online seat selection using cloud computing services
have made it possible for EasyJet to continue this strategy because it can keep
operating costs low while offering customers top-notch services in searching for
and booking flights. Airlines on average spend 2 percent of their revenue on IT
infrastructure; EasyJet spends only half a percent of its revenue on IT.
What if the new seat allocation system enhancement had failed to improve cus-
tomer service and revenue? EasyJet could have easily turned off the cloud service
for online seat selection if it so chose. It is much easier to eliminate a cloud ser-
vice than to remove the functionality from the company’s core internal system.
Sources: “Leading European Airline Improves Service and Scalability with Hybrid Cloud
Solution,” , accessed February 9, 2016; , accessed May
1, 2016; Clare McDonald, “How EasyJet Uses Digital to Drive Competitive Advantage,” Com-
puter Weekly, October 13, 2015; and “EasyJet Raises Customer Satisfaction with Hybrid IT,”
Computer Weekly , September 23–29, 2014.
The experience of EasyJet illustrates the importance of information technol-ogy infrastructure in running a business today. The right technology at the
right price will improve organizational performance. EasyJet was saddled with
an outdated IT infrastructure that was far too costly and unwieldy for adding
new services, such as online passenger seat selection, that were being offered
by competitors. This caused EasyJet to lose customers and prevented the com-
pany from operating as efficiently and effectively as it could have.
The chapter- opening case diagram calls attention to important points raised
by this case and this chapter . As a low-cost carrier, EasyJet is under pressure
to keep costs down, but it still must offer services such as online seat selec-
tion that are provided by competing airlines. Management had to find a low-
cost solution that enabled the company to remain competitive. It decided to
develop and run the new seat selection service on Microsoft’s Azure cloud com-
puting platform, where the hardware is located in remote computing centers
accessed via the Internet. The seat selection capability is integrated with Easy-
Jet’s internal reservation system, which is maintained on premises. This is an
example of a hybrid cloud strategy, where an organization maintains part of its
194 Part Two Information Technology Infrastructure

IT infrastructure itself and part using cloud computing services. Using cloud
computing for part of its IT infrastructure enables EasyJet to expand and offer
new services at very affordable prices. The company pays for only the comput-
ing capacity it actually uses on an as-needed basis and did not have to make
extensive and costly new infrastructure investments.
Here are some questions to think about: How did EasyJet’s hardware and
software technology affect the company’s ability to operate? What were the
business benefits of using cloud computing?
5- 1 What is IT infrastructure, and what are the
stages and drivers of IT infrastructure evolution?
In Chapter 1 , we defined information technology (IT) infrastructure as the shared
technology resources that provide the platform for the firm’s specific informa-
tion system applications. An IT infrastructure includes investment in hard-
ware, software, and services—such as consulting, education, and training—that
are shared across the entire firm or across entire business units in the firm. A
firm’s IT infrastructure provides the foundation for serving customers, working
with vendors, and managing internal firm business processes (see Figure 5. 1 ).
Supplying firms worldwide with IT infrastructure (hardware and software)
in 2016 is estimated to be a $3.5 trillion industry when telecommunications,
networking equipment, and telecommunications services (Internet, telephone,
and data transmission) are included. Investments in infrastructure account for
between 25 and 50 percent of information technology expenditures in large
firms, led by financial services firms where IT investment is well over half of
all capital investment.
Defining IT Infrastructure
An IT infrastructure consists of a set of physical devices and software applica-
tions that are required to operate the entire enterprise. But IT infrastructure
also includes a set of firmwide services budgeted by management and com-
posed of both human and technical capabilities. These services include the
• Improve customer
• Increase revenue
• Monitor service level
and costs
• Plan new IT
• Make IT infrastructure
• Create new services
and business
• On-premises
reservation system
• Microsoft Azure cloud
computing services
• Costly, unwieldy IT infrastructure
• Low-cost provider
• Highly competitive industry
Seat Allocation System
• Provide online seat selection

Chapter 5 IT Infrastructure and Emerging Technologies 195

• Computing platforms used to provide computing services that connect
employees, customers, and suppliers into a coherent digital environment,
including large mainframes, midrange computers, desktop and laptop com-
puters, and mobile handheld and remote cloud computing services
• Telecommunications services that provide data, voice, and video connectivity
to employees, customers, and suppliers
• Data management services that store and manage corporate data and provide
capabilities for analyzing the data
• Application software services, including online software services, that pro-
vide enterprise-wide capabilities such as enterprise resource planning, cus-
tomer relationship management, supply chain management, and knowledge
management systems that are shared by all business units
• Physical facilities management services that develop and manage the physi-
cal installations required for computing, telecommunications, and data man-
agement services
• IT management services that plan and develop the infrastructure, coordinate
with the business units for IT services, manage accounting for the IT expen-
diture, and provide project management services
• IT standards services that provide the firm and its business units with
policies that determine which information technology will be used, when,
and how
• IT education services that provide training in system use to employees and
offer managers training in how to plan for and manage IT investments
IT Services
IT Strategy
The services a firm is capable of providing to its customers, suppliers, and employees are a direct function of its IT infrastructure.
Ideally, this infrastructure should support the firm’s business and information systems strategy. New information technologies have
a powerful impact on business and IT strategies as well as the services that can be provided to customers.
196 Part Two Information Technology Infrastructure

• IT research and development services that provide the firm with research on
potential future IT projects and investments that could help the firm differ-
entiate itself in the marketplace
This “service platform” perspective makes it easier to understand the busi-
ness value provided by infrastructure investments. For instance, the real
business value of a fully loaded personal computer operating at 3.5 gigahertz
that costs about $1,000 and a high-speed Internet connection is hard to under-
stand without knowing who will use it and how it will be used. When we look
at the services provided by these tools, however, their value becomes more
apparent: The new PC makes it possible for a high-cost employee making
$100,000 a year to connect to all the company’s major systems, including col-
laboration systems, and the public Internet. The high-speed Internet service
saves this employee about an hour per day in reduced wait time for Internet
information. Without this PC and Internet connection, the value of this one
employee to the firm might be cut in half.
Evolution of IT Infrastructure
The IT infrastructure in organizations today is an outgrowth of more than
50 years of evolution in computing platforms. There have been five stages in
this evolution, each representing a different configuration of computing power
and infrastructure elements (see Figure 5. 2 ). The five eras are general-purpose
mainframe and minicomputer computing, personal computers, client/server
networks, enterprise computing, and cloud and mobile computing.
Technologies that characterize one era may also be used in another time
period for other purposes. For example, some companies still run traditional
mainframe systems or use mainframe computers as servers supporting large
websites and corporate enterprise applications.
General-Purpose Mainframe and Minicomputer Era
(1959 to Present)
The introduction of the IBM 1401 and 7090 transistorized machines in 1959
marked the beginning of widespread commercial use of mainframe comput-
ers. In 1965, the mainframe computer truly came into its own with the intro-
duction of the IBM 360 series. The 360 was the first commercial computer
that could provide time sharing, multitasking, and virtual memory in more
advanced models. IBM has dominated mainframe computing from this point
on. Mainframe computers became powerful enough to support thousands of
online remote terminals connected to the centralized mainframe using propri-
etary communication protocols and proprietary data lines.
The mainframe era was a period of highly centralized computing under the
control of professional programmers and systems operators (usually in a cor-
porate data center), with most elements of infrastructure provided by a single
vendor, the manufacturer of the hardware and the software.
This pattern began to change with the introduction of minicomputers pro-
duced by Digital Equipment Corporation (DEC) in 1965. DEC minicomputers
(PDP-11 and later the VAX machines) offered powerful machines at far lower
prices than IBM mainframes, making possible decentralized computing, cus-
tomized to the specific needs of individual departments or business units rather
than time sharing on a single huge mainframe. In recent years, the minicom-
puter has evolved into a midrange computer or midrange server and is part of
a network.
Chapter 5 IT Infrastructure and Emerging Technologies 197

Stages in IT Infrastructure Evolution
• Hardware
• Software
• Services
Illustrated here are the typical computing configurations characterizing each of the five eras of IT infra-
structure evolution.
198 Part Two Information Technology Infrastructure

Personal Computer Era (1981 to Present)
Although the first truly personal computers (PCs) appeared in the 1970s (the
Xerox Alto, the MITS Altair 8800, and the Apple I and II, to name a few), these
machines had only limited distribution to computer enthusiasts. The appear-
ance of the IBM PC in 1981 is usually considered the beginning of the PC era
because this machine was the first to be widely adopted by American busi-
nesses. At first using the DOS operating system, a text-based command lan-
guage, and later the Microsoft Windows operating system, the Wintel PC
computer (Windows operating system software on a computer with an Intel
microprocessor) became the standard desktop personal computer. Worldwide
PC shipments have declined more than 10 percent because of the popularity of
tablets and smartphones, but the PC is still a popular tool for business. About
289 million new PCs were sold worldwide in 2015 ( Gartner, Inc., 2016 ). Approx-
imately 87 percent are thought to run a version of Windows, and about 4 per-
cent run a version of Mac OS. The Wintel dominance as a computing platform
is receding as iPhone and Android device sales increase. About 2 billion people
worldwide own smartphones, and most of these users access the Internet with
their mobile devices.
Proliferation of PCs in the 1980s and early 1990s launched a spate of personal
desktop productivity software tools—word processors, spreadsheets, electronic
presentation software, and small data management programs—that were very
valuable to both home and corporate users. These PCs were stand-alone sys-
tems until PC operating system software in the 1990s made it possible to link
them into networks.
Client/Server Era (1983 to Present)
In client/server computing , desktop or laptop computers called clients are
networked to powerful server computers that provide the client computers
with a variety of services and capabilities. Computer processing work is split
between these two types of machines. The client is the user point of entry,
whereas the server typically processes and stores shared data, serves up web
pages, or manages network activities. The term server refers to both the soft-
ware application and the physical computer on which the network software
runs. The server could be a mainframe, but today, server computers typically
are more powerful versions of personal computers, based on inexpensive chips
and often using multiple processors in a single computer box or in server racks.
The simplest client/server network consists of a client computer networked
to a server computer, with processing split between the two types of machines.
This is called a two-tiered client/server architecture . Whereas simple client/server
networks can be found in small businesses, most corporations have more com-
plex, multitiered (often called N-tier) client/server architectures in which
the work of the entire network is balanced over several different levels of serv-
ers, depending on the kind of service being requested (see Figure 5. 3 ).
For instance, at the first level, a web server will serve a webpage to a cli-
ent in response to a request for service. Web server software is responsible for
locating and managing stored webpages. If the client requests access to a cor-
porate system (a product list or price information, for instance), the request is
passed along to an application server . Application server software handles
all application operations between a user and an organization’s back-end busi-
ness systems. The application server may reside on the same computer as the
web server or on its own dedicated computer. Chapters 6 and 7 provide more
detail on other pieces of software that are used in multitiered client/server
architectures for e-commerce and e-business.
Chapter 5 IT Infrastructure and Emerging Technologies 199

Client/server computing enables businesses to distribute computing work
across a series of smaller, inexpensive machines that cost much less than cen-
tralized mainframe systems. The result is an explosion in computing power and
applications throughout the firm.
Novell NetWare was the leading technology for client/server networking at
the beginning of the client/server era. Today, Microsoft is the market leader
with its Windows operating systems (Windows Server, Windows 10, Windows 8,
and Windows 7).
Enterprise Computing Era (1992 to Present)
In the early 1990s, firms turned to networking standards and software tools that
could integrate disparate networks and applications throughout the firm into an
enterprise-wide infrastructure. As the Internet developed into a trusted com-
munications environment after 1995, business firms began seriously using the
Transmission Control Protocol/Internet Protocol (TCP/IP) networking standard to
tie their disparate networks together. We discuss TCP/IP in detail in Chapter 7 .
The resulting IT infrastructure links different pieces of computer hardware
and smaller networks into an enterprise-wide network so that information can
flow freely across the organization and between the firm and other organiza-
tions. It can link different types of computer hardware, including mainframes,
servers, PCs, and mobile devices, and it includes public infrastructures such as
the telephone system, the Internet, and public network services. The enterprise
infrastructure also requires software to link disparate applications and enable
data to flow freely among different parts of the business, such as enterprise
applications (see Chapters 2 and 9 ) and web services (discussed in Section 5- 4 ).
Cloud and Mobile Computing Era (2000 to Present)
The growing bandwidth power of the Internet has pushed the client/server
model one step further, toward what is called the “cloud computing model.”
Cloud computing refers to a model of computing that provides access to a
shared pool of computing resources (computers, storage, applications, and
services) over the network, often the Internet. These “clouds” of computing
Web Server Application ServerClient
In a multitiered client/server network, client requests for service are handled by different levels of servers.
200 Part Two Information Technology Infrastructure

resources can be accessed on an as-needed basis from any connected device
and location.
Cloud computing is now the fastest growing form of computing. According to
the International Data Corporation ( IDC ), worldwide spending on public cloud
services is growing at a 19.4 percent compound annual growth rate, nearly six
times the rate of overall IT spending growth—from nearly $70 billion in 2015 to
more than $141 billion in 2019 ( International Data Corporation, 2016 ).
Thousands or even hundreds of thousands of computers are located in cloud
data centers, where they can be accessed by desktop computers, laptop com-
puters, tablets, entertainment centers, smartphones, and other client machines
linked to the Internet. Amazon, Google, IBM, and Microsoft operate huge, scal-
able cloud computing centers that provide computing power, data storage, and
high-speed Internet connections to firms that want to maintain their IT infra-
structures remotely. Firms such as Google, Microsoft, SAP, Oracle, and Sales- sell software applications as services delivered over the Internet.
We discuss cloud and mobile computing in more detail in Section 5- 3 . The
Learning Tracks include a table titled “Comparing Stages in IT Infrastruc-
ture Evolution,” which compares each era on the infrastructure dimensions
Technology Drivers of Infrastructure Evolution
The changes in IT infrastructure we have just described have resulted from
developments in computer processing, memory chips, storage devices, tele-
communications and networking hardware and software, and software design
that have exponentially increased computing power while exponentially reduc-
ing costs. Let’s look at the most important developments.
Moore’s Law and Microprocessing Power
In 1965, Gordon Moore, the director of Fairchild Semiconductor’s Research and
Development Laboratories, wrote in Electronics magazine that since the first
microprocessor chip was introduced in 1959, the number of components on a
chip with the smallest manufacturing costs per component (generally transis-
tors) had doubled each year. This assertion became the foundation of Moore’s
Law . Moore later reduced the rate of growth to a doubling every two years.
There are at least three variations of Moore’s Law, none of which Moore ever
stated: (1) the power of microprocessors doubles every 18 months, (2) comput-
ing power doubles every 18 months, and (3) the price of computing falls by half
every 18 months.
Figure 5. 4 illustrates the relationship between number of transistors on a
microprocessor and millions of instructions per second (MIPS), a common
measure of processor power. Figure 5. 5 shows the exponential decline in the
cost of transistors and rise in computing power. For instance, in 2016, you could
buy an Intel i7 quad-core processor chip with 2.5 billion transistors for about
one ten-millionth of a dollar per transistor.
Exponential growth in the number of transistors and the power of processors
coupled with an exponential decline in computing costs may not be able to con-
tinue much longer. Chip manufacturers continue to miniaturize components.
Today’s transistors should no longer be compared to the size of a human hair
but rather to the size of a virus. Within the next five years or so, chip makers
may reach the physical limits of semiconductor size. At that point they may
need to use alternatives to fashioning chips from silicon or finding other ways
to make computers more powerful ( Markoff, 2016 ).
Chapter 5 IT Infrastructure and Emerging Technologies 201

Processing power (MIPS) N
r o
f tr
Moore’s Law Means
More Performance
Packing more than 5 billion transistors into a tiny microprocessor has exponentially increased process-
ing power. Processing power has increased to more than 250,000 MIPS (about 2.6 billion instructions
per second).
Source: Authors’ estimate.
Packing more transistors into less
space has driven dramatic reductions
in their cost and in the cost of the products
they populate.
Transistor Price
in U.S. Dollars
One Tenth
One Hundredth
One Thousandth
One Ten-Thousandth
One Hundred-Thousandth
One Millionth
One Ten-Millionth
Moore’s Law
Begins 1965
Moore’s Law Means
Decreasing Costs
Source: Authors’ estimate.
202 Part Two Information Technology Infrastructure

Chip manufacturers can shrink the size of transistors down to the width
of several atoms by using nanotechnology. Nanotechnology uses individual
atoms and molecules to create computer chips and other devices that are thou-
sands of times smaller than current technologies permit. Chip manufacturers
are trying to develop a manufacturing process to produce nanotube processors
economically. Stanford University scientists have built a nanotube computer.
The Law of Mass Digital Storage
A second technology driver of IT infrastructure change is the Law of Mass Digi-
tal Storage. The amount of digital information is roughly doubling every year
Lyman and Varian, 2003 ). Fortunately, the cost of storing digital information is
falling at an exponential rate of 100 percent a year. Figure 5. 6 shows that the
number of megabytes that can be stored on magnetic media for $1 from 1950 to
the present roughly doubled every 15 months. In 2016, a 500 gigabyte hard disk
drive sells at retail for about $50.
Metcalfe’s Law and Network Economics
Moore’s Law and the Law of Mass Digital Storage help us understand why com-
puting resources are now so readily available. But why do people want more
computing and storage power? The economics of networks and the growth of
the Internet provide some answers.
Robert Metcalfe—inventor of Ethernet local area network technology—
claimed in 1970 that the value or power of a network grows exponentially as
a function of the number of network members. Metcalfe and others point to
the increasing returns to scale that network members receive as more and more
people join the network. As the number of members in a network grows lin-
early, the value of the entire system grows exponentially and continues to grow
as members increase. Demand for information technology has been driven by
the social and business value of digital networks, which rapidly multiply the
number of actual and potential links among network members.
Nanotubes are tiny tubes about
10,000 times thinner than a
human hair. They consist of
rolled-up sheets of carbon hexa-
gons and have potential use as
minuscule wires or in ultrasmall
electronic devices and are very
powerful conductors of electrical
© Owen Thomas/123RF
Chapter 5 IT Infrastructure and Emerging Technologies 203

Data Storage Per Dollar
Cloud storage services like Google Drive provide 100 gigabytes of storage for $1.99 per month.
Source: Authors’ estimates.
Declining Communications Costs and the Internet
A fourth technology driver transforming IT infrastructure is the rapid decline
in the costs of communication and the exponential growth in the size of the
Internet. Today there are more than 3.5 billion Internet users worldwide ( Inter-, 2016 ). Figure 5. 7 illustrates the exponentially declining cost
of communication both over the Internet and over telephone networks (which
increasingly are based on the Internet). As communication costs fall toward a
very small number and approach zero, utilization of communication and com-
puting facilities explode.
To take advantage of the business value associated with the Internet, firms
must greatly expand their Internet connections, including wireless connectiv-
ity, and greatly expand the power of their client/server networks, desktop cli-
ents, and mobile computing devices. There is every reason to believe these
trends will continue.
Standards and Network Effects
Today’s enterprise infrastructure and Internet computing would be impossible—
both now and in the future—without agreements among manufacturers and
widespread consumer acceptance of technology standards . Technology stan-
dards are specifications that establish the compatibility of products and the abil-
ity to communicate in a network.
Technology standards unleash powerful economies of scale and result in
price declines as manufacturers focus on the products built to a single standard.
Without these economies of scale, computing of any sort would be far more
expensive than is currently the case. Table 5. 1 describes important standards
that have shaped IT infrastructure.
204 Part Two Information Technology Infrastructure

American Standard Code for Information
Interchange (ASCII) (1958)
Made it possible for computer machines from different manufacturers to exchange
data; later used as the universal language linking input and output devices such as
keyboards and mice to computers. Adopted by the American National Standards
Institute in 1963.
Common Business Oriented Language (COBOL)
An easy-to-use software language that greatly expanded the ability of programmers
to write business-related programs and reduced the cost of software. Sponsored by
the Defense Department in 1959.
Unix (1969–1975) A powerful multitasking, multiuser, portable operating system initially developed at
Bell Labs (1969) and later released for use by others (1975). It operates on a wide
variety of computers from different manufacturers. Adopted by Sun, IBM, HP, and
others in the 1980s, it became the most widely used enterprise-level operating
Transmission Control Protocol/Internet Protocol
(TCP/IP) (1974)
Suite of communications protocols and a common addressing scheme that enables
millions of computers to connect together in one giant global network (the Internet).
Later, it was used as the default networking protocol suite for local area networks
and intranets. Developed in the early 1970s for the U.S. Department of Defense.
Ethernet (1973) A network standard for connecting desktop computers into local area networks that
enabled the widespread adoption of client/server computing and local area networks
and further stimulated the adoption of personal computers.
IBM/Microsoft/Intel Personal Computer (1981) The standard Wintel design for personal desktop computing based on standard Intel
processors and other standard devices, Microsoft DOS, and later Windows software.
The emergence of this standard, low-cost product laid the foundation for a 25-year
period of explosive growth in computing throughout all organizations around the
globe. Today, more than 1 billion PCs power business and government activities
every day.
World Wide Web (1989–1993) Standards for storing, retrieving, formatting, and displaying information as a
worldwide web of electronic pages incorporating text, graphics, audio, and video
enables creation of a global repository of billions of webpages.
1995 1997 1999 2001 2003 2005 2006 2016
Verizon FiOS (fiber to the home) delivers 1 kilobit of data for a retail price less than 2 thousandths of
a penny.
Source: Authors.
Chapter 5 IT Infrastructure and Emerging Technologies 205

Beginning in the 1990s, corporations started moving toward standard com-
puting and communications platforms. The Wintel PC with the Windows oper-
ating system and Microsoft Office desktop productivity applications became
the standard desktop and mobile client computing platform. (It now shares the
spotlight with other standards, such as Apple’s iOS and Macintosh operating sys-
tems and the Android operating system.) Widespread adoption of Unix-Linux
as the enterprise server operating system of choice made possible the replace-
ment of proprietary and expensive mainframe infrastructures. In telecommu-
nications, the Ethernet standard enabled PCs to connect together in small local
area networks (LANs ; see Chapter 7 ), and the TCP/IP standard enabled these
LANs to be connected into firmwide networks, and ultimately, to the Internet.
5- 2 What are the components of IT infrastructure?
IT infrastructure today is composed of seven major components. Figure 5. 8
illustrates these infrastructure components and the major vendors within each
component category. These components constitute investments that must be
coordinated with one another to provide the firm with a coherent infrastructure.
Computer Hardware
Oracle Sun
Data Management
and Storage
SQL Server
Consultants and
System Integrators
Accenture Networking/
Microsoft Windows Server
AT&T, Verizon
IT Infrastructure Ecosystem
Operating Systems
Microsoft Windows
Mac OS X
Internet Platforms
Microsoft IIS, .NET
Enterprise Software
(including middleware)
There are seven major components that must be coordinated to provide the firm with a coherent IT infrastructure. Listed here
are major technologies and suppliers for each component.
206 Part Two Information Technology Infrastructure

In the past, technology vendors supplying these components offered pur-
chasing firms a mixture of incompatible, proprietary, partial solutions that
could not work with other vendor products. Increasingly, vendor firms have
been forced to cooperate in strategic partnerships with one another in order to
keep their customers. For instance, a hardware and services provider such as
IBM cooperates with all the major enterprise software providers, has strategic
relationships with system integrators, and promises to work with whichever
data management products its client firms wish to use (even though it sells its
own database management software called DB2).
Another big change is that companies are moving more of their IT infra-
structure to the cloud or to outside services, owning and managing much less
on their premises. According to International Data Corporation , by 2020, busi-
ness spending on cloud infrastructure will account for roughly half of the total
computing resources budget. Firms’ IT infrastructures will increasingly be an
amalgam of components and services that are partially owned, partially rented
or licensed, partially located on site, and partially supplied by external vendors
or cloud services.
Computer Hardware Platforms
Firms worldwide are expected to spend $626 billion on computer hardware
devices in 2016, including mainframes, servers, PCs, tablets, and smartphones.
All these devices constitute the computer hardware platform for corporate (and
personal) computing worldwide.
Most business computing takes place using microprocessor “chips” manufac-
tured or designed by Intel Corporation and, to a lesser extent, AMD Corpora-
tion. Intel and AMD processors are often referred to as “i86” processors because
the original IBM PCs used an Intel 8086 processor and all the Intel (and AMD)
chips that followed are downward compatible with this processor. (For instance,
you should be able to run a software application designed 10 years ago on a new
PC you bought yesterday.)
The computer platform changed dramatically with the introduction of
mobile computing devices, from the iPod in 2001 to the iPhone in 2007 and the
iPad in 2010. Worldwide, 2 billion people use smartphones. You can think of
these devices as a second computer hardware platform, one that is consumer
The computers with Intel microprocessors in the first computer hardware
platform use complex instruction set computing (CISC) with several thousand
instructions built into the chip. This requires a considerable number of tran-
sistors per processor, consumes power, and generates heat. Mobile devices in
the second computer hardware platform are not required to perform as many
tasks as computers in the first computer hardware platform. They are able to
use reduced instruction set computing (RISC), which contains a smaller set
of instructions, consumes less power, and generates less heat. RISC proces-
sors for mobile devices are manufactured by a wide range of firms, includ-
ing Apple, Samsung, and Qualcomm, using an architecture designed by ARM
Mainframes have not disappeared. They continue to be used to reliably
and securely handle huge volumes of transactions, for analyzing very large
quantities of data, and for handling large workloads in cloud computing cen-
ters. The mainframe is still the digital workhorse for banking and telecommu-
nications networks that are often running software programs that are older
and require a specific hardware platform. Currently, mainframes process 30
Chapter 5 IT Infrastructure and Emerging Technologies 207

billion business transactions per day, and 80 percent of the world’s corporate
data also originates on the mainframe (, 2015 ).
However, the number of providers has dwindled to one: IBM. IBM has also
repurposed its mainframe systems so they can be used as giant servers for
enterprise networks and corporate websites. A single IBM mainframe can run
thousands of instances of Linux or Windows Server software and is capable of
replacing thousands of smaller servers (see the discussion of virtualization in
Section 5- 3 ).
Operating System Platforms
The leading operating systems for corporate servers are Microsoft Windows
Server, Unix , and Linux , an inexpensive and robust open source relative of
Unix. Microsoft Windows Server is capable of providing enterprise-wide oper-
ating system and network services and appeals to organizations seeking Win-
dows-based IT infrastructures. Unix and Linux are scalable, reliable, and much
less expensive than mainframe operating systems. They can also run on many
different types of processors. The major providers of Unix operating systems
are IBM, HP, and Oracle-Sun, each with slightly different and partially incom-
patible versions.
At the client level, 81 percent of PCs use some form of the Microsoft Windows
operating system (such as Windows 10, Windows 8, or Windows 7) to manage
the resources and activities of the computer. However, there is now a much
greater variety of client operating systems than in the past, with new operating
systems for computing on handheld mobile digital devices or cloud-connected
Google’s Chrome OS provides a lightweight operating system for cloud com-
puting using a web-connected computer. Programs are not stored on the user’s
computer but are used over the Internet and accessed through the Chrome
web browser. User data reside on servers across the Internet. Android is an
open source operating system for mobile devices such as smartphones and tab-
let computers developed by the Open Handset Alliance led by Google. It has
become the most popular smartphone platform worldwide, competing with
iOS, Apple’s mobile operating system for the iPhone, iPad, and iPod Touch.
Android is installed on more than half the tablets, smartphones, and portable
computers in use globally.
Conventional client operating system software is designed around the
mouse and keyboard but increasingly is becoming more natural and intuitive
by using touch technology. iOS , the operating system for the phenomenally
popular Apple iPad, iPhone, and iPod Touch, features a multitouch interface,
where users employ one or more fingers to manipulate objects on a screen
without a mouse or keyboard. Microsoft’s Windows 10 and Windows 8 , which
run on tablets as well as PCs, have multitouch capabilities, as do many Android
Enterprise Software Applications
Firms worldwide are expected to spend about $321 billion in 2016 on software
for enterprise applications that are treated as components of IT infrastructure.
We introduced the various types of enterprise applications in Chapter 2 , and
Chapter 9 provides a more detailed discussion of each.
208 Part Two Information Technology Infrastructure

The largest providers of enterprise application software are SAP and Oracle.
Also included in this category is middleware software supplied by vendors such
as IBM and Oracle for achieving firmwide integration by linking the firm’s exist-
ing application systems. Microsoft is attempting to move into the lower ends of
this market by focusing on small and medium-sized businesses.
Data Management and Storage
Enterprise database management software is responsible for organizing and
managing the firm’s data so that they can be efficiently accessed and used.
Chapter 6 describes this software in detail. The leading database software pro-
viders are IBM (DB2), Oracle, Microsoft (SQL Server), and Sybase (Adaptive
Server Enterprise). MySQL is a Linux open source relational database product
now owned by Oracle Corporation, and Apache Hadoop is an open source
software framework for managing very large data sets (see Chapter 6 ) . The
physical data storage market for large-scale systems is dominated by EMC
Networking/Telecommunications Platforms
Companies worldwide are expected to spend $1.44 trillion for telecommunica-
tions services in 2016 ( Gartner, Inc., 2016 ). Windows Server is predominantly
used as a local area network operating system, followed by Linux and Unix.
Large, enterprise-wide area networks use some variant of Unix. Most local area
networks, as well as wide area enterprise networks, use the TCP/IP protocol
suite as a standard (see Chapter 7 ) .
Cisco and Juniper Networks are leading networking hardware providers.
Telecommunications platforms are typically provided by telecommunications/
telephone services companies that offer voice and data connectivity, wide area
networking, wireless services, and Internet access. Leading telecommunica-
tions service vendors include AT&T and Verizon. This market is exploding with
new providers of cellular wireless, high-speed Internet, and Internet telephone
Internet Platforms
Internet platforms include hardware, software, and management services to
support a firm’s website, including web hosting services, routers, and cabling
or wireless equipment. A web hosting service maintains a large web server,
or series of servers, and provides fee-paying subscribers with space to maintain
their websites.
The Internet revolution created a veritable explosion in server computers,
with many firms collecting thousands of small servers to run their Internet
operations. There has been a steady push to reduce the number of server com-
puters by increasing the size and power of each and by using software tools
that make it possible to run more applications on a single server. The Internet
hardware server market has become increasingly concentrated in the hands of
IBM, Dell, Oracle, and HP, as prices have fallen dramatically.
The major web software application development tools and suites are sup-
plied by Microsoft (Microsoft Visual Studio and the Microsoft .NET family of
development tools), Oracle-Sun (Sun’s Java is the most widely used tool for
developing interactive web applications on both the server and client sides),
Chapter 5 IT Infrastructure and Emerging Technologies 209

and a host of independent software developers, including Adobe (Creative
Suite). Chapter 7 describes the components of the firm’s Internet platform in
greater detail.
Consulting and System Integration Services
Today, even a large firm does not have the staff, the skills, the budget, or the
necessary experience to deploy and maintain its entire IT infrastructure.
Implementing a new infrastructure requires (as noted in Chapters 13 and 14 )
significant changes in business processes and procedures, training and educa-
tion, and software integration. Leading consulting firms providing this exper-
tise include Accenture, IBM Global Business Services, HP, Infosys, and Wipro
Software integration means ensuring the new infrastructure works with the
firm’s older, so-called legacy systems and ensuring the new elements of the
infrastructure work with one another. Legacy systems are generally older
transaction processing systems created for mainframe computers that continue
to be used to avoid the high cost of replacing or redesigning them. Replacing
these systems is cost prohibitive and generally not necessary if these older sys-
tems can be integrated into a contemporary infrastructure.
5- 3 What are the current trends in computer
hardware platforms?
The exploding power of computer hardware and networking technology has
dramatically changed how businesses organize their computing power, putting
more of this power on networks and mobile handheld devices. We look at seven
hardware trends: the mobile digital platform, consumerization of IT and BYOD,
quantum computing, virtualization, cloud computing, green computing, and
high-performance/power-saving processors.
The Mobile Digital Platform
Chapter 1 pointed out that new mobile digital computing platforms have
emerged as alternatives to PCs and larger computers. The iPhone and Android
smartphones have taken on many functions of PCs, including transmitting
data, surfing the web, transmitting e-mail and instant messages, displaying
digital content, and exchanging data with internal corporate systems. The new
mobile platform also includes small, lightweight netbooks optimized for wire-
less communication and Internet access, tablet computers such as the iPad,
and digital e-book readers such as Amazon’s Kindle with some web access
Smartphones and tablet computers are increasingly used for business com-
puting as well as for consumer applications. For example, senior executives at
General Motors are using smartphone applications that drill down into vehicle
sales information, financial performance, manufacturing metrics, and project
management status.
Wearable computing devices are a recent addition to the mobile digital plat-
form. These include smartwatches, smart glasses, smart ID badges, and activity
trackers. Wearable computing technology has business uses, and it is changing
the way firms work, as described in the Interactive Session on Technology.
210 Part Two Information Technology Infrastructure

It looks like wearable computing is taking off. Smart-
watches, smart glasses, smart ID badges, and activ-
ity trackers promise to change how we go about
each day and the way we do our jobs. According to
an April 2015 report surveying 2,400 U.S. CIOs by
IT staffing firm Robert Half Technology, 81 percent
expect wearable computing devices such as watches
and glasses to become common workplace tools.
Doctors and nurses are using smart eyewear for
hands-free access to patients’ medical records. Oil rig
workers sport smart helmets to connect with land-
based experts, who can view their work remotely
and communicate instructions. Warehouse managers
are able to capture real-time performance data using
a smartwatch to better manage distribution and ful-
fillment operations. Wearable computing devices
improve productivity by delivering information to
workers without requiring them to interrupt their
tasks, which in turn empowers employees to make
more informed decisions more quickly.
Although primarily consumer devices, smart-
watches are being used for business. The Apple
Watch, for example, has a number of features to
make employees more productive. It can take phone
calls and accept voice commands. It will display an
important message, e-mail, or calendar appointment
on your wrist. Instead of buzzing loudly and with
every e-mail, text message, and calendar alert you
receive, the watch uses subtle, discreet vibrations
that won’t be a distraction in the middle of a meet-
ing. There are Apple Watch versions of Evernote
(note taking), PowerPoint (electronic presentations),
and Invoice2go, which will automatically prompt you
to start logging your work time as soon as you arrive
at a job site, send basic invoices, and receive alerts
when they’re paid. has developed several enterprise
applications for the Apple Watch. Salesforce1 for
Apple Watch delivers instant notifications to sales-
people, service agents, and other business users to
help speed up their work. For example, sales manag-
ers can receive a discount approval request and take
action right from the watch. Customer service man-
agers can receive alerts if a critical case requires
immediate attention or call wait times are about to
exceed thresholds. Digital marketers can be alerted
when a marketing campaign surpasses a goal. Sales-
force Analytics for Apple Watch enables Salesforce
Wearable Computers Change How We Work
customers to use analytics data delivered to their
smartwatches to view performance metrics, uncover
new insights, and take action with dashboards.
Users will also be able to query via Voice Search
to access a report, view a dashboard, or find other
Global logistics company DHL worked with Ricoh ,
the imaging and electronics company, and Ubimax ,
a wearable computing services and solutions com-
pany, to implement “vision picking” in its warehouse
operations. Location graphics are displayed on smart-
glasses guiding staffers through the warehouse to
both speed the process of finding items and reduce
errors. The company says the technology delivered a
25 percent increase in efficiency.
Right now, vision picking gives workers locational
information about the items they need to retrieve
and allows them to automatically scan retrieved
items. Future enhancements will enable the system
to plot optimal routes through the warehouse, pro-
vide pictures of items to be retrieved (a key aid in
case an item has been misplaced on the warehouse
shelves), and instruct workers on loading carts and
pallets more efficiently.
Southern Co. , an Atlanta-based energy company,
is experimenting with several different wearables in
its power plants and its power distribution and trans-
mission pipeline. Southern recently deployed both
head-mounted and wrist-mounted computers and
performed several “proofs of concept” with Google
Glass, Apple Watch, and the Moto 360 Android Wear
device. The proofs of concept focused on enhanc-
ing plant workers’ ability to follow documented
procedures more accurately and to document adher-
ence to those procedures. The company also piloted
Bluetooth video cameras worn on the head for docu-
menting work processes and for videoconferencing
between field personnel and central office personnel.
Southern Co. now uses head-worn cameras in some
plants and field locations.
At Walt Disney World Resort in Orlando, Florida,
guests are issued a MagicBand, a radio frequency
identification (RFID) wristband, which serves as
their hotel room key and park entrance ticket and
can be assigned a PIN and linked to a credit card to
make purchases. The wristband is also used to link
photos to guest accounts and will soon connect to a
vacation-planning system. Staff are equipped with
Chapter 5 IT Infrastructure and Emerging Technologies 211

Consumerization of IT and BYOD
The popularity, ease of use, and rich array of useful applications for smart-
phones and tablet computers have created a groundswell of interest in allowing
employees to use their personal mobile devices in the workplace, a phenom-
enon popularly called “bring your own device” (BYOD) . BYOD is one aspect of
the consumerization of IT , in which new information technology that first
emerges in the consumer market spreads into business organizations. Consum-
erization of IT includes not only mobile personal devices but also business uses
of software services that originated in the consumer marketplace as well, such
as Google and Yahoo search, Gmail, Google Apps, Dropbox , and even Facebook
and Twitter.
Consumerization of IT is forcing businesses to rethink the way they obtain
and manage information technology equipment and services. Historically, at
least in large firms, the IT department was responsible for selecting and man-
aging the information technology and applications used by the firm and its
employees. It furnished employees with desktops or laptops that were able to
access corporate systems securely. The IT department maintained control over
the firm’s hardware and software to ensure that the business was being pro-
tected and that information systems served the purposes of the firm and its
management. Today, employees and business departments are playing a much
larger role in technology selection, in many cases demanding that employees
be able to use their own personal computers, smartphones, and tablets to access
the corporate network. It is more difficult for the firm to manage and control
long-range RFID readers so they can personally greet
guests. Aggregated RFID data will be used to mini-
mize attraction wait times. Messages entice guests
to relocate to less busy areas of the park. FastPass+,
Disney’s ride reservation system, allocates guests to
the most popular attractions by assigning one-hour
return windows for express entrance.
The value of wearable computing devices isn’t
from transferring the same information from a lap-
top or smartphone to a smartwatch or eyeglass dis-
play. Rather, it’s about finding ways to use wearables
to augment and enhance business processes. Suc-
cessful adoption of wearable computing depends not
only on cost effectiveness but on the development of
new and better apps and integration with existing IT
infrastructure and the organization’s tools for man-
aging and securing mobile devices (see the chapter-
ending case study.)
Sources: Mary K. Pratt, “Wearables in the Enterprise? Yes, Really!”
Computerworld , February 24, 2016; , accessed
May 5, 2016; Bob Violino, “Wearables in the Workplace: Potential and
Pitfalls,” Baseline , September 9, 2015; Brett Nuckles, “Apple Watch:
Is It Good for Business?” Business News Daily , May 12, 2015; Dennis
McCafferty, “Why Wearable Tech Needs Killer Business Apps,” CIO
Insight, May 1, 2015; and Daisuke Wakabayashi, “What Exactly Is an
Apple Watch For?” Wall Street Journal, February 16, 2015.
1. Wearables have the potential to change the way
organizations and workers conduct business. Dis-
cuss the implications of this statement.
2. How would a business process such as ordering a
product for a customer in the field be changed if
the salesperson was wearing a smartwatch
equipped with Salesforce software?
3. What management, organization, and technology
issues would have to be addressed if a company
was thinking of equipping its workers with a wear-
able computing device?
4. What kinds of businesses are most likely to benefit
from wearable computers? Select a business and
describe how a wearable computing device could
help that business improve operations or decision
212 Part Two Information Technology Infrastructure

these consumer technologies and make sure they serve the needs of the busi-
ness. The chapter- ending case study explores some of these management chal-
lenges created by BYOD and IT consumerization.
Quantum Computing
Quantum computing is an emerging technology with the potential to dramati-
cally boost computer processing power to find answers to problems that would
take conventional computers many years to solve. Quantum computing uses
the principles of quantum physics to represent data and perform operations on
these data. While conventional computers handle bits of data either as 0 or 1
but not both, quantum computing can process bits as 0, 1, or both simultane-
ously. A quantum computer would gain enormous processing power through
this ability to be in multiple states at once, allowing it to solve some scientific
and business problems millions of times faster than can be done today. IBM has
made quantum computing available to the general public through IBM Cloud.
Google’s Alphabet and Lockheed Martin currently use quantum platforms
( Follow, 2016 ).
Virtualization is the process of presenting a set of computing resources (such
as computing power or data storage) so that they can all be accessed in ways
that are not restricted by physical configuration or geographic location. Virtual-
ization enables a single physical resource (such as a server or a storage device)
to appear to the user as multiple logical resources. For example, a server or
mainframe can be configured to run many instances of an operating system
(or different operating systems) so that it acts like many different machines.
Each virtual server “looks” like a real physical server to software programs, and
multiple virtual servers can run in parallel on a single machine. VMware is the
leading virtualization software vendor for Windows and Linux servers.
Server virtualization is a common method of reducing technology costs by
providing the ability to host multiple systems on a single physical machine.
Most servers run at just 15 to 20 percent of capacity, and virtualization can
boost server utilization rates to 70 percent or higher. Higher utilization rates
translate into fewer computers required to process the same amount of work,
reduced data center space to house machines, and lower energy usage. Vir-
tualization also facilitates centralization and consolidation of hardware
Virtualization also enables multiple physical resources (such as storage
devices or servers) to appear as a single logical resource, as in software-
defined storage (SDS) , which separates the software for managing data stor-
age from storage hardware. Using software, firms can pool and arrange multiple
storage infrastructure resources and efficiently allocate them to meet specific
application needs. SDS enables firms to replace expensive storage hardware
with lower-cost commodity hardware and cloud storage hardware. There is less
under- or over-utilization of storage resources ( Letschin, 2016 ).
Cloud Computing
It is now possible for companies and individuals to perform all of their com-
puting work using a virtualized IT infrastructure in a remote location, as is
the case with cloud computing. Cloud computing is a model of computing in
Chapter 5 IT Infrastructure and Emerging Technologies 213

which computer processing, storage, software, and other services are provided
as a shared pool of virtualized resources over a network, primarily the Internet.
These “clouds” of computing resources can be accessed on an as-needed basis
from any connected device and location. Figure 5. 9 illustrates the cloud com-
puting concept.
The U.S. National Institute of Standards and Technology (NIST) defines
cloud computing as having the following essential characteristics ( Mell and
Grance, 2009 ):
• On-demand self-service: Consumers can obtain computing capabilities such
as server time or network storage as needed automatically on their own.
• Ubiquitous network access: Cloud resources can be accessed using stan-
dard network and Internet devices, including mobile platforms.
• Location-independent resource pooling: Computing resources are pooled
to serve multiple users, with different virtual resources dynamically assigned
according to user demand. The user generally does not know where the com-
puting resources are located.
Platform Services
Cloud Computing
Application Services
Infrastructure Services
Laptops Identity
iPhone Tablet Computers
Computing Resource
Block Storage
Content Servers
In cloud computing, hardware and software capabilities are a pool of virtualized resources provided over a network, often
the Internet. Businesses and employees have access to applications and IT infrastructure anywhere, at any time, and on
any device.
214 Part Two Information Technology Infrastructure

• Rapid elasticity: Computing resources can be rapidly provisioned,
increased, or decreased to meet changing user demand.
• Measured service: Charges for cloud resources are based on amount of
resources actually used.
Cloud computing consists of three different types of services:
• Infrastructure as a service (IaaS): Customers use processing, storage,
networking, and other computing resources from cloud service providers to
run their information systems. For example, Amazon uses the spare capacity
of its IT infrastructure to provide a broadly based cloud environment sell-
ing IT infrastructure services. These include its Simple Storage Service (S3)
for storing customers’ data and its Elastic Compute Cloud (EC2) service for
running their applications. Users pay only for the amount of computing and
storage capacity they actually use. (See the Interactive Session on Organiza-
tions). Figure 5. 10 shows the range of services Amazon Web Services offers.
• Software as a service (SaaS): Customers use software hosted by the
vendor on the vendor’s cloud infrastructure and delivered as a service over
a network. Leading software as a service (SaaS) examples are Google
Apps, which provides common business applications online, and Salesforce.
com , which leases customer relationship management and related software
services over the Internet. Both charge users an annual subscription fee,
although Google Apps has a pared-down free version. Users access these
applications from a web browser, and the data and software are maintained
on the providers’ remote servers.
• Platform as a service (PaaS): Customers use infrastructure and program-
ming tools supported by the cloud service provider to develop their own
applications. For example, IBM offers a Bluemix service for software devel-
opment and testing on the IBM cloud. Another example is’s , which allows developers to build applications that are hosted on
its servers as a service.
Deployment Database
Amazon Web Services (AWS) is a collection of web services that Amazon provides to users of its cloud
platform. AWS is the largest provider of cloud computing services In the United States.
Chapter 5 IT Infrastructure and Emerging Technologies 215

Glory Finds Solutions in the Cloud
Ever wonder who keeps track of all your ATM trans-
actions? If you use ATMs anywhere in the globe —
and who doesn’t—chances are good that specialist
firms like Glory Global Solutions Ltd. are manag-
ing the process of dispensing and depositing cash
ATM transactions. It’s called the cash management
business, and it’s at the heart of banking activity
in thousands of bank branches and global banking
systems, and an important part of the retail vending,
automated self-service venues, and gaming indus-
tries (such as the gambling industry, which runs on
cash). There are over 3.2 million ATMs worldwide,
and consumers made 10 billion withdrawals in 2016,
amounting to just under €1 trillion in value. Given
the ubiquity of ATMs, cash transactions require
global scale systems to manage the flow of value.
One impact of the financial meltdown beginning
in 2008 is that banks shut down thousands of bank
branches, resulting in a spurt in ATM cash transac-
tions and an industry-wide move towards automated
teller systems.
Glory Global was founded in 1918 as Kokuei
Machinery in Himeji, Japan. Originally a light bulb
manufacturing firm, it expanded on its manufac-
turing strengths by building the first coin and cash
counters in Japan. By the 1970s it moved into the
manufacture of ATMs worldwide and changed its
name to the Glory Group. Through a series of
acquisitions, Glory expanded rapidly. In 2013 Global
acquired Talaris (a UK-based cash management firm)
to become Glory Global Solutions with headquarters
in Basingstoke, England. Today Glory is one of the
world’s largest cash management solutions providers.
Glory Global Solutions has 2,500 employees, operates
in 100 countries, and generates more than €1.7 bil-
lion annually according to company sources. Glory
remains a Japanese-owned firm that trades on the
Tokyo stock exchange.
Growing through more than 25 acquisitions, the
company quickly became a collection of legacy sys-
tems developed in different countries, by multiple
firms and developers, for different lines of business.
The company also inherited a collection of data
centers from the firms it acquired. The various sys-
tems could not communicate with one another, and
management was unable to “see” all of its businesses
or to understand the business processes of their vari-
ous business segments and operating companies.
In 2015 management decided the firm could not
achieve its strategic goals of growing the business
without being able to streamline and standardize its
business processes worldwide. The inefficiency of
operating so many disparate data centers and the
absence of a single global system operating on a
modern technology platform suggested the need for
a global enterprise database approach and for operat-
ing on a cloud platform provided by a single vendor.
Moving to a cloud solution would greatly reduce its
data management and IT infrastructure costs.
Glory had already begun the move toward a cloud-
based business by deploying Office 365 and other
cloud solutions a few years before. For the first time,
the firm was able to share documents, data, and
presentations across all its business segments. The
firm’s managers believed they could obtain a positive
return on their investment within four years by mov-
ing other processes to a single database and a single
cloud service.
The next challenge was determining which vendor
would be the best choice. There are multiple vendors
of cloud-based computing, from very large firms like
Oracle, SAP, IBM, and HP to smaller, regional provid-
ers. Ultimately, Glory narrowed the choice down to
two global vendors and then decided that Oracle best
fit their needs. The firm had already adopted in its
European operations several elements of Oracle’s
traditional enterprise suite installed on Glory’s own
servers. In the last five years, along with most global
cloud providers, Oracle has moved rapidly towards
offering “computing on demand” as a business
model, where customers do not purchase software
but instead rent the computing power they need and
pay for only as much as they use the service. Having
a single vendor for licensing software and processing
power rather than dealing with multiple vendors was
also seen as a positive factor.
Few firms have the expertise to move rapidly from
a legacy system to a contemporary cloud platform.
Glory reviewed ten vendors of systems integrationor
services and chose a firm called TCS to help them
with the transition and fill in gaps in the firm’s own
knowledge. TCS had considerable experience with
Oracle enterprise systems and had a number of pre-
built modules that could used by Glory. System inte-
grators are consulting firms that have expertise in
the hardware and software of business systems and
216 Part Two Information Technology Infrastructure

bring with them a knowledge and background in best
business practices learned over many years in differ-
ent industries. They help firms redesign their busi-
ness processes and merge them into the enterprise
software and IT infrastructure. After twelve months
of work, the new platform was ready to deploy.
A key challenge facing management was how to
implement these platform changes in 24 countries
with multiple languages and multiple regulations
in each country. This turned out to be a massive
cultural change. Each of the firm’s business units
required training in the new business processes and
the software used to implement the processes. Over
2,000 of the firm’s employees would be using the
new systems, some daily, to perform their jobs. A
direct cutover to the new system was considered
too risky. A parallel system cutover where both the
old and new platforms operate in parallel was con-
sidered too expensive, and too difficult technically.
Management decided instead for a regional roll out
strategy starting with the U.K. headquarters location.
Completed in 2016, the company plans to implement
the new system in the remaining countries over an
eighteen month period, with a target date of 2018 for
complete implementation. Overall, the transition
required four years to completion. Management
believes they will have reduced their annual IT costs
by 50 percent compared to the older legacy systems,
but the real benefit will come from being able to
operate and grow as a single global firm .
Sources: “The Federal Reserve Payments Study 2016,” Federal
Reserve Board (, 2016; “ATM Benchmarking
Study 2016 and Industry Report,” Accenture Report,
com, 2016; Ariella Brown, “Public Cloud Helps Global Firm Grow Its
Business,” CIO Insight, December 13, 2016; Ron Delnevo, “2016 in
the ATM Industry: For Europe, a Year of Heavy Lifting,” January 7,
2016; “Annual Report 2016,” The Glory Global Group 2016, http://
1. Why did Glory choose a cloud solution as opposed
to modernizing the systems it had?
2. Why was it necessary to hire a systems integrator
3. What were the main organizational change
requirements for implementing the new cloud
4. Why did management choose a regional rollout
strategy? Why in the UK?
Chapter 5 IT Infrastructure and Emerging Technologies 217

Chapter 2 discussed Google Docs, Google Apps, and related software ser-
vices for desktop productivity and collaboration. These are among the most
popular software services for consumers, although they are increasingly used
in business. is a leading software service for business. Sales-
force provides customer relationship management (CRM) and other application
software solutions as software services leased over the Internet. Its sales and
service clouds offer applications for improving sales and customer service. A
marketing cloud enables companies to engage in digital marketing interactions
with customers through e-mail, mobile, social, web, and connected products. also provides a community cloud platform for online collabora-
tion and engagement and an analytics cloud platform to deploy sales, service,
marketing, and custom analytics apps. is also a leading example of platform as a service (PaaS).
Its is an application development platform where customers can
develop their own applications for use within the broader Salesforce network. provides a set of development tools and IT services that enable users
to customize their customer relationship management appli-
cations or to build entirely new applications and run them in the cloud on’s data center infrastructure. Salesforce opened up to
other independent software developers and listed their programs on its AppEx-
change, an online marketplace for third-party applications that run on the platform.
A cloud can be private or public. A public cloud is owned and maintained
by a cloud service provider, such as Amazon Web Services, and made available
to the general public or industry group. Public cloud services are often used for
websites with public information and product descriptions, one-time large com-
puting projects, developing and testing new applications, and consumer ser-
vices such as online storage of data, music, and photos. Google Drive, Dropbox,
and Apple iCloud are leading examples of these consumer public cloud services.
A private cloud is operated solely for an organization. It may be managed
by the organization or a third party and may be hosted either internally or
externally. Like public clouds, private clouds are able to allocate storage, com-
puting power, or other resources seamlessly to provide computing resources on
an as-needed basis. Companies that want flexible IT resources and a cloud ser-
vice model while retaining control over their own IT infrastructure are gravitat-
ing toward these private clouds. (Review the chapter- opening case on EasyJet
and the Interactive Session on Organizations).
Because organizations using public clouds do not own the infrastructure,
they do not have to make large investments in their own hardware and soft-
ware. Instead, they purchase their computing services from remote providers
and pay only for the amount of computing power they actually use (utility
computing) or are billed on a monthly or annual subscription basis. The term
on-demand computing has also been used to describe such services.
Cloud computing has some drawbacks. Unless users make provisions for
storing their data locally, the responsibility for data storage and control is in the
hands of the provider. Some companies worry about the security risks related to
entrusting their critical data and systems to an outside vendor that also works
with other companies. Companies expect their systems to be available 24/7
and do not want to suffer any loss of business capability if cloud infrastructures
malfunction. Nevertheless, the trend is for companies to shift more of their
computer processing and storage to some form of cloud infrastructure. Startups
and small companies with limited IT resources and budgets will find public
cloud services especially helpful.
218 Part Two Information Technology Infrastructure

Large firms are most likely to adopt a hybrid cloud computing model where
they use their own infrastructure for their most essential core activities and
adopt public cloud computing for less-critical systems or for additional process-
ing capacity during peak business periods. Table 5. 2 compares the three cloud
computing models. Cloud computing will gradually shift firms from having a
fixed infrastructure capacity toward a more flexible infrastructure, some of it
owned by the firm and some of it rented from giant computer centers owned by
computer hardware vendors. You can find out more about cloud computing in
the Learning Tracks for this chapter .
Green Computing
By curbing hardware proliferation and power consumption, virtualization has
become one of the principal technologies for promoting green computing.
Green computing, or green IT , refers to practices and technologies for design-
ing, manufacturing, using, and disposing of computers, servers, and associated
devices such as monitors, printers, storage devices, and networking and com-
munications systems to minimize impact on the environment.
According to Green House Data, the world’s data centers use as much energy
as the output of 30 nuclear power plants, which amounts to 1.5 percent of all
energy use in the world. Reducing computer power consumption has been a
very high “green” priority. A corporate data center can easily consume over
100 times more power than a standard office building. All this additional power
consumption has a negative impact on the environment and corporate operat-
ing costs. Data centers are now being designed with energy efficiency in mind,
using state-of-the art air-cooling techniques, energy-efficient equipment, virtu-
alization, and other energy-saving practices. Large companies like Microsoft,
Google, Facebook, and Apple are starting to reduce their carbon footprint with
clean energy–powered data centers with power-conserving equipment and
extensive use of wind and hydropower.
Public cloud Third-party service
offering computing,
storage, and software
services to multiple
customers and that is
available to the public
Third-party service
Companies without
major privacy concerns
Companies seeking pay-
as-you go IT services
Companies lacking IT
resources and expertise
Private cloud Cloud infrastructure
operated solely for a
single organization and
hosted either internally
or externally.
In-house IT or private
third-party host
Companies with
stringent privacy and
security requirements
Companies that must
have control over data
Hybrid cloud Combination of private
and public cloud
services that remain
separate entities
In-house IT, private host,
third-party providers
Companies requiring
some in-house control
of IT that are also
willing to assign part of
their IT infrastructures
to a public cloud
Chapter 5 IT Infrastructure and Emerging Technologies 219

High-Performance and Power-Saving Processors
Another way to reduce power requirements and hardware sprawl is to use more
efficient and power-saving processors. Contemporary microprocessors now fea-
ture multiple processor cores (which perform the reading and execution of com-
puter instructions) on a single chip. A multicore processor is an integrated
circuit to which two or more processor cores have been attached for enhanced
performance, reduced power consumption, and more efficient simultaneous
processing of multiple tasks. This technology enables two or more process-
ing engines with reduced power requirements and heat dissipation to perform
tasks faster than a resource-hungry chip with a single processing core. Today
you’ll find PCs with dual-core, quad-core, six-core, and eight-core processors
and servers with 16-core processors.
Intel and other chip manufacturers are working on microprocessors that
minimize power consumption, which is essential for prolonging battery life in
small mobile digital devices. Highly power-efficient microprocessors, such as
the A9 and A10 processors used in Apple’s iPhone and iPad and Intel’s Atom
processor, are used in lightweight smartphones and tablets, intelligent cars,
and healthcare devices. The Apple processors have about one-fiftieth of the
power consumption of a laptop dual-core processor. Intel introduced a line of
ultrasmall, low-power microprocessors called Quark that can be used in wear-
able devices and skin patches or even swallowed to gather medical data.
5- 4 What are the current computer software
platforms and trends?
There are four major themes in contemporary software platform evolution:
• Linux and open source software
• Java, HTML, and HTML5
• Web services and service-oriented architecture
• Software outsourcing and cloud services
Linux and Open Source Software
Open source software is software produced by a community of several hun-
dred thousand programmers around the world. According to the leading open
source professional association, , open source software is free
and can be modified by users. Works derived from the original code must also
be free, and the software can be redistributed by the user without additional
licensing. Open source software is by definition not restricted to any specific
operating system or hardware technology, although most open source software
is currently based on a Linux or Unix operating system.
The open source movement has demonstrated that it can produce commer-
cially acceptable, high-quality software. Popular open source software tools
include the Linux operating system, the Apache HTTP web server, the Mozilla
Firefox web browser, and the Apache OpenOffice desktop productivity suite.
Google’s Android mobile operating system and Chrome web browser are based
on open source tools. You can find out more out more about the Open Source
Definition from the Open Source Initiative and the history of open source soft-
ware in the Learning Tracks for this chapter .
220 Part Two Information Technology Infrastructure

Perhaps the most well-known open source software is Linux, an operating sys-
tem related to Unix. Linux was created by the Finnish programmer Linus Tor-
valds and first posted on the Internet in August 1991. Linux applications are
embedded in cell phones, smartphones, tablet computers and consumer elec-
tronics. Linux is available in free versions downloadable from the Internet or in
low-cost commercial versions that include tools and support from vendors such
as Red Hat.
Although Linux is not used in many desktop systems, it is a leading operat-
ing system for servers, mainframe computers, and supercomputers. IBM, HP,
Intel, Dell, and Oracle have made Linux a central part of their offerings to cor-
porations. Linux has profound implications for corporate software platforms—
cost reduction, reliability and resilience, and integration—because Linux works
on all the major hardware platforms from mainframes to servers to clients.
Software for the Web: Java, HTML, and HTML5
Java is an operating system-independent, processor-independent, object-
oriented programming language created by Sun Microsystems that has become
the leading interactive programming environment for the web. The Java plat-
form has migrated into mobile phones, smartphones, automobiles, music play-
ers, game machines, and set-top cable television systems serving interactive
content and pay-per-view services. Java software is designed to run on any
computer or computing device, regardless of the specific microprocessor or
operating system the device uses. For each of the computing environments in
which Java is used, a Java Virtual Machine interprets Java programming code
for that machine. In this manner, the code is written once and can be used on
any machine for which there exists a Java Virtual Machine.
Java developers can create small applet programs that can be embedded
in webpages and downloaded to run on a web browser. A web browser is an
easy-to-use software tool with a graphical user interface for displaying webpages
and for accessing the web and other Internet resources. Microsoft’s Internet
Explorer, Mozilla Firefox, Google Chrome, and Apple Safari browsers are exam-
ples. At the enterprise level, Java is being used for more complex e-commerce
and e-business applications that require communication with an organization’s
back-end transaction processing systems.
Hypertext Markup Language (HTML) is a page description language for
specifying how text, graphics, video, and sound are placed on a webpage and
for creating dynamic links to other webpages and objects. Using these links, a
user need only point at a highlighted keyword or graphic, click on it, and imme-
diately be transported to another document.
HTML was originally designed to create and link static documents com-
posed largely of text. Today, however, the web is much more social and inter-
active, and many webpages have multimedia elements—images, audio, and
video. Third-party plug-in applications like Flash, Silverlight, and Java have
been required to integrate these rich media with webpages. However, these
add-ons require additional programming and put strains on computer process-
ing. The next evolution of HTML, called HTML5 , solves this problem by mak-
ing it possible to embed images, audio, video, and other elements directly into
a document without processor-intensive add-ons. HTML5 makes it easier for
webpages to function across different display devices, including mobile devices
Chapter 5 IT Infrastructure and Emerging Technologies 221

as well as desktops, and it will support the storage of data offline for apps
that run over the web. Other popular programming tools for web applications
include Ruby and Python. Ruby is an object-oriented programming language
known for speed and ease of use in building web applications, and Python
(praised for its clarity) is being used for building cloud computing applications.
Major websites such as Google, Facebook, Amazon, and Twitter use Python and
Ruby as well as Java.
Web Services and Service-Oriented Architecture
Web services refer to a set of loosely coupled software components that
exchange information with each other using universal web communication
standards and languages. They can exchange information between two differ-
ent systems regardless of the operating systems or programming languages on
which the systems are based. They can be used to build open standard web-
based applications linking systems of two different organizations, and they can
also be used to create applications that link disparate systems within a single
company. Different applications can use web services to communicate with
each other in a standard way without time-consuming custom coding.
The foundation technology for web services is XML , which stands for
Extensible Markup Language . This language was developed in 1996 by the
World Wide Web Consortium (W3C, the international body that oversees the
development of the web) as a more powerful and flexible markup language
than hypertext markup language (HTML) for webpages. Whereas HTML is
limited to describing how data should be presented in the form of webpages,
XML can perform presentation, communication, and storage of data. In XML,
a number is not simply a number; the XML tag specifies whether the number
represents a price, a date, or a ZIP code. Table 5. 3 illustrates some sample XML
By tagging selected elements of the content of documents for their meanings,
XML makes it possible for computers to manipulate and interpret their data
automatically and perform operations on the data without human intervention.
Web browsers and computer programs, such as order processing or enterprise
resource planning (ERP) software, can follow programmed rules for applying
and displaying the data. XML provides a standard format for data exchange,
enabling web services to pass data from one process to another.
Web services communicate through XML messages over standard web pro-
tocols. Companies discover and locate web services through a directory. Using
web protocols, a software application can connect freely to other applications
without custom programming for each different application with which it wants
to communicate. Everyone shares the same standards.
The collection of web services that are used to build a firm’s software
systems constitutes what is known as a service-oriented architecture.
A  service-oriented architecture (SOA) is set of self-contained services that
4 passenger 4
$16,800 $16,800
222 Part Two Information Technology Infrastructure

communicate with each other to create a working software application. Busi-
ness tasks are accomplished by executing a series of these services. Software
developers reuse these services in other combinations to assemble other appli-
cations as needed.
Virtually all major software vendors provide tools and entire platforms for
building and integrating software applications using web services. IBM includes
web service tools in its WebSphere e-business software platform, and Microsoft
has incorporated web services tools in its Microsoft .NET platform.
Dollar Rent A Car’s systems use web services for its online booking system
with Southwest Airlines’s website. Although both companies’ systems are based
on different technology platforms, a person booking a flight on
can reserve a car from Dollar without leaving the airline’s website. Instead of
struggling to get Dollar’s reservation system to share data with Southwest’s
information systems, Dollar used Microsoft .NET web services technology as
an intermediary. Reservations from Southwest are translated into web services
protocols, which are then translated into formats that can be understood by
Dollar’s computers.
Other car rental companies have linked their information systems to airline
companies’ websites before. But without web services, these connections had to
be built one at a time. Web services provide a standard way for Dollar’s comput-
ers to “talk” to other companies’ information systems without having to build
special links to each one. Dollar is now expanding its use of web services to link
directly to the systems of a small tour operator and a large travel reservation
system as well as a wireless website for cell phones and smartphones. It does
not have to write new software code for each new partner’s information sys-
tems or each new wireless device (see Figure 5. 11 ).
Dollar Rent A Car
Dollar Rent A Car uses web services to provide a standard intermediate layer of software to “talk” to
other companies’ information systems. Dollar Rent A Car can use this set of web services to link to
other companies’ information systems without having to build a separate link to each firm’s systems.
Chapter 5 IT Infrastructure and Emerging Technologies 223

Software Outsourcing and Cloud Services
Today, many business firms continue to operate legacy systems that continue
to meet a business need and that would be extremely costly to replace. But they
will purchase or rent most of their new software applications from external
sources. Figure 5. 12 illustrates the rapid growth in external sources of software
for U.S. firms.
There are three external sources for software: software packages from a com-
mercial software vendor, outsourcing custom application development to an
external vendor, (which may or may not be offshore), and cloud-based software
services and tools.
Software Packages and Enterprise Software
We have already described software packages for enterprise applications as one
of the major types of software components in contemporary IT infrastructures.
A software package is a prewritten commercially available set of software pro-
grams that eliminates the need for a firm to write its own software programs for
certain functions, such as payroll processing or order handling.
Enterprise application software vendors such as SAP and Oracle-PeopleSoft
have developed powerful software packages that can support the primary
business processes of a firm worldwide from warehousing, customer rela-
tionship management, and supply chain management to finance and human
resources. These large-scale enterprise software systems provide a single,
integrated, worldwide software system for firms at a cost much less than they
would pay if they developed it themselves. Chapter 9 discusses enterprise
systems in detail.
Sources of Software
Outsourced Software
Software as a Service (SaaS
Total Software Spending
In 2015, U.S. firms spent and estimated $334 billion on software. About 44% of that originated
outside the firm, provided by a variety of vendors. About 10% ($33 billion) was provided by SaaS
vendors as an online cloud-based service.
Sources: BEA National Income and Product Accounts, 2016; authors’ estimates.
224 Part Two Information Technology Infrastructure

Software Outsourcing
Software outsourcing enables a firm to contract custom software development
or maintenance of existing legacy programs to outside firms, which often oper-
ate offshore in low-wage areas of the world. For example, UK communications
regulator Ofcom recently signed a £23 million, six-year contract to outsource
application and infrastructure management to NIIT Technologies. NIIT Tech-
nologies is an Indian firm specializing in application development and main-
tenance, infrastructure management, and business process management. NIIT
provides Ofcom with a service desk, data center services, and application man-
agement and project management services ( Flinders, 2016 ).
Offshore software outsourcing firms have primarily provided lower-level
maintenance, data entry, and call center operations, although more sophisti-
cated and experienced offshore firms, particularly in India, have been hired
for new-program development. However, as wages offshore rise and the costs
of managing offshore projects are factored in (see Chapter 13 ) , some work that
would have been sent offshore is returning to domestic companies.
Cloud-Based Software Services and Tools
In the past, software such as Microsoft Word or Adobe Illustrator came in a box
and was designed to operate on a single machine. Today, you’re more likely to
download the software from the vendor’s website or to use the software as a
cloud service delivered over the Internet.
Cloud-based software and the data it uses are hosted on powerful servers in
data centers and can be accessed with an Internet connection and standard
web browser. In addition to free or low-cost tools for individuals and small busi-
nesses provided by Google or Yahoo, enterprise software and other complex
business functions are available as services from the major commercial software
vendors. Instead of buying and installing software programs, subscribing com-
panies rent the same functions from these services, with users paying either
on a subscription or per-transaction basis. A leading example is of software
as a service (SaaS) is , described earlier in this chapter , which
provides on-demand software services for customer relationship management.
In order to manage their relationship with an outsourcer or technology ser-
vice provider, firms need a contract that includes a service level agreement
(SLA) . The SLA is a formal contract between customers and their service pro-
viders that defines the specific responsibilities of the service provider and the
level of service expected by the customer. SLAs typically specify the nature
and level of services provided, criteria for performance measurement, support
options, provisions for security and disaster recovery, hardware and software
ownership and upgrades, customer support, billing, and conditions for termi-
nating the agreement. We provide a Learning Track on this topic.
Mashups and Apps
The software you use for both personal and business tasks today may be composed
of interchangeable components that integrate freely with other applications on
the Internet. Individual users and entire companies mix and match these software
components to create their own customized applications and to share information
with others. The resulting software applications are called mashups . The idea is
to take different sources and produce a new work that is greater than the sum of
its parts. You have performed a mashup if you’ve ever personalized your Facebook
profile or your blog with a capability to display videos or slide shows.
Web mashups combine the capabilities of two or more online applications
to create a kind of hybrid that provides more customer value than the original
Chapter 5 IT Infrastructure and Emerging Technologies 225

sources alone. For instance, ZipRealty uses Google Maps and data provided by
online real estate database to display a complete list of multiple
listing service (MLS) real estate listings for any ZIP code specified by the user.
Apps are small specialized software programs (application software) that are
designed for mobile devices like smartphones and tablets. They are downloaded
from app stores like Apple’s App Store and Google Play. Google refers to its online
services as apps, including the Google Apps suite of desktop productivity tools.
Windows 10 refers to all of its desktop software programs as apps. But when we
talk about apps today, most of the attention goes to the apps that have been devel-
oped for mobile devices like smartphones and tablets. It is these apps that turn
smartphones and tablets into general-purpose computing tools. First appearing
in 2008, in 2016 there are hundreds of millions of apps for the iOS and Android
mobile operating systems. The use of apps now exceeds the use of mobile brows-
ers, which are much slower and cumbersome for accessing mobile software.
Apps provide a streamlined non-browser pathway for users to perform a
number of tasks, ranging from reading the newspaper to shopping, searching,
personal health monitoring, playing games, and buying. They increasingly are
used by managers as gateways to their firm’s enterprise systems. Because so
many people are now accessing the Internet from their mobile devices, some
say that apps are “the new browsers.” Apps are also starting to influence the
design and function of traditional websites as consumers are attracted to the
look and feel of apps and their speed of operation.
Many apps are free or purchased for a small charge, much less than con-
ventional software, which further adds to their appeal. There are already more
than 2 million apps for the Apple iPhone and iPad platform and a similar num-
ber that run on devices using Google’s Android operating system. Apple reports
that more than 100 billion apps have been downloaded by users. The success of
these mobile platforms depends in large part on the quantity and the quality of
the apps they provide. Apps tie the customer to a specific hardware platform:
As the user adds more and more apps to his or her mobile phone, the cost of
switching to a competing mobile platform rises.
At the moment, the most commonly downloaded apps are games, news and
weather, maps/navigation, social networking, music, and video/movies. But
there are also serious apps for business users that make it possible to create
and edit documents, connect to corporate systems, schedule and participate
in meetings, track shipments, and dictate voice messages (see the Chapter 1
Interactive Session on Management) . Most large online retailers have apps for
consumers for researching and buying goods and services online.
5- 5 What are the challenges of managing IT
infrastructure and management solutions?
Creating and managing a coherent IT infrastructure raises multiple challenges:
dealing with platform and technology change (including cloud and mobile comput-
ing), management and governance, and making wise infrastructure investments.
Dealing with Platform and Infrastructure Change
As firms grow, they often quickly outgrow their infrastructure. As firms shrink,
they can get stuck with excessive infrastructure purchased in better times. How
can a firm remain flexible if investments in IT infrastructure are fixed-cost
226 Part Two Information Technology Infrastructure

purchases and licenses? How well does the infrastructure scale? Scalability
refers to the ability of a computer, product, or system to expand to serve a large
number of users without breaking down. New applications, mergers and acqui-
sitions, and changes in business volume all affect computer workload and must
be considered when planning hardware capacity.
Firms using mobile computing and cloud computing platforms will require
new policies and procedures for managing these platforms. They will need to
inventory all of their mobile devices in business use and develop policies and
tools for tracking, updating, and securing them and for controlling the data and
applications that run on them. Firms using cloud computing and SaaS will need
to fashion new contractual arrangements with remote vendors to make sure
that the hardware and software for critical applications are always available
when needed and that they meet corporate standards for information security.
It is up to business management to determine acceptable levels of computer
response time and availability for the firm’s mission-critical systems to main-
tain the level of business performance that is expected.
Management and Governance
A long-standing issue among information system managers and CEOs has
been the question of who will control and manage the firm’s IT infrastructure.
Chapter  2 introduced the concept of IT governance and described some issues it
addresses. Other important questions about IT governance are: Should depart-
ments and divisions have the responsibility of making their own information
technology decisions, or should IT infrastructure be centrally controlled and
managed? What is the relationship between central information systems man-
agement and business unit information systems management? How will infra-
structure costs be allocated among business units? Each organization will need
to arrive at answers based on its own needs.
Making Wise Infrastructure Investments
IT infrastructure is a major investment for the firm. If too much is spent on
infrastructure, it lies idle and constitutes a drag on the firm’s financial perfor-
mance. If too little is spent, important business services cannot be delivered
and the firm’s competitors (who spent the right amount) will outperform the
under-investing firm. How much should the firm spend on infrastructure? This
question is not easy to answer.
A related question is whether a firm should purchase and maintain its own
IT infrastructure components or rent them from external suppliers, includ-
ing those offering cloud services. The decision either to purchase your own IT
assets or rent them from external providers is typically called the rent-versus-buy
Cloud computing is a low-cost way to increase scalability and flexibility, but
firms should evaluate this option carefully in light of security requirements
and impact on business processes and workflows. In some instances, the cost
of renting software adds up to more than purchasing and maintaining an appli-
cation in-house. Yet there are many benefits to using cloud services including
significant reductions in hardware, software, human resources, and mainte-
nance costs. Moving to cloud computing allows firms to focus on their core
businesses rather than technology issues. As the reliability of cloud computing
has improved greatly in the last decade, in 2016 some Fortune 500 firms are
planning to move the majority of their computing platforms to cloud services.
Chapter 5 IT Infrastructure and Emerging Technologies 227

Total Cost of Ownership of Technology Assets
The actual cost of owning technology resources includes the original cost of
acquiring and installing hardware and software as well as ongoing admin-
istration costs for hardware and software upgrades, maintenance, technical
support, training, and even utility and real estate costs for running and hous-
ing the technology. The total cost of ownership (TCO) model can be used to
analyze these direct and indirect costs to help firms determine the actual cost
of specific technology implementations. Table 5. 4 describes the most important
TCO components to consider in a TCO analysis.
When all these cost components are considered, the TCO for a PC might
run up to three times the original purchase price of the equipment. Gains in
productivity and efficiency from equipping employees with mobile computing
devices must be balanced against increased costs from integrating these devices
into the firm’s IT infrastructure and from providing technical support. Other
cost components include fees for wireless airtime, end-user training, help desk
support, and software for special applications. Costs are higher if the mobile
devices run many different applications or need to be integrated into back-end
systems such as enterprise applications.
Hardware and software acquisition costs account for only about 20 percent
of TCO, so managers must pay close attention to administration costs to under-
stand the full cost of the firm’s hardware and software. It is possible to reduce
some of these administration costs through better management. Many large
firms are saddled with redundant, incompatible hardware and software because
their departments and divisions have been allowed to make their own technol-
ogy purchases.
In addition to switching to cloud services, these firms could reduce their TCO
through greater centralization and standardization of their hardware and soft-
ware resources. Companies could reduce the size of the information systems
staff required to support their infrastructure if the firm minimizes the number
of different computer models and pieces of software that employees are allowed
to use. In a centralized infrastructure, systems can be administered from a cen-
tral location and troubleshooting can be performed from that location.
Hardware acquisition Purchase price of computer hardware equipment, including computers,
terminals, storage, and printers
Software acquisition Purchase or license of software for each user
Installation Cost to install computers and software
Training Cost to provide training for information systems specialists and
end users
Support Cost to provide ongoing technical support, help desks, and so forth
Maintenance Cost to upgrade the hardware and software
Infrastructure Cost to acquire, maintain, and support related infrastructure, such as
networks and specialized equipment (including storage backup units)
Downtime Cost of lost productivity if hardware or software failures cause the
system to be unavailable for processing and user tasks
Space and energy Real estate and utility costs for housing and providing power for the
228 Part Two Information Technology Infrastructure

Competitive Forces Model for IT Infrastructure Investment
Figure 5. 13 illustrates a competitive forces model you can use to address the
question of how much your firm should spend on IT infrastructure.
Market demand for your firm’s services. Make an inventory of the services
you currently provide to customers, suppliers, and employees. Survey each
group, or hold focus groups to find out if the services you currently offer are
meeting the needs of each group. For example, are customers complaining of
slow responses to their queries about price and availability? Are employees
complaining about the difficulty of finding the right information for their jobs?
Are suppliers complaining about the difficulties of discovering your production
Your firm’s business strategy. Analyze your firm’s five-year business strategy
and try to assess what new services and capabilities will be required to achieve
strategic goals.
Your firm’s IT strategy, infrastructure, and cost. Examine your firm’s infor-
mation technology plans for the next five years and assess its alignment with
the firm’s business plans. Determine the total IT infrastructure costs. You will
want to perform a TCO analysis. If your firm has no IT strategy, you will need to
devise one that takes into account the firm’s five-year strategic plan.
Information technology assessment. Is your firm behind the technology
curve or at the bleeding edge of information technology? Both situations are to
be avoided. It is usually not desirable to spend resources on advanced technolo-
gies that are still experimental, often expensive, and sometimes unreliable. You
want to spend on technologies for which standards have been established and
Market Demand
for Your Firm’s
Customer Services,
Supplier Services,
and Enterprise
Your Firm’s
IT Strategy,
and Cost
Your Firm’s
IT Services
and Infrastructure
External Market Factors
Internal Factors
Competitor Firms’
IT Infrastructure
Your Firm’s
Business Strategy
IT Services
There are six factors you can use to answer the question “How much should our firm spend on IT infrastructure?”
Chapter 5 IT Infrastructure and Emerging Technologies 229

IT vendors are competing on cost, not design, and where there are multiple
suppliers. However, you do not want to put off investment in new technologies
or allow competitors to develop new business models and capabilities based on
the new technologies.
Competitor firm services. Try to assess what technology services competitors
offer to customers, suppliers, and employees. Establish quantitative and quali-
tative measures to compare them to those of your firm. If your firm’s service
levels fall short, your company is at a competitive disadvantage. Look for ways
your firm can excel at service levels.
Competitor firm IT infrastructure investments. Benchmark your expendi-
tures for IT infrastructure against your competitors. Many companies are quite
public about their innovative expenditures on IT. If competing firms try to keep
IT expenditures secret, you may be able to find IT investment information in
public companies’ SEC Form 10-K annual reports to the federal government
when those expenditures affect a firm’s financial results.
Your firm does not necessarily need to spend as much as or more than your
competitors. Perhaps it has discovered much less expensive ways of providing
services, and this can lead to a cost advantage. Alternatively, your firm may be
spending far less than competitors and experiencing commensurate poor per-
formance and losing market share.
Review Summary
5- 1 What is IT infrastructure, and what are the stages and drivers of IT infrastructure evolution?
IT infrastructure is the shared technology resources that provide the platform for the firm’s specific
information system applications. IT infrastructure includes hardware, software, and services that are
shared across the entire firm.
The five stages of IT infrastructure evolution are: the mainframe era, the personal computer era,
the client/server era, the enterprise computing era, and the cloud and mobile computing era. Moore’s
Law deals with the exponential increase in processing power and decline in the cost of computer tech-
nology, stating that every 18 months the power of microprocessors doubles and the price of computing
falls in half. The Law of Mass Digital Storage deals with the exponential decrease in the cost of storing
data, stating that the number of kilobytes of data that can be stored on magnetic media for $1 roughly
doubles every 15 months. Metcalfe’s Law states that a network’s value to participants grows exponen-
tially as the network takes on more members. The rapid decline in costs of communication and grow-
ing agreement in the technology industry to use computing and communications standards are also
driving an explosion of computer use.
5- 2 What are the components of IT infrastructure?
Major IT infrastructure components include computer hardware platforms, operating system plat-
forms, enterprise software platforms, networking and telecommunications platforms, database man-
agement software, Internet platforms, and consulting services and systems integrators.
5- 3 What are the current trends in computer hardware platforms?
Increasingly, computing is taking place on a mobile digital platform. Quantum computing is an emerg-
ing technology that could dramatically boost processing power through the ability to be in more than one
state at the same time. Consumerization of IT is the business use of information technology that origi-
nated in the consumer market. Virtualization organizes computing resources so that their use is not
restricted by physical configuration or geographic location. In cloud computing, firms and individuals
obtain computing power and software as services over a network, including the Internet, rather than pur-
chasing and installing the hardware and software on their own computers. A multicore processor is a
microprocessor to which two or more processing cores have been attached for enhanced performance.
Green computing includes practices and technologies for producing, using, and disposing of information
technology hardware to minimize negative impact on the environment.
230 Part Two Information Technology Infrastructure

5- 4 What are the current computer software platforms and trends?
Open source software is produced and maintained by a global community of programmers and is
often downloadable for free. Linux is a powerful, resilient open source operating system that can run
on multiple hardware platforms and is used widely to run web servers. Java is an operating system–
and hardware-independent programming language that is the leading interactive programming envi-
ronment for the web. HTML5 makes it possible to embed images, audio, and video directly into a web
document without add-on programs. Web services are loosely coupled software components based on
open web standards that work with any application software and operating system. They can be used
as components of web-based applications linking the systems of two different organizations or to link
disparate systems of a single company. Companies are purchasing their new software applications
from outside sources, including software packages, by outsourcing custom application development to
an external vendor (that may be offshore), or by renting online software services (SaaS). Mashups com-
bine two different software services to create new software applications and services. Apps are software
applications that run on mobile devices and are delivered over the Internet.
5- 5 What are the challenges of managing IT infrastructure and management solutions?
Major challenges include dealing with platform and infrastructure change, infrastructure management
and governance, and making wise infrastructure investments. Solution guidelines include using a com-
petitive forces model to determine how much to spend on IT infrastructure and where to make strategic
infrastructure investments, and establishing the total cost of ownership (TCO) of information technology
assets. The total cost of owning technology resources includes not only the original cost of computer hard-
ware and software but also costs for hardware and software upgrades, maintenance, technical support,
and training. Many firms are turning to cloud computing in an effort to reduce their IT platform costs.
Key Terms
Android , 208
Application server , 199
Apps , 226
BYOD , 212
Chrome OS , 208
Clients , 199
Client/server computing , 199
Cloud computing , 200
Consumerization of IT , 212
Extensible Markup Language (XML) , 222
Green computing (green IT) , 219
HTML (Hypertext Markup Language), 221
HTML5 221
Hybrid cloud , 219
Hypertext Markup Language (HTML) , 221
iOS , 208
Java , 221
Legacy systems , 210
Linux , 208
Mainframe , 197
Mashup , 225
Minicomputers , 197
Moore’s Law , 201
Multicore processor , 220
Multitiered (N-tier) client/server architecture , 199
Multitouch , 208
Nanotechnology , 203
On-demand computing , 208
Open source software , 220
Operating system , 208
Outsourcing , 225
Private cloud , 218
Public cloud , 218
Quantum computing , 213
Scalability , 227
Service level agreement (SLA) , 225
Server , 199
Service-oriented architecture (SOA) , 225
Software as a service (SaaS) , 215
Software package , 224
Software-defined storage (SDS) , 213
Tablet computers , 210
Technology standards , 204
Total cost of ownership (TCO) , 228
Unix , 208
Virtualization , 213
Web browser , 221
Web hosting service , 209
Web server , 199
Web services , 222
Windows , 200
Windows 10 208
Wintel PC , 198
To complete the problems with the MyLab MIS , go to EOC Discussion Questions in MyLab MIS.
Chapter 5 IT Infrastructure and Emerging Technologies 231

Review Questions
5- 1 What is IT infrastructure, and what are the
stages and drivers of IT infrastructure
• Define IT infrastructure from both a tech-
nology and a services perspective.
• List each of the eras in IT infrastructure evo-
lution and describe its distinguishing
• Define and describe the following: web
server, application server, multitiered cli-
ent/server architecture.
• Describe Moore’s Law and the Law of Mass
Digital Storage.
• Describe how network economics, declining
communications costs, and technology stan-
dards affect IT infrastructure.
5- 2 What are the components of IT infrastructure?
• List and describe the components of IT
infrastructure that firms need to manage.
5- 3 What are the current trends in computer hard-
ware platforms?
• Describe the evolving mobile platform, con-
sumerization of IT, and cloud computing.
• Explain how businesses can benefit from
virtualization, green computing, and multi-
core processors.
• List the essential characteristics of cloud
• Describe the three types of services that
make up cloud computing.
5- 4 What are the current computer software plat-
forms and trends?
• Define and describe open source software and
Linux and explain their business benefits.
• Define Java and HTML5 and explain why
they are important.
• Define and describe web services and the
role played by XML.
• Name and describe the three external
sources for software.
• Define and describe software mashups and
5- 5 What are the challenges of managing IT infra-
structure and management solutions?
• Name and describe the management chal-
lenges posed by IT infrastructure.
• Explain how using a competitive forces
model and calculating the TCO of technol-
ogy assets help firms make good infrastruc-
ture investments.
Discussion Questions
5- 6 Why is selecting computer hardware and soft-
ware for the organization an important man-
agement decision? What management,
organization, and technology issues should be
considered when selecting computer hard-
ware and software?
5- 7 Why would some organizations choose a pri-
vate cloud or hybrid cloud over a public
5- 8 What are the advantages and disadvantages of
cloud computing?
Hands-On MIS Projects
The projects in this section give you hands-on experience in developing solutions for managing IT infra-
structures and IT outsourcing, using spreadsheet software to evaluate alternative desktop systems, and
using web research to budget for a sales conference. Visit MyLab MIS’s Multimedia Library to access this
chapter’s Hands-On MIS Projects.
Management Decision Problems
5- 9 Hischornklinik Group is a leading private medical clinic group in Germany. It relies on information sys-
tems to operate 14 hospitals, as well as hundreds of specialist institutes. Demand for additional servers and
storage technology is growing by 20 percent each year. Hischornklinik was setting up a separate server for
every application, and its servers and other computers were running a number of different operating sys-
tems, including several versions of UNIX and Windows. Hischornklinik had to manage technologies from
many different vendors, including Hewlett-Packard (HP), Sun Microsystems, Microsoft, and IBM. Assess
the impact of this situation on business performance. What factors and management decisions must be
considered when developing a solution to this problem?
232 Part Two Information Technology Infrastructure

5- 10 Qantas Airways, Australia’s leading airline, faces cost pressures from high fuel prices and lower levels of
global airline traffic. To remain competitive, the airline must find ways to keep costs low while providing a
high level of customer service. Qantas had a 30-year-old data center. Management had to decide whether to
replace its IT infrastructure with newer technology or outsource it. What factors should be considered by
Qantas management when deciding whether to outsource? If Qantas decides to outsource, list and describe
points that should be addressed in a service level agreement.
Improving Decision Making: Using a Spreadsheet to Evaluate Hardware and Software Options
Software skills: Spreadsheet formulas
Business skills: Technology pricing
5- 11 In this exercise, you will use spreadsheet software to calculate the cost of desktop systems, printers, and
Use the Internet to obtain pricing information on hardware and software for an office of 30 peo-
ple. You will need to price 30 PC desktop systems (monitors, computers, and keyboards) manufactured by
Lenovo, Dell, and HP. (For the purposes of this exercise, ignore the fact that desktop systems usually come
with preloaded software packages.) Also obtain pricing on 15 desktop printers manufactured by HP, Canon,
and Dell. Each desktop system must satisfy the minimum specifications shown in tables that you can find
in MyLab MIS.
Also obtain pricing on 30 copies of the most recent versions of Microsoft Office and Apache OpenOf-
fice (formerly Oracle Open Office) and on 30 copies of Microsoft Windows 10. Each desktop productivity
package should contain programs for word processing, spreadsheets, database, and presentations. Prepare
a spreadsheet showing your research results for the software and the desktop system, printer, and software
combination offering the best performance and pricing per worker. Because every two workers share one
printer (15 printers/30 systems), your calculations should assume only half a printer cost per worker.
Improving Decision Making: Using Web Research to Budget for a Sales Conference
Software skills: Internet-based software
Business skills: Researching transportation and lodging costs
5- 12 The Foremost Composite Materials Company is planning a two-day sales conference for October 19–20,
starting with a reception on the evening of October 18. The conference consists of all-day meetings that the
entire sales force, numbering 120 sales representatives and their 16 managers, must attend. Each sales rep-
resentative requires his or her own room, and the company needs two common meeting rooms, one large
enough to hold the entire sales force plus a few visitors (200) and the other able to hold half the force. Man-
agement has set a budget of $175,000 for the representatives’ room rentals. The company would like to hold
the conference in either Miami or Marco Island, Florida, at a Hilton- or Marriott-owned hotel.
Use the Hilton and Marriott websites to select a hotel in whichever of these cities that would enable
the company to hold its sales conference within its budget and meet its sales conference requirements.
Then locate flights arriving the afternoon prior to the conference. Your attendees will be coming from Los
Angeles (51), San Francisco (30), Seattle (22), Chicago (19), and Pittsburgh (14). Determine costs of each
airline ticket from these cities. When you are finished, create a budget for the conference. The budget will
include the cost of each airline ticket, the room cost, and $70 per attendee per day for food.
Collaboration and Teamwork Project
Evaluating Server and Mobile Operating Systems
5- 13 Form a group with three or four of your classmates. Choose server or mobile operating systems to evaluate.
You might research and compare the capabilities and costs of Linux versus UNIX or the most recent version
of the Windows operating system for servers. Alternatively, you could compare the capabilities of the
Android mobile operating system with iOS for the iPhone. If possible, use Google Docs and Google Drive or
Google Sites to brainstorm, organize, and develop a presentation of your findings for the class.
Chapter 5 IT Infrastructure and Emerging Technologies 233

BYOD: Business Opportunity or Big Headache?
Just about everyone who has a smartphone wants
to be able to bring it to work and use it on the job.
And why not? Employees using their own smart-
phones would allow companies to enjoy all the same
benefits of a mobile workforce without spending
their own money to purchase these devices. Smaller
companies are able to go mobile without making
large investments in devices and mobile services.
According to Gartner, Inc., by 2017, 50 percent of
employers will require employees to supply their
own mobile devices for the workplace. BYOD is
becoming the “new normal.”
But … wait a minute. Half of all enterprises
believe that BYOD represents a growing problem for
their organizations, according to a number of studies.
Although BYOD can improve employee job satisfac-
tion and productivity, it also can cause a number
of problems if not managed properly. Support for
personally owned devices is more difficult than it
is for company-supplied devices, the cost of man-
aging mobile devices can increase, and protecting
corporate data and networks becomes more difficult.
Research conducted by the Aberdeen Group found
that on average, an enterprise with 1,000 mobile
devices spends an extra $170,000 per year when it
allows BYOD. So it’s not that simple.
BYOD requires a significant portion of corporate
IT resources dedicated to managing and maintaining
a large number of devices within the organization.
In the past, companies tried to limit business smart-
phone use to a single platform. This made it easier
to keep track of each mobile device and to roll out
software upgrades or fixes because all employees
were using the same devices or, at the very least,
the same operating system. Today, the mobile digital
landscape is much more complicated, with a variety
of devices and operating systems on the market that
do not have well-developed tools for administration
and security. Android has 80 percent of the world-
wide smartphone market, but it is more difficult to
use for corporate work than Apple mobile devices
using the iOS operating system. IOS is considered
a closed system and runs only on a limited num-
ber of different Apple mobile devices. In contrast,
Android’s fragmentation makes it more difficult and
costly for corporate IT to manage. There are about
25,000 different models of Android-based devices
available around the world, according to a report by
OpenSignal, which researches wireless networks
and devices. Android’s huge consumer market share
attracts many hackers. Android is also vulnerable
because it has an open source architecture and
comes in multiple versions.
If employees are allowed to work with more than
one type of mobile device and operating system, com-
panies need an effective way to keep track of all the
devices employees are using. To access company infor-
mation, the company’s networks must be configured to
receive connections from that device. When employees
make changes to their personal phone, such as switch-
ing cellular carriers, changing their phone number, or
buying a new mobile device altogether, companies will
need to quickly and flexibly ensure that their employ-
ees are still able to remain productive. Firms need a
system that keeps track of which devices employees
are using, where the device is located, whether it is
being used, and what software it is equipped with.
For unprepared companies, keeping track of who gets
access to what data could be a nightmare.
With the large variety of phones and operating
systems available, providing adequate technical sup-
port for every employee could be difficult. When
employees are not able to access critical data or
encounter other problems with their mobile devices,
they will need assistance from the information sys-
tems department. Companies that rely on desktop
computers tend to have many of the same computers
with the same specs and operating systems, making
tech support that much easier. Mobility introduces a
new layer of variety and complexity to tech support
that companies need to be prepared to handle.
There are significant concerns with securing
company information accessed with mobile devices.
If a device is stolen or compromised, companies
need ways to ensure that sensitive or confidential
information isn’t freely available to anyone. Mobility
puts assets and data at greater risk than if they were
only located within company walls and on company
machines. Marble Security Labs analyzed 1.2 million
Android and iOS apps and found that the consumer
apps on mobile devices did not adequately protect
business information. Companies often use tech-
nologies that allow them to wipe data from devices
remotely or encrypt data so that if the device is sto-
len, it cannot be used. You’ll find a detailed discus-
sion of mobile security issues in Chapter 8 .
234 Part Two Information Technology Infrastructure

Management at Michelin North America believes
BYOD will make the business more flexible and pro-
ductive. Initially, all 4,000 mobile devices used by
the company were company-owned and obsolete,
with a large number of traditional cell phones that
could only be used for voice transmission and mes-
saging. Only 90 employees were allowed access
to e-mail on mobile devices, and fewer than 400
were allowed access to calendars on these devices.
Service costs were high, and the business received
little value from its mobility program. Management
had identified significant business benefits from
increasing mobility in sales, customer support, and
In mid-2011, the company created a team com-
posed of executives and representatives from the
IT, human resources, finance, and legal depart-
ments as well as the business units to share in the
development, rollout, and management of a new
mobile strategy for corporate-owned and personal
mobile devices. The team decided to transition the
mobility business model from corporate-owned to
According to Gartner, Inc. consultants, about half
of organizations with a formal BYOD program com-
pensate their employees for the amount of time
they use their personal devices on their jobs using
stipends, reimbursements, or allowances. Handling
employee reimbursement for using personal devices
for corporate purposes has proved to be one of the
most problematic aspects of BYOD mobile programs.
Although most companies use expense reports or
payroll stipends to reimburse employees for BYOD,
these methods have drawbacks. Expense reports are
an administrative burden for both the employee and
the employer, and payroll stipends can have tax con-
sequences for both as well.
For some companies, the best option is to make
direct payments to wireless carriers to reimburse
employees for the expense they incur when they
use their own wireless devices for company busi-
ness. The employer provides funds to the wireless
carrier, which then applies a credit to the employee’s
account. When the employee’s bill arrives, the
employee pays the amount owed less the credit
amount that was funded by the employer.
Michelin opted for a managed service from Cass
Information Systems that enables the company to
make payments directly to wireless carriers. Cass
Information Systems is a leading provider of trans-
portation , utility , waste , and telecom expense man-
agement and related business intelligence services.
A single employee portal handles enrollment of
corporate and BYOD devices and provides track-
ing and reporting of all ongoing mobile and related
inventory and expenses. The portal can automati-
cally register employees, verify user eligibility,
ensure policy acknowledgment, and distribute cred-
its directly to employees’ wireless accounts for the
amount of service they used for their jobs.
Since implementing its version of BYOD, Michelin
North America increased the number of mobile-
enabled employees to 7,000. Employee efficiency,
productivity, and satisfaction have improved from
updating the mobile technology and functional-
ity available to employees and giving them choices
in mobile devices and wireless carrier plans, The
program is cost-neutral. Michelin has obtained new
vendor discounts across all wireless vendors in
the United States and Canada and has reduced the
cost of deploying each mobile device by more than
30 percent.
Iftekhar Khan, IT director at Toronto’s Chelsea
Hotel, remains less sanguine. He believes BYOD
might work for his company down the road but not
in the immediate future. Khan notes that the hospi-
tality industry and many others still want employees
to use corporate-owned devices for any laptop, tab-
let, or smartphone requiring access to the corporate
network. His business has sensitive information and
needs that level of control. Although the hotel might
possibly save money with BYOD, it’s ultimately all
about productivity.
Management at Rosendin Electric, a Silicon Val-
ley electrical contractor, worried that BYOD would
become a big headache. Rosendin has thousands of
employees and deploys hundreds of smartphones,
more than 400 iPads, and a few Microsoft Surface
tablets. These mobile devices have greatly enhanced
the company’s productivity by enabling employees
to order equipment and supplies on the spot at a job
site or check on-site to see whether ordered items
have arrived. However, CIO Sam Lamonica does not
believe BYOD would work for this company. He wor-
ries employees would be too careless using apps,
cloud, and technology devices. (An Aruba Networks
study of 11,500 workers in 23 countries found that
60 percent share their work and personal devices
with others regularly, nearly 20 percent don’t have
passwords on devices, and 31 percent have lost data
due to misuse of a mobile device.)
Lamonica feels more confident about equipping
employees with company-owned devices because
they can be more easily managed and secured.
Rosendin uses MobileIron mobile device manage-
ment (MDM) software for its smartphones and
Chapter 5 IT Infrastructure and Emerging Technologies 235

tablets. If a device is lost or stolen, the MDM soft-
ware is able to wipe the devices remotely. Because
MobileIron allows Rosendin to separate and isolate
business apps and data from personal apps and data,
the company allows employees to use certain con-
sumer apps and store personal photos on company-
owned tablets. Rosendin has found that employees
of companies that are able to personalize company-
owned iPads are more likely to treat them as prized
possessions, and this has helped lower the number
of devices that become broken or lost. The company
has the right to wipe the devices if they are lost.
Rosendin’s mobile security is not iron-clad. An
employee might be able to put company data in
his or her personal Dropbox account instead of
the company-authorized Box account. However,
MobileIron is able to encrypt data before it gets into
a Dropbox account, and this lowers the risk. With
company-owned and managed devices, Rosendin still
benefits from volume discounts from wireless carri-
ers and does not have to do the extra work involved
in reimbursing employees when they use their own
devices for work.
Sources: Ryan Patrick, “Is a BYOD Strategy Best for Business?”
IT World Canada, March 22, 2016; “5 BYOD Management Case
Studies,” , accessed May 5, 2016; Aruba Net-
works, “Enterprise Security Threat Level Directly Linked to User
Demographics, Industry and Geography,” Business Wire, April 14,
2015; Alan F., “Open Signal: 24,093 Unique and Different Android-
Powered Devices Are Available,” , August 5, 2015;
Tom Kaneshige, “Why One CIO Is Saying ‘No’ to BYOD,” CIO,
June 24, 2014; “CIO Meets Mobile Challenges Head-On,” CIO, July
7, 2014; and “Cass BYOD: How Michelin Became a Mobile-First
Enterprise,” Cass Information Systems Inc., 2014.
5- 14 What are the advantages and disadvantages of
allowing employees to use their personal
smartphones for work?
5- 15 What management, organization, and technol-
ogy factors should be addressed when deciding
whether to allow employees to use their
personal smartphones for work?
5- 16 Compare the BYOD experiences of Michelin
North America and Rosendin Electric. Why did
BYOD at Michelin work so well?
5- 17 Allowing employees to use their own smart-
phones for work will save the company
money. Do you agree? Why or why not?
Go to the Assignments section of MyLab MIS to complete these writing exercises.
5- 18 What are the distinguishing characteristics of cloud computing, and what are the three types of cloud services?
5- 19 What is the total cost of ownership of technology assets, and what are its cost components?
236 Part Two Information Technology Infrastructure

Chapter 5 References
Andersson, Henrik, James Kaplan, and Brent Smolinski.
“Capturing Value from IT Infrastructure Innovation.”
McKinsey Quarterly (October 2012).
Babcock, Charles. “Cloud’s Thorniest Question: Does It Pay Off?”
Information Week (June 4, 2012).
Benlian, Alexander, Marios Koufaris, and Thomas Hess. “Service
Quality in Software-as-a-Service: Developing the SaaS-Qual
Measure and Examining Its Role in Usage Continuance.” Journal
of Management Information Systems 28, No. 3 (Winter 2012).
Carr, Nicholas. The Big Switch. New York: Norton (2008).
Clark, Don. “Moore’s Law Shows Its Age..” Wall Street Journal (April
17, 2015).
Choi, Jae, Derek L. Nazareth, and Hemant K. Jain. “Implementing
Service-Oriented Architecture in Organizations.” Journal of
Management Information Systems 26, No. 4 (Spring 2010).
David, Julie Smith, David Schuff, and Robert St. Louis. “Managing
Your IT Total Cost of Ownership.” Communications of the ACM
45, No. 1 (January 2002).
Fitzgerald, Brian. “The Transformation of Open Source Software.”
MIS Quarterly 30, No. 3 (September 2006).
Flinders, Karl. “Ofcom Outsources IT Management to Indian
Xervices Supplier NIIT.” Computer Weekly (January 12, 2016).
Follow , Jaewon Kang. “IBM Bets on Next-Gen Technologies as It
Tries to Stave Off Rivals.” (May 5, 2016).
Gantz, John and David Reinsal. ”Extracting Value from Chaos.”
IDC (June 2011).
Gartner, Inc. “Gartner Says Worldwide IT Spending Is Forecast to
Decline 0.5 Percent in 2016.” Business Wire (April 7, 2016).
“How to Tap the Power of the Mainframe.” ,
accessed September 11, 2015.
International Data Corporation. “Worldwide Public Cloud Services
Spending Forecast to Double by 2019, According to IDC.”
(January 21, 2016).
“Internet Users.” , accessed May 2, 2016.
Kauffman, Robert J. and Julianna Tsai. “The Unified Procurement
Strategy for Enterprise Software: A Test of the ‘Move to the
Middle’ Hypothesis.” Journal of Management Information
Systems 26, No. 2 (Fall 2009).
Letschin, Michael. “Six Trends that Will Change How You Think
About Data Storage.” Information Management (February 8, 2016).
Lyman, Peter and Hal R. Varian. “How Much Information 2003?”
University of California at Berkeley School of Information
Management and Systems (2003).
Markoff, John. “ Moore’s Law Running Out of Room, Tech Looks
for a Successor,” New York Times (May 4, 2016).
McCafferty, Dennis. “Eight Interesting Facts About Java.” CIO
Insight (June 16, 2014).
Mell, Peter and Tim Grance. “The NIST Definition of Cloud
Computing” Version 15. NIST (October 17, 2009).
Moore, Gordon. “Cramming More Components Onto Integrated
Circuits,” Electronics 38, No. 8 (April 19, 1965).
Mueller, Benjamin, Goetz Viering, Christine Legner, and Gerold
Riempp. “Understanding the Economic Potential of Service-
Oriented Architecture.” Journal of Management Information
Systems 26, No. 4 (Spring 2010).
Netmarketshare. “Desktop Operating System Market Share April
2016.” , accessed May 1, 2016.
Ray, Tierman. “Watch Out Intel, Here Comes Facebook.” Barrons
(October 31, 2015).
Schuff, David and Robert St. Louis. “Centralization vs.
Decentralization of Application Software.” Communications of
the ACM 44, No. 6 (June 2001).
Stango, Victor. “The Economics of Standards Wars.” Review of
Network Economics 3, Issue 1 (March 2004).
Susarla, Anjana, Anitesh Barua, and Andrew B. Whinston. “A
Transaction Cost Perspective of the ‘Software as a Service’
Business Model.” Journal of Management Information Systems
26, No. 2 (Fall 2009).
Taft, Darryl K. “Application Development: Java Death Debunked:
10 Reasons Why It’s Still Hot.” eWeek (February 22, 2012).
Torode, Christine, Linda Tucci, and Karen Goulart. “Managing the
Next-Generation Data Center.” Modern Infrastructure CIO
Edition (January 2013).
Weill, Peter and Marianne Broadbent. Leveraging the New
Infrastructure. Cambridge, MA: Harvard Business School Press
Weitzel, Tim. Economics of Standards in Information Networks.
Heidelberg, New York: Physica-Verlag (2004).
Chapter 5 IT Infrastructure and Emerging Technologies 237

Learning Objectives
After reading this chapter , you will be able to answer the following questions:
6- 1 What are the problems of managing data resources in a traditional file
6- 2 What are the major capabilities of database management systems (DBMS),
and why is a relational DBMS so powerful?
6- 3 What are the principal tools and technologies for accessing information
from databases to improve business performance and decision making?
6- 4 Why are information policy, data administration, and data quality
assurance essential for managing the firm’s data resources?
Dubuque Uses Cloud Computing and Sensors to Build a Smarter City
Brooks Brothers Closes In on Omnichannel Retail
Maruti Suzuki Business Intelligence and Enterprise Databases
BAE Systems
Data-Driven Crime Fighting Goes Global
Societe Generale Builds an Intelligent System to Manage Information Flow
Lego’s Enterprise Software Spurs Growth

6 Foundations of Business Intelligence: Databases and Information Management
MyLab MIS™
Visit for simulations, tutorials, and end-of-chapter problems.

BAE Systems (BAE) is the United Kingdom’s largest manufacturing com-pany and one of the largest commercial aerospace and defence organiza-tions in Europe. Its high-technology, information-driven products and
services range from one of the world’s most capable multi-role combat fighters,
the Eurofighter Typhoon, to the Jetstream family of commercial aircraft, to the
provision of information technology (IT) and information systems (IS) for
e-business to develop and implement logistics, IT, and e-capability services.
With sales, manufacturing, and support sites throughout the world, including
the United Kingdom, Europe, the United States, and Australia, BAE employs
83,000 people in 40 countries and generated more than €23.8 billion in annual
revenue in 2015.
Although BAE has consoli-
dated its competitive position
in established markets, and
continues to expand into new
markets in the Middle East
and Asia, its performance in
the aircraft part of the busi-
ness was being impeded by
legacy information systems
that support the computer-
aided design (CAD) and com-
puter-aided manufacturing
(CAM) of its aircraft. The dis-
tributed nature of BAE’s
design and manufacturing
sites meant that storing and
analyzing accurate sets of
operational data describing
the complex components of
the various aircraft types to
produce aircraft assembly
reports for the production lines became increasingly challenging and resource-
Accessing the data from the many systems was a complex task involving
many technical challenges. As the aircraft business of BAE grew, so did the like-
lihood of delays in producing the aircraft assembly reports and other operations
data sets necessary for aircraft production management decision-making. In the
worst case, the production of aircraft on the assembly line would stop until accu-
rate information was available, with consequent schedule and cost implications.
BAE’s CAD/CAM staff were storing and analyzing data sets sourced from five
major aircraft design and manufacturing sites spread throughout the United
Kingdom, each host to thousands of staff involved in the design and manufac-
turing process, so that assembly reports and other operations data could be pro-
duced. There were numerous occasions when paper drawings with annotations
BAE Systems

© Graham Taylor/Shutterstock

containing component design and manufacturing information were used to rec-
oncile ambiguities and inconsistencies in the assembly reports. These data ambi-
guities and inconsistencies gave rise to a sense of uncertainty in the assembly
reports produced.
What BAE needed was a single repository for CAD/CAM data that would also
facilitate the integration of data held in its legacy systems. The company decided
to replace its legacy systems with an enterprise-wide knowledge management
system that would bring the design and manufacturing data into a single database
that could be concurrently accessed by the design and manufacturing engineers.
BAE implemented Siemens’ Teamcenter product lifecycle management software
and Dassault Systemes’ CATIA CAD/CAM software. Teamcenter can also be con-
figured to take advantage of recent developments in cloud computing using
Microsoft’s Azure, IBM’s SmartCloud Enterprise+, and Amazon Web Services.
Bringing together Siemens’ Teamcenter and Dassault Systemes’ CATIA has
given BAE Systems powerful integrated data management tools. The Teamcenter
database includes tools for component markup and rollup capabilities, allowing
users to visualize the effect of component design changes and configuration
selections in real-time.
The new solution has produced significant cost savings at BAE in terms of its
design and manufacturing data management and storage while boosting perfor-
mance. With fewer legacy systems and data files to manage, BAE has been able to
meet quality, time, and cost requirements by being able to produce complete and
accurate aircraft component definitions and configurations. BAE has used Team-
center to enlarge its business model to include “through-life” maintenance and
repair for aircraft.
Sources: “BAE Systems Annual Report 2015,”, March 25, 2016; “BAE Sys-
tems Military Air Solutions: Case Study: Teamcenter Supports Aircraft Through 50-year Life-
cycle,” 2015 Siemens Product Lifecycle Management Software Inc., 2015; “CMI-CATIA
Teamcenter Integration,” T-Systems, April 13, 2015,
tems-plm-de; “BAE Systems Half-Yearly Report and Presentation 2015,” www.baesystems.
com, accessed December 21, 2015; “Teamcenter Supports Aircraft Through 50-year Cycle:
BAE Systems Military Air Solutions,”, accessed Novem-
ber 8, 2012.
The experience of BAE Systems illustrates the importance of data man-agement. Business performance depends on the accuracy and reliability
of its data. The company has grown its business, but both operational CAD/
CAM efficiency and production management decision making were impeded
by data stored in legacy systems that were difficult to access. How businesses
store, organize, and manage their data has a huge impact on organizational
The chapter-opening diagram calls attention to important points raised by
this case and this chapter. BAE Systems management decided that the firm
needed to improve the management of its data. Pieces of data about design
components, manufactured components, and their final assembly had been
stored in many large legacy systems that made it extremely difficult for the
data to be retrieved and correctly unified so that it could be used in the produc-
tion line assembly of aircraft components. The data were often redundant and
inconsistent, limiting their usefulness. Management was unable to obtain an
enterprise-view of the company.
240 Part Two Information Technology Infrastructure

In the past, BAE Systems had used manual paper processes to reconcile its
inconsistent and redundant data and to assemble data for management report-
ing. This solution was extremely time-consuming and costly, and prevented the
company’s information technology department from performing higher-value
work. A more appropriate solution was to install new hardware and software to
create an enterprise-wide repository for business information that would sup-
port a more streamlined set of business applications. The new software included
enterprise software that was integrated with an up-to-date database manage-
ment system that could supply data for enterprise-wide reporting. The com-
pany had to reorganize its data into a standard company-wide format, eliminate
redundancies, and establish rules, responsibilities, and procedures for updating
and using the data.
A state-of-the-art database management system suite of software helps BAE
Systems boost efficiency by making it easier to locate and assemble data for
management reporting and for processing day-to-day CAD/CAM transactions
for final aircraft component assembly. The data are more accurate and reliable,
and costs for managing and storing the data have been considerably reduced.
Here are some questions to think about: What kinds of data management
problems did BAE Systems experience in its legacy database environment?
What work had to be done before the company could effectively take advantage
of the new data management technology?
6- 1 What are the problems of managing data
resources in a traditional file environment?
An effective information system provides users with accurate, timely, and relevant
information. Accurate information is free of errors. Information is timely when it
is available to decision makers when it is needed. Information is relevant when it
is useful and appropriate for the types of work and decisions that require it.
• Data fragmented in isolated
databases and files
• Time-consuming reporting processes
• Outdated data management
technology• Standardize data
• Organize and
reconcile data
• Educate users
• Monitor enterprise-wide
• Accelerate decision making
• Improve customer analysis
• Reduce costs
• Increase customer
• Increase market share
• Deploy mainframe
• Implement SAP
enterprise software
and data warehouse
• Reduce use of local
• Run SAP HANA on
Amazon cloud
• Centralize data

Chapter 6 Foundations of Business Intelligence: Databases and Information Management 241

You might be surprised to learn that many businesses don’t have timely,
accurate, or relevant information because the data in their information systems
have been poorly organized and maintained. That’s why data management is
so essential. To understand the problem, let’s look at how information systems
arrange data in computer files and traditional methods of file management.
File Organization Terms and Concepts
A computer system organizes data in a hierarchy that starts with bits and
bytes and progresses to fields, records, files, and databases (see Figure 6. 1 ).
A bit represents the smallest unit of data a computer can handle. A group
of bits, called a byte , represents a single character, which can be a letter, a
number, or another symbol. A grouping of characters into a word, a group
of words, or a complete number (such as a person’s name or age) is called a
field . A group of related fields, such as the student’s name, the course taken,
the date, and the grade, comprises a record ; a group of records of the same
type is called a file .
0100 1001 (Letter I in ASCII)
IS 101 (Course field)
Student_ID Course Date Grade
39044 IS 101 F16 B+
Student_ID Course Date Grade
39044 IS 101 F16 B+
59432 IS 101 F16 A
64029 IS 101 F16 C
Student_ID Course Date Grade
39044 IS 101 F16 B+
59432 IS 101 F16 A
64029 IS 101 F16 C
Student Database
A computer system organizes data in a hierarchy that starts with the bit, which represents either a
0 or a 1. Bits can be grouped to form a byte to represent one character, number, or symbol. Bytes can
be grouped to form a field, and related fields can be grouped to form a record. Related records can be
collected to form a file, and related files can be organized into a database.
242 Part Two Information Technology Infrastructure

For example, the records in Figure 6. 1 could constitute a student course file.
A group of related files makes up a database. The student course file illustrated
in Figure 6. 1 could be grouped with files on students’ personal histories and
financial backgrounds to create a student database.
A record describes an entity. An entity is a person, place, thing, or event
on which we store and maintain information. Each characteristic or quality
describing a particular entity is called an attribute . For example, Student_ID,
Course, Date, and Grade are attributes of the entity COURSE. The specific val-
ues that these attributes can have are found in the fields of the record describ-
ing the entity COURSE.
Problems with the Traditional File Environment
In most organizations, systems tended to grow independently without a
companywide plan. Accounting, finance, manufacturing, human resources, and
sales and marketing all developed their own systems and data files. Figure 6. 2
illustrates the traditional approach to information processing.
Each application, of course, required its own files and its own computer
program to operate. For example, the human resources functional area might
have a personnel master file, a payroll file, a medical insurance file, a pen-
sion file, a mailing list file, and so forth, until tens, perhaps hundreds, of files
and programs existed. In the company as a whole, this process led to multiple
master files created, maintained, and operated by separate divisions or depart-
ments. As this process goes on for 5 or 10 years, the organization is saddled
with hundreds of programs and applications that are very difficult to maintain
program 4
Derivative files
Master file
Data elements
A to Z
program 3
program 1
program 2
The use of a traditional approach to file processing encourages each functional area in a corporation
to develop specialized applications. Each application requires a unique data file that is likely to be a
subset of the master file. These subsets of the master file lead to data redundancy and inconsistency,
processing inflexibility, and wasted storage resources.
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 243

and manage. The resulting problems are data redundancy and inconsistency,
program-data dependence, inflexibility, poor data security, and an inability to
share data among applications.
Data Redundancy and Inconsistency
Data redundancy is the presence of duplicate data in multiple data files so
that the same data are stored in more than one place or location. Data redun-
dancy occurs when different groups in an organization independently collect
the same piece of data and store it independently of each other. Data redun-
dancy wastes storage resources and also leads to data inconsistency , where
the same attribute may have different values. For example, in instances of the
entity COURSE illustrated in Figure 6. 1 , the Date may be updated in some sys-
tems but not in others. The same attribute, Student_ID, may also have different
names in different systems throughout the organization. Some systems might
use Student_ID and others might use ID, for example.
Additional confusion might result from using different coding systems to
represent values for an attribute. For instance, the sales, inventory, and man-
ufacturing systems of a clothing retailer might use different codes to repre-
sent clothing size. One system might represent clothing size as “extra large,”
whereas another might use the code “XL” for the same purpose. The resulting
confusion would make it difficult for companies to create customer relationship
management, supply chain management, or enterprise systems that integrate
data from different sources.
Program-Data Dependence
Program-data dependence refers to the coupling of data stored in files and the
specific programs required to update and maintain those files such that changes
in programs require changes to the data. Every traditional computer program
has to describe the location and nature of the data with which it works. In a
traditional file environment, any change in a software program could require a
change in the data accessed by that program. One program might be modified
from a five-digit to a nine-digit ZIP code. If the original data file were changed
from five-digit to nine-digit ZIP codes, then other programs that required the
five-digit ZIP code would no longer work properly. Such changes could cost mil-
lions of dollars to implement properly.
Lack of Flexibility
A traditional file system can deliver routine scheduled reports after extensive
programming efforts, but it cannot deliver ad hoc reports or respond to unantic-
ipated information requirements in a timely fashion. The information required
by ad hoc requests is somewhere in the system but may be too expensive to
retrieve. Several programmers might have to work for weeks to put together the
required data items in a new file.
Poor Security
Because there is little control or management of data, access to and dissemina-
tion of information may be out of control. Management may have no way of
knowing who is accessing or even making changes to the organization’s data.
Lack of Data Sharing and Availability
Because pieces of information in different files and different parts of the orga-
nization cannot be related to one another, it is virtually impossible for infor-
mation to be shared or accessed in a timely manner. Information cannot flow
244 Part Two Information Technology Infrastructure

freely across different functional areas or different parts of the organization.
If users find different values of the same piece of information in two different
systems, they may not want to use these systems because they cannot trust the
accuracy of their data.
6- 2 What are the major capabilities of database
management systems (DBMS), and why is a
relational DBMS so powerful?
Database technology cuts through many of the problems of traditional file
organization. A more rigorous definition of a database is a collection of data
organized to serve many applications efficiently by centralizing the data and
controlling redundant data. Rather than storing data in separate files for each
application, data appear to users as being stored in only one location. A single
database services multiple applications. For example, instead of a corporation
storing employee data in separate information systems and separate files for
personnel, payroll, and benefits, the corporation could create a single common
human resources database.
Database Management Systems
A database management system (DBMS) is software that permits an orga-
nization to centralize data, manage them efficiently, and provide access to the
stored data by application programs. The DBMS acts as an interface between
application programs and the physical data files. When the application program
calls for a data item, such as gross pay, the DBMS finds this item in the database
and presents it to the application program. Using traditional data files, the pro-
grammer would have to specify the size and format of each data element used
in the program and then tell the computer where they were located.
The DBMS relieves the programmer or end user from the task of understand-
ing where and how the data are actually stored by separating the logical and
physical views of the data. The logical view presents data as they would be per-
ceived by end users or business specialists, whereas the physical view shows
how data are actually organized and structured on physical storage media.
The database management software makes the physical database avail-
able for different logical views required by users. For example, for the human
resources database illustrated in Figure 6. 3 , a benefits specialist might require
a view consisting of the employee’s name, social security number, and health
insurance coverage. A payroll department member might need data such as the
employee’s name, social security number, gross pay, and net pay. The data for
all these views are stored in a single database, where they can be more easily
managed by the organization.
How a DBMS Solves the Problems of the Traditional
File Environment
A DBMS reduces data redundancy and inconsistency by minimizing isolated
files in which the same data are repeated. The DBMS may not enable the orga-
nization to eliminate data redundancy entirely, but it can help control redun-
dancy. Even if the organization maintains some redundant data, using a DBMS
eliminates data inconsistency because the DBMS can help the organization
ensure that every occurrence of redundant data has the same values. The DBMS
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 245

uncouples programs and data, enabling data to stand on their own. The descrip-
tion of the data used by the program does not have to be specified in detail
each time a different program is written. Access and availability of information
will be increased and program development and maintenance costs reduced
because users and programmers can perform ad hoc queries of the database for
many simple applications without having to write complicated programs. The
DBMS enables the organization to centrally manage data, their use, and secu-
rity. Data sharing throughout the organization is easier because the data are
presented to users as being in a single location rather than fragmented in many
different systems and files.
Relational DBMS
Contemporary DBMS use different database models to keep track of enti-
ties, attributes, and relationships. The most popular type of DBMS today for
PCs as well as for larger computers and mainframes is the relational DBMS .
Relational databases represent data as two-dimensional tables (called rela-
tions). Tables may be referred to as files. Each table contains data on an entity
and its attributes. Microsoft Access is a relational DBMS for desktop systems,
whereas DB2, Oracle Database, and Microsoft SQL Server are relational DBMS
for large mainframes and midrange computers. MySQL is a popular open
source DBMS.
Let’s look at how a relational database organizes data about suppliers and
parts (see Figure 6. 4 ). The database has a separate table for the entity SUP-
PLIER and a table for the entity PART. Each table consists of a grid of columns
and rows of data. Each individual element of data for each entity is stored as a
separate field, and each field represents an attribute for that entity. Fields in a
relational database are also called columns. For the entity SUPPLIER, the sup-
plier identification number, name, street, city, state, and ZIP code are stored as
separate fields within the SUPPLIER table and each field represents an attribute
for the entity SUPPLIER.
Human Resources
A single human resources database provides many different views of data, depending on the infor-
mation requirements of the user. Illustrated here are two possible views, one of interest to a benefits
specialist and one of interest to a member of the company’s payroll department.
246 Part Two Information Technology Infrastructure

The actual information about a single supplier that resides in a table is called
a row. Rows are commonly referred to as records, or in very technical terms, as
tuples . Data for the entity PART have their own separate table.
The field for Supplier_Number in the SUPPLIER table uniquely identifies each
record so that the record can be retrieved, updated, or sorted. It is called a key
field . Each table in a relational database has one field that is designated as its
primary key . This key field is the unique identifier for all the information in any
row of the table and this primary key cannot be duplicated. Supplier_Number is
the primary key for the SUPPLIER table and Part_Number is the primary key for
the PART table. Note that Supplier_Number appears in both the SUPPLIER and
PART tables. In the SUPPLIER table, Supplier_Number is the primary key. When
the field Supplier_Number appears in the PART table, it is called a foreign key and
is essentially a lookup field to look up data about the supplier of a specific part.
Operations of a Relational DBMS
Relational database tables can be combined easily to deliver data required by
users, provided that any two tables share a common data element. Suppose we
wanted to find in this database the names of suppliers who could provide us
Columns (Attributes, Fields)
Key Field
(Primary Key)
74 5th Avenue
1277 Gandolly Street
8233 Micklin Street
4315 Mill Drive
CBM Inc.
B. R. Molds
Jackson Composites
Bryant Corporation
Primary Key Foreign Key
Door latch
844412.00Side mirror
82636.00Door molding
Door lock
Door handle
A relational database organizes data in the form of two-dimensional tables. Illustrated here are tables for the entities SUPPLIER and
PART showing how they represent each entity and its attributes. Supplier_Number is a primary key for the SUPPLIER table and a foreign
key for the PART table.
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 247

with part number 137 or part number 150. We would need information from
two tables: the SUPPLIER table and the PART table. Note that these two files
have a shared data element: Supplier_Number.
In a relational database, three basic operations, as shown in Figure 6. 5 , are
used to develop useful sets of data: select, join, and project. The select opera-
tion creates a subset consisting of all records in the file that meet stated crite-
ria. Select creates, in other words, a subset of rows that meet certain criteria.
In our example, we want to select records (rows) from the PART table where
the Part_Number equals 137 or 150. The join operation combines relational
tables to provide the user with more information than is available in individual
tables. In our example, we want to join the now-shortened PART table (only
parts 137 or 150 will be presented) and the SUPPLIER table into a single new
The project operation creates a subset consisting of columns in a table, permit-
ting the user to create new tables that contain only the information required. In
our example, we want to extract from the new table only the following columns:
Part_Number, Part_Name, Supplier_Number, and Supplier_Name.
Capabilities of Database Management Systems
A DBMS includes capabilities and tools for organizing, managing, and accessing
the data in the database. The most important are its data definition language,
data dictionary, and data manipulation language.
DBMS have a data definition capability to specify the structure of the con-
tent of the database. It would be used to create database tables and to define
the characteristics of the fields in each table. This information about the
database would be documented in a data dictionary. A data dictionary is an
automated or manual file that stores definitions of data elements and their
Microsoft Access has a rudimentary data dictionary capability that displays
information about the name, description, size, type, format, and other proper-
ties of each field in a table (see Figure 6. 6 ). Data dictionaries for large corporate
databases may capture additional information, such as usage, ownership (who
in the organization is responsible for maintaining the data), authorization, secu-
rity, and the individuals, business functions, programs, and reports that use
each data element.
Querying and Reporting
DBMS includes tools for accessing and manipulating information in databases.
Most DBMS have a specialized language called a data manipulation lan-
guage that is used to add, change, delete, and retrieve the data in the database.
This language contains commands that permit end users and programming
specialists to extract data from the database to satisfy information requests
and develop applications. The most prominent data manipulation language
today is Structured Query Language , or SQL. Figure 6. 7 illustrates the SQL
query that would produce the new resultant table in Figure 6. 5 . You can find
out more about how to perform SQL queries in our Learning Tracks for this
chapter .
Users of DBMS for large and midrange computers, such as DB2, Oracle, or
SQL Server, would employ SQL to retrieve information they needed from the
database. Microsoft Access also uses SQL, but it provides its own set of user-
friendly tools for querying databases and for organizing data from databases
into more polished reports.
248 Part Two Information Technology Infrastructure

. R
. M
t C
t P
. 5

, j

Chapter 6 Foundations of Business Intelligence: Databases and Information Management 249

In Microsoft Access, you will find features that enable users to create queries
by identifying the tables and fields they want and the results and then selecting
the rows from the database that meet particular criteria. These actions in turn
are translated into SQL commands. Figure 6. 8 illustrates how the same query
as the SQL query to select parts and suppliers would be constructed using the
Microsoft Access query-building tools.
Microsoft Access and other DBMS include capabilities for report generation
so that the data of interest can be displayed in a more structured and polished
format than would be possible just by querying. Crystal Reports is a popular
report generator for large corporate DBMS, although it can also be used with
Access. Access also has capabilities for developing desktop system applications.
These include tools for creating data entry screens, reports, and developing the
logic for processing transactions.
Designing Databases
To create a database, you must understand the relationships among the data,
the type of data that will be maintained in the database, how the data will be
used, and how the organization will need to change to manage data from a
Microsoft Access has a rudimentary data dictionary capability that displays information about the
size, format, and other characteristics of each field in a database. Displayed here is the information
maintained in the SUPPLIER table. The small key icon to the left of Supplier_Number indicates that it is
a key field.
SELECT PART.Part_Number, PART.Part_Name, SUPPLIER.Supplier_Number,
WHERE PART.Supplier_Number = SUPPLIER.Supplier_Number AND
Part_Number = 137 OR Part_Number = 150;
Illustrated here are the SQL statements for a query to select suppliers for parts 137 or 150. They
produce a list with the same results as Figure 6. 5 .
250 Part Two Information Technology Infrastructure

companywide perspective. The database requires both a conceptual design
and a physical design. The conceptual, or logical, design of a database is an
abstract model of the database from a business perspective, whereas the physi-
cal design shows how the database is actually arranged on direct-access stor-
age devices.
Normalization and Entity-Relationship Diagrams
The conceptual database design describes how the data elements in the data-
base are to be grouped. The design process identifies relationships among data
elements and the most efficient way of grouping data elements together to
meet business information requirements. The process also identifies redun-
dant data elements and the groupings of data elements required for specific
application programs. Groups of data are organized, refined, and streamlined
until an overall logical view of the relationships among all the data in the data-
base emerges.
To use a relational database model effectively, complex groupings of data
must be streamlined to minimize redundant data elements and awkward many-
to-many relationships. The process of creating small, stable, yet flexible and
adaptive data structures from complex groups of data is called normalization .
Figures 6. 9 and 6. 10 illustrate this process.
Illustrated here is how the query in Figure 6. 7 would be constructed using Microsoft Access query-
building tools. It shows the tables, fields, and selection criteria used for the query.
ORDER (Before Normalization)
An unnormalized relation contains repeating groups. For example, there can be many parts and suppliers for each order. There is only a
one-to-one correspondence between Order_Number and Order_Date.
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 251

In the particular business modeled here, an order can have more than one
part, but each part is provided by only one supplier. If we build a relation
called ORDER with all the fields included here, we would have to repeat the
name and address of the supplier for every part on the order, even though the
order is for parts from a single supplier. This relationship contains what are
called repeating data groups because there can be many parts on a single order
to a given supplier. A more efficient way to arrange the data is to break down
ORDER into smaller relations, each of which describes a single entity. If we go
step by step and normalize the relation ORDER, we emerge with the relations
illustrated in Figure 6. 10 . You can find out more about normalization, entity-
relationship diagramming, and database design in the Learning Tracks for this
chapter .
Relational database systems try to enforce referential integrity rules to
ensure that relationships between coupled tables remain consistent. When
one table has a foreign key that points to another table, you may not add
a record to the table with the foreign key unless there is a corresponding
record in the linked table. In the database we examined earlier in this chap-
ter, the foreign key Supplier_Number links the PART table to the SUPPLIER
table. We may not add a new record to the PART table for a part with Sup-
plier_Number 8266 unless there is a corresponding record in the SUPPLIER
table for Supplier_Number  8266. We must also delete the corresponding
record in the PART table if we delete the record in the SUPPLIER table for
Supplier_Number 8266. In other words, we shouldn’t have parts from nonex-
istent suppliers!
Database designers document their data model with an entity-relationship
diagram , illustrated in Figure 6. 11 . This diagram illustrates the relationship
between the entities SUPPLIER, PART, LINE_ITEM, and ORDER. The boxes
represent entities. The lines connecting the boxes represent relationships. A
line connecting two entities that ends in two short marks designates a one-to-
one relationship. A line connecting two entities that ends with a crow’s foot
topped by a short mark indicates a one-to-many relationship. Figure 6. 11 shows
that one ORDER can contain many LINE_ITEMs. (A PART can be ordered
many times and appear many times as a line item in a single order.) Each PART
After normalization, the original relation ORDER has been broken down into four smaller relations. The relation ORDER is left with only two
attributes, and the relation LINE_ITEM has a combined, or concatenated, key consisting of Order_Number and Part_Number.
252 Part Two Information Technology Infrastructure

can have only one SUPPLIER, but many PARTs can be provided by the same
It can’t be emphasized enough: If the business doesn’t get its data model
right, the system won’t be able to serve the business well. The company’s
systems will not be as effective as they could be because they’ll have to
work with data that may be inaccurate, incomplete, or difficult to retrieve.
Understanding the organization’s data and how they should be represented
in a database is perhaps the most important lesson you can learn from this
For example, Famous Footwear, a shoe store chain with more than 800
locations in 49 states, could not achieve its goal of having “the right style of
shoe in the right store for sale at the right price” because its database was
not properly designed for rapidly adjusting store inventory. The company had
an Oracle relational database running on a midrange computer, but the data-
base was designed primarily for producing standard reports for management
rather than for reacting to marketplace changes. Management could not obtain
precise data on specific items in inventory in each of its stores. The com-
pany had to work around this problem by building a new database where the
sales and inventory data could be better organized for analysis and inventory
Non-relational Databases and Databases in the Cloud
For more than 30 years, relational database technology has been the gold stan-
dard. Cloud computing, unprecedented data volumes, massive workloads for
web services, and the need to store new types of data require database alter-
natives to the traditional relational model of organizing data in the form of
tables, columns, and rows. Companies are turning to “NoSQL” non-relational
database technologies for this purpose. Non-relational database manage-
ment systems use a more flexible data model and are designed for managing
large data sets across many distributed machines and for easily scaling up or
down. They are useful for accelerating simple queries against large volumes
of structured and unstructured data, including web, social media, graphics,
and other forms of data that are difficult to analyze with traditional SQL-
based tools.
There are several different kinds of NoSQL databases, each with its own
technical features and behavior. Oracle NoSQL Database is one example, as is
Amazon’s SimpleDB, one of the Amazon Web Services that run in the cloud.
SimpleDB provides a simple web services interface to create and store mul-
tiple data sets, query data easily, and return the results. There is no need to
predefine a formal database structure or change that definition if new data are
added later.
is supplied by
is ordered
belongs to
This diagram shows the relationships between the entities SUPPLIER, PART, LINE_ITEM, and ORDER that might be used to model
the database in Figure 6. 10 .
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 253

For example, MetLife used the MongoDB open source NoSQL database
to quickly integrate disparate data on more than 100 million customers and
deliver a consolidated view of each. MetLife’s database brings together data
from more than 70 separate administrative systems, claims systems, and other
data sources, including semi-structured and unstructured data, such as images
of health records and death certificates. The NoSQL database is able to use
structured, semi-structured, and unstructured information without requiring
tedious, expensive, and time-consuming database mapping.
Cloud Databases
Amazon and other cloud computing vendors provide relational database services
as well. Amazon Relational Database Service (Amazon RDS) offers MySQL, SQL
Server, Oracle Database, PostgreSQL, MariaDB, or Amazon Aurora DB (compat-
ible with MySQL) as database engines. Pricing is based on usage. Oracle has its
own Database Cloud Services using its relational Oracle Database, and Micro-
soft Windows SQL Azure Database is a cloud-based relational database service
based on Microsoft’s SQL Server DBMS. Cloud-based data management services
have special appeal for web-focused start-ups or small to medium-sized busi-
nesses seeking database capabilities at a lower price than in-house database
In addition to public cloud-based data management services, companies
now have the option of using databases in private clouds. For example, Sabre
Holdings, the world’s largest software as a service (SaaS) provider for the
aviation industry, has a private database cloud that supports more than 100
projects and 700 users. A consolidated database spanning a pool of standard-
ized servers running Oracle Database provides database services for multiple
6- 3 What are the principal tools and technologies
for accessing information from databases to
improve business performance and decision
Businesses use their databases to keep track of basic transactions, such as
paying suppliers, processing orders, keeping track of customers, and pay-
ing employees. But they also need databases to provide information that will
help the company run the business more efficiently and help managers and
employees make better decisions. If a company wants to know which product
is the most popular or who is its most profitable customer, the answer lies in
the data.
The Challenge of Big Data
Most data collected by organizations used to be transaction data that could
easily fit into rows and columns of relational database management systems.
We are now witnessing an explosion of data from web traffic, e-mail mes-
sages, and social media content (tweets, status messages), as well as machine-
generated data from sensors (used in smart meters, manufacturing sensors,
and electrical meters) or from electronic trading systems. These data may be
unstructured or semi-structured and thus not suitable for relational database
254 Part Two Information Technology Infrastructure

products that organize data in the form of columns and rows. We now use
the term big data to describe these data sets with volumes so huge that they
are beyond the ability of typical DBMS to capture, store, and analyze.
Big data doesn’t refer to any specific quantity but usually refers to data in
the petabyte and exabyte range—in other words, billions to trillions of records,
all from different sources. Big data are produced in much larger quantities and
much more rapidly than traditional data. For example, a single jet engine is
capable of generating 10 terabytes of data in just 30 minutes, and there are
more than 25,000 airline flights each day. Even though “tweets” are limited
to 140 characters each, Twitter generates more than 8 terabytes of data daily.
According to the International Data Center (IDC) technology research firm,
data are more than doubling every two years, so the amount of data available to
organizations is skyrocketing.
Businesses are interested in big data because they can reveal more patterns
and interesting relationships than smaller data sets, with the potential to pro-
vide new insights into customer behavior, weather patterns, financial market
activity, or other phenomena. For example, Shutterstock, the global online
image marketplace, stores 24 million images, adding 10,000 more each day.
To find ways to optimize the buying experience, Shutterstock analyzes its big
data to find out where its website visitors place their cursors and how long they
hover over an image before making a purchase.
Big data is also finding many uses in the public sector. Major cities in Europe
and Europol are using Big Data to identify criminals and terrorists (Aline, 2016).
The Interactive Session on Organizations describes how New York City is using
big data to lower its crime rate.
However, to derive business value from these data, organizations need new
technologies and tools capable of managing and analyzing nontraditional data
along with their traditional enterprise data. They also need to know what ques-
tions to ask of the data and limitations of big data. Capturing, storing, and
analyzing big data can be expensive, and information from big data may not
necessarily help decision makers. It’s important to have a clear understanding
of the problem big data will solve for the business. The chapter- ending case
explores these issues.
Business Intelligence Infrastructure
Suppose you wanted concise, reliable information about current operations,
trends, and changes across the entire company. If you worked in a large com-
pany, the data you need might have to be pieced together from separate sys-
tems, such as sales, manufacturing, and accounting, and even from external
sources, such as demographic or competitor data. Increasingly, you might need
to use big data. A contemporary infrastructure for business intelligence has
an array of tools for obtaining useful information from all the different types
of data used by businesses today, including semi-structured and unstructured
big data in vast quantities. These capabilities include data warehouses and data
marts, Hadoop, in-memory computing, and analytical platforms. Some of these
capabilities are available as cloud services.
Data Warehouses and Data Marts
The traditional tool for analyzing corporate data for the past two decades has
been the data warehouse. A data warehouse is a database that stores current
and historical data of potential interest to decision makers throughout the
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 255

Nowhere have declining crime rates been as dra-
matic as in New York City. As reflected in the
reported rates of the most serious types of crime, the
city in 2015 was as safe as it had been since statistics
have been kept. Crimes during the preceding few
years have also been historically low.
Why is this happening? Experts point to a num-
ber of factors, including demographic trends, the
proliferation of surveillance cameras, and increased
incarceration rates. But New York City would also
argue it is because of its proactive crime preven-
tion program along with district attorney and police
force willingness to aggressively deploy information
There has been a revolution in the use of big data
for retailing and sports (think baseball and Money-
Ball ) as well as for police work. New York City has
been at the forefront in intensively using data for
crime fighting, and its CompStat crime-mapping
program has been replicated by other cities.
CompStat features a comprehensive, citywide
database that records all reported crimes or com-
plaints, arrests, and summonses in each of the city’s
76 precincts, including their time and location. The
CompStat system analyzes the data and produces a
weekly report on crime complaint and arrest activity
at the precinct, patrol borough, and citywide levels.
CompStat data can be displayed on maps showing
crime and arrest locations, crime hot spots, and other
relevant information to help precinct commanders
and NYPD’s senior leadership quickly identify pat-
terns and trends and develop a targeted strategy for
fighting crime, such as dispatching more foot patrols
to high-crime neighborhoods.
Dealing with more than 105,000 cases per year
in Manhattan, New York’s district attorneys did not
have enough information to make fine-grained deci-
sions about charges, bail, pleas, or sentences. They
couldn’t quickly separate minor delinquents from
serious offenders.
In 2010 New York created a Crime Strategies Unit
(CSU) to identify and address crime issues and target
priority offenders for aggressive prosecution. Rather
than information being left on thousands of legal
pads in the offices of hundreds of assistant district
attorneys, CSU gathers and maps crime data for
Manhattan’s 22 precincts to visually depict criminal
activity based on multiple identifiers such as gang
affiliation and type of crime. Police commanders
supply a list of each precinct’s 25 worst offenders,
which is added to a searchable database that now
includes more than 9,000 chronic offenders. A large
percentage are recidivists who have been repeatedly
convicted of grand larceny, active gang members,
and other priority targets. These are the people
law enforcement wants to know about if they are
This database is used for an arrest alert system.
When someone considered a priority defendant is
picked up (even on a minor charge or parole viola-
tion) or arrested in another borough of the city, any
interested prosecutor, parole officer, or police intel-
ligence officer is automatically sent a detailed e-mail.
The system can use the database to send arrest alerts
for a particular defendant, a particular gang, or a
particular neighborhood or housing project, and the
database can be sorted to highlight patterns of crime
ranging from bicycle theft to homicide.
The alert system helps assistant district attor-
neys ensure that charging decisions, bail applica-
tions, and sentencing recommendations address
that defendant’s impact on criminal activity in the
community. The information gathered by CSU and
disseminated through the arrest alert system differ-
entiates among those for whom incarceration is an
imperative from a community-safety standpoint and
those defendants for whom alternatives to incarcera-
tion are appropriate and will not negatively affect
overall community safety. If someone leaves a gang,
goes to prison for a long time, moves out of the city
or New York state, or dies, the data in the arrest alert
system are edited accordingly.
Information developed by CSU helped the city’s
Violent Criminal Enterprises Unit break up the most
violent of Manhattan’s 30 gangs. Since 2011, 17 gangs
have been dismantled.
Using Big Data and analytics to predict not only
where crime will occur, but who will likely commit
a crime, has spread to cities across the globe in the
UK, Germany, France, Singapore and elsewhere.
In the UK, Kent Police have been using “pre-crime”
software beginning in 2015. The proprietary soft-
ware, called PredPol, analyzes a historical database
of crimes using date, place, time, and category of
offense. PredPol then generates daily schedules for
the deployment of police to the most crime-prone
Data-Driven Crime Fighting Goes Global
256 Part Two Information Technology Infrastructure

areas of the city. PredPol does not predict who will
likely commit a crime, but instead where the crimes
are likely to happen based on past data. Using
decades worth of crime reports, the PredPol system
identified areas with high probabilities of various
types of crime, and creates maps of the city with
color coded boxes indicating the areas to focus on.
It’s just a short step to predicting who is most
likely to commit a crime, or a terrorist act. Predict-
ing who will commit a crime requires even bigger
Big Data than criminal records and crime locations.
Law enforcement systems being developed now
parallel those used by large hotel chains who collect
detailed data on their customers personal prefer-
ences, and even their facial images. Using surveil-
lance cameras throughout a city, along with real time
analytics, will allow police to identify where former,
or suspected, criminals are located and traveling.
These tracking data will be combined with surveil-
lance of social media interactions of the persons
involved. The idea is to allocate police to those areas
where “crime prone” people are located. In 2016
the UK adopted the Investigatory Powers Bill which
legalizes a global web and telecommunications sur-
veillance system, and a government database that
stores the web history of every citizen. This data
and analysis could be used to identify people who
are most likely to commit a crime or plot a terrorist
attack. Civil liberties groups around the globe are
concerned that these systems operate without judi-
cial or public oversight, and can easily be abused by
Sources: “The UK Now Wields Unprecedented Surveillance Powers-
Here’s What it Means,” by James Vincent, The, Novem-
ber 29, 2016; “Predictive Policing and the Automated Suppression
of Dissent,” by Lena Dencik, LSE Media Projects Blog, April 2016;
“Prosecution Gets Smart” and “Intelligence-Driven Prosecution/
Crime Strategies Unit,” , accessed March 4,
2016; Pervaiz Shallwani and Mark Morales, “ NYC Officials Tout New
Low in Crime, but Homicide, Rape, Robbery Rose,” Wall Street Jour-
nal, January 4, 2016; “The New Surveillance Discretion: Automated
Suspicion, Big Data, and Policing,” by Elizabeth Joh, Harvard Law &
Policy Review, December 14, 2015; “British Police Roll Out New ‘Pre-
crime’ Software to Catch Would-Be Criminals,” 21st Century Wire,
March 13, 2015; and Chip Brown, “The Data D.A.”, New York Times
Magazine , December 7, 2014.
3. What management, organization, and technology
issues should be considered when setting up infor-
mation systems for intelligence-driven
1. What are the benefits of intelligence-driven prose-
cution for crime fighters and the general public?
2. What problems does this approach to crime fight-
ing pose?
company. The data originate in many core operational transaction systems,
such as systems for sales, customer accounts, and manufacturing, and may
include data from website transactions. The data warehouse extracts current
and historical data from multiple operational systems inside the organiza-
tion. These data are combined with data from external sources and trans-
formed by correcting inaccurate and incomplete data and restructuring the
data for management reporting and analysis before being loaded into the data
The data warehouse makes the data available for anyone to access as needed,
but the data cannot be altered. A data warehouse system also provides a range
of ad hoc and standardized query tools, analytical tools, and graphical reporting
Companies often build enterprise-wide data warehouses, where a central
data warehouse serves the entire organization, or they create smaller, decentral-
ized warehouses called data marts. A data mart is a subset of a data warehouse
in which a summarized or highly focused portion of the organization’s data is
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 257

Manhattan District Attorney’s Office

placed in a separate database for a specific population of users. For example, a
company might develop marketing and sales data marts to deal with customer
Relational DBMS and data warehouse products are not well suited for organizing
and analyzing big data or data that do not easily fit into columns and rows used
in their data models. For handling unstructured and semi-structured data in vast
quantities, as well as structured data, organizations are using Hadoop . Hadoop
is an open source software framework managed by the Apache Software Founda-
tion that enables distributed parallel processing of huge amounts of data across
inexpensive computers. It breaks a big data problem down into sub-problems,
distributes them among up to thousands of inexpensive computer processing
nodes, and then combines the result into a smaller data set that is easier to ana-
lyze. You’ve probably used Hadoop to find the best airfare on the Internet, get
directions to a restaurant, do a search on Google, or connect with a friend on
Hadoop consists of several key services, including the Hadoop Distributed
File System (HDFS) for data storage and MapReduce for high-performance
parallel data processing. HDFS links together the file systems on the numer-
ous nodes in a Hadoop cluster to turn them into one big file system. Hadoop’s
MapReduce was inspired by Google’s MapReduce system for breaking down
processing of huge data sets and assigning work to the various nodes in a clus-
ter. HBase, Hadoop’s non-relational database, provides rapid access to the data
stored on HDFS and a transactional platform for running high-scale real-time
Hadoop can process large quantities of any kind of data, including struc-
tured transactional data, loosely structured data such as Facebook and Twit-
ter feeds, complex data such as web server log files, and unstructured audio
and video data. Hadoop runs on a cluster of inexpensive servers, and proces-
sors can be added or removed as needed. Companies use Hadoop for analyzing
very large volumes of data as well as for a staging area for unstructured and
semi-structured data before they are loaded into a data warehouse. Yahoo uses
Hadoop to track users’ behavior so it can modify its home page to fit their inter-
ests. Life sciences research firm NextBio uses Hadoop and HBase to process
data for pharmaceutical companies conducting genomic research. Top database
vendors such as IBM, Hewlett-Packard, Oracle, and Microsoft have their own
Hadoop software distributions. Other vendors offer tools for moving data into
and out of Hadoop or for analyzing data within Hadoop.
In-Memory Computing
Another way of facilitating big data analysis is to use in-memory computing ,
which relies primarily on a computer’s main memory (RAM) for data storage.
(Conventional DBMS use disk storage systems.) Users access data stored in
system primary memory, thereby eliminating bottlenecks from retrieving and
reading data in a traditional, disk-based database and dramatically shortening
query response times. In-memory processing makes it possible for very large
sets of data, amounting to the size of a data mart or small data warehouse, to
reside entirely in memory. Complex business calculations that used to take
hours or days are able to be completed within seconds, and this can even be
accomplished using handheld devices.
The previous chapter describes some of the advances in contemporary com-
puter hardware technology that make in-memory processing possible , such as
258 Part Two Information Technology Infrastructure

powerful high-speed processors, multicore processing, and falling computer
memory prices. These technologies help companies optimize the use of mem-
ory and accelerate processing performance while lowering costs.
Leading commercial products for in-memory computing include SAP HANA
and Oracle Exalytics. Each provides a set of integrated software components,
including in-memory database software and specialized analytics software, that
run on hardware optimized for in-memory computing work.
Analytic Platforms
Commercial database vendors have developed specialized high-speed analytic
platforms using both relational and non-relational technology that are opti-
mized for analyzing large data sets. Analytic platforms such as IBM PureData
System for Analytics, feature preconfigured hardware-software systems that
are specifically designed for query processing and analytics. For example, IBM
PureData System for Analytics features tightly integrated database, server, and
storage components that handle complex analytic queries 10 to 100 times faster
than traditional systems. Analytic platforms also include in-memory systems
and NoSQL non-relational database management systems. Analytic platforms
are now available as cloud services.
Figure 6. 12 illustrates a contemporary business intelligence infrastructure
using the technologies we have just described. Current and historical data are
extracted from multiple operational systems along with web data, machine-
generated data, unstructured audio/visual data, and data from external sources
that have been restructured and reorganized for reporting and analysis. Hadoop
clusters pre-process big data for use in the data warehouse, data marts, or an
Casual users
• Queries
• Reports
• Dashboards
Power users
• Queries
• Reports
• Data mining
Video Data
Extract, transform,
Web Data
A contemporary business intelligence infrastructure features capabilities and tools to manage and analyze
large quantities and different types of data from multiple sources. Easy-to-use query and reporting tools for
casual business users and more sophisticated analytical toolsets for power users are included.
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 259

analytic platform or for direct querying by power users. Outputs include reports
and dashboards as well as query results. Chapter 12 discusses the various types
of BI users and BI reporting in greater detail.
Analytical Tools: Relationships, Patterns, Trends
Once data have been captured and organized using the business intelligence
technologies we have just described, they are available for further analysis
using software for database querying and reporting, multidimensional data
analysis (OLAP), and data mining. This section will introduce you to these
tools , with more detail about business intelligence analytics and applications
in Chapter 12 .
Online Analytical Processing (OLAP)
Suppose your company sells four different products—nuts, bolts, washers, and
screws—in the East, West, and Central regions. If you wanted to ask a fairly
straightforward question, such as how many washers sold during the past quar-
ter, you could easily find the answer by querying your sales database. But what
if you wanted to know how many washers sold in each of your sales regions
and compare actual results with projected sales?
To obtain the answer, you would need online analytical processing
(OLAP) . OLAP supports multidimensional data analysis, enabling users to
view the same data in different ways using multiple dimensions. Each aspect
of information—product, pricing, cost, region, or time period—represents a
different dimension. So, a product manager could use a multidimensional
data analysis tool to learn how many washers were sold in the East in June,
how that compares with the previous month and the previous June, and
how it compares with the sales forecast. OLAP enables users to obtain online
answers to ad hoc questions such as these in a fairly rapid amount of time,
even when the data are stored in very large databases, such as sales figures for
multiple years.
This view shows product versus region. If you rotate the cube 90 degrees, the face that will show is
product versus actual and projected sales. If you rotate the cube 90 degrees again, you will see region
versus actual and projected sales. Other views are possible.
260 Part Two Information Technology Infrastructure

Figure 6. 13 shows a multidimensional model that could be created to rep-
resent products, regions, actual sales, and projected sales. A matrix of actual
sales can be stacked on top of a matrix of projected sales to form a cube with six
faces. If you rotate the cube 90 degrees one way, the face showing will be prod-
uct versus actual and projected sales. If you rotate the cube 90 degrees again,
you will see region versus actual and projected sales. If you rotate 180 degrees
from the original view, you will see projected sales and product versus region.
Cubes can be nested within cubes to build complex views of data. A company
would use either a specialized multidimensional database or a tool that creates
multidimensional views of data in relational databases.
Data Mining
Traditional database queries answer such questions as “How many units of
product number 403 were shipped in February 2016?” OLAP, or multidimen-
sional analysis, supports much more complex requests for information, such as
“Compare sales of product 403 relative to plan by quarter and sales region for
the past two years.” With OLAP and query-oriented data analysis, users need to
have a good idea about the information for which they are looking.
Data mining is more discovery-driven. Data mining provides insights into
corporate data that cannot be obtained with OLAP by finding hidden patterns
and relationships in large databases and inferring rules from them to predict
future behavior. The patterns and rules are used to guide decision making
and forecast the effect of those decisions. The types of information obtainable
from data mining include associations, sequences, classifications, clusters, and
• Associations are occurrences linked to a single event. For instance, a study of
supermarket purchasing patterns might reveal that, when corn chips are pur-
chased, a cola drink is purchased 65 percent of the time, but when there is a
promotion, cola is purchased 85 percent of the time. This information helps
managers make better decisions because they have learned the profitability
of a promotion.
• In sequences , events are linked over time. We might find, for example, that if
a house is purchased, a new refrigerator will be purchased within two weeks
65 percent of the time, and an oven will be bought within one month of the
home purchase 45 percent of the time.
• Classification recognizes patterns that describe the group to which an item
belongs by examining existing items that have been classified and by infer-
ring a set of rules. For example, businesses such as credit card or telephone
companies worry about the loss of steady customers. Classification helps
discover the characteristics of customers who are likely to leave and can pro-
vide a model to help managers predict who those customers are so that the
managers can devise special campaigns to retain such customers.
• Clustering works in a manner similar to classification when no groups have
yet been defined. A data mining tool can discover different groupings within
data, such as finding affinity groups for bank cards or partitioning a database
into groups of customers based on demographics and types of personal
• Although these applications involve predictions, forecasting uses predictions
in a different way. It uses a series of existing values to forecast what other val-
ues will be. For example, forecasting might find patterns in data to help man-
agers estimate the future value of continuous variables, such as sales figures.
These systems perform high-level analyses of patterns or trends, but they
can also drill down to provide more detail when needed. There are data mining
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 261

applications for all the functional areas of business and for government and
scientific work. One popular use for data mining is to provide detailed analyses
of patterns in customer data for one-to-one marketing campaigns or for identi-
fying profitable customers.
Caesars Entertainment, formerly known as Harrah’s Entertainment, is the
largest gaming company in the world. It continually analyzes data about its
customers gathered when people play its slot machines or use its casinos and
hotels. The corporate marketing department uses this information to build a
detailed gambling profile, based on a particular customer’s ongoing value to
the company. For instance, data mining lets Caesars know the favorite gaming
experience of a regular customer at one of its riverboat casinos along with that
person’s preferences for room accommodations, restaurants, and entertain-
ment. This information guides management decisions about how to cultivate
the most profitable customers, encourage those customers to spend more, and
attract more customers with high revenue-generating potential. Business intel-
ligence improved Caesars’s profits so much that it became the centerpiece of
the firm’s business strategy.
Text Mining and Web Mining
Unstructured data, most in the form of text files, is believed to account for more
than 80 percent of useful organizational information and is one of the major
sources of big data that firms want to analyze. E-mail, memos, call center tran-
scripts, survey responses, legal cases, patent descriptions, and service reports
are all valuable for finding patterns and trends that will help employees make
better business decisions. Text mining tools are now available to help busi-
nesses analyze these data. These tools are able to extract key elements from
unstructured big data sets, discover patterns and relationships, and summarize
the information.
Businesses might turn to text mining to analyze transcripts of calls to cus-
tomer service centers to identify major service and repair issues or to mea-
sure customer sentiment about their company. Sentiment analysis software is
able to mine text comments in an e-mail message, blog, social media conversa-
tion, or survey form to detect favorable and unfavorable opinions about specific
For example, discount brokers use analytic software to analyze hundreds
of thousands of its customer interactions each month. The software analyzes
customer service notes, e-mails, survey responses, and online discussions to
discover signs of dissatisfaction that might cause a customer to stop using
the company’s services. The software is able to automatically identify the
various “voices” customers use to express their feedback (such as a positive,
negative, or conditional voice) to pinpoint a person’s intent to buy, intent to
leave, or reaction to a specific product or marketing message. Brokers use
this information to take corrective actions such as stepping up direct broker
communication with the customer and trying to quickly resolve the prob-
lems that are making the customer unhappy.
The web is another rich source of unstructured big data for revealing pat-
terns, trends, and insights into customer behavior. The discovery and analysis
of useful patterns and information from the World Wide Web are called web
mining . Businesses might turn to web mining to help them understand cus-
tomer behavior, evaluate the effectiveness of a particular website, or quantify
the success of a marketing campaign. For instance, marketers use the Google
Trends service, which tracks the popularity of various words and phrases used
262 Part Two Information Technology Infrastructure

in Google search queries, to learn what people are interested in and what they
are interested in buying.
Web mining looks for patterns in data through content mining, structure
mining, and usage mining. Web content mining is the process of extracting
knowledge from the content of webpages, which may include text, image,
audio, and video data. Web structure mining examines data related to the
structure of a particular website. For example, links pointing to a document
indicate the popularity of the document, while links coming out of a docu-
ment indicate the richness or perhaps the variety of topics covered in the
document. Web usage mining examines user interaction data recorded by
a web server whenever requests for a website’s resources are received. The
usage data records the user’s behavior when the user browses or makes trans-
actions on the website and collects the data in a server log. Analyzing such
data can help companies determine the value of particular customers, cross-
marketing strategies across products, and the effectiveness of promotional
The chapter- ending case describes organizations’ experiences as they use
the analytical tools and business intelligence technologies we have described to
grapple with “big data” challenges.
Databases and the Web
Have you ever tried to use the web to place an order or view a product catalog?
If so, you were using a website linked to an internal corporate database. Many
companies now use the web to make some of the information in their internal
databases available to customers and business partners.
Suppose, for example, a customer with a web browser wants to search an
online retailer’s database for pricing information. Figure 6. 14 illustrates how
that customer might access the retailer’s internal database over the web. The
user accesses the retailer’s website over the Internet using a web browser
on his or her client PC or mobile device. The user’s web browser software
requests data from the organization’s database, using HTML commands to
communicate with the web server. Apps provide even faster access to corpo-
rate databases.
Because many back-end databases cannot interpret commands written in
HTML, the web server passes these requests for data to software that translates
HTML commands into SQL so the commands can be processed by the DBMS
working with the database. In a client/server environment, the DBMS resides
on a dedicated computer called a database server . The DBMS receives the
Client with
Web browser
server Database
Users access an organization’s internal database through the web using their desktop PC browsers or
mobile apps.
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 263

SQL requests and provides the required data. Middleware transfers information
from the organization’s internal database back to the web server for delivery in
the form of a web page to the user.
Figure 6. 14 shows that the middleware working between the web server and
the DBMS is an application server running on its own dedicated computer (see
Chapter 5 ) . The application server software handles all application operations,
including transaction processing and data access, between browser-based com-
puters and a company’s back-end business applications or databases. The appli-
cation server takes requests from the web server, runs the business logic to
process transactions based on those requests, and provides connectivity to the
organization’s back-end systems or databases. Alternatively, the software for
handling these operations could be a custom program or a CGI script. A CGI
script is a compact program using the Common Gateway Interface (CGI) specifi-
cation for processing data on a web server.
There are a number of advantages to using the web to access an organiza-
tion’s internal databases. First, web browser software is much easier to use
than proprietary query tools. Second, the web interface requires few or no
changes to the internal database. It costs much less to add a web interface in
front of a legacy system than to redesign and rebuild the system to improve
user access.
Accessing corporate databases through the web is creating new efficiencies,
opportunities, and business models. provides an up-to-date
online directory of more than 700,000 suppliers of industrial products, such as
chemicals, metals, plastics, rubber, and automotive equipment. Formerly called
Thomas Register, the company used to send out huge paper catalogs with this
information. Now it provides this information to users online via its website
and has become a smaller, leaner company.
Other companies have created entirely new businesses based on access to
large databases through the web. One is the social networking service Facebook,
which helps users stay connected with each other and meet new people. Face-
book features “profiles” with information on 1.6 billion active users with infor-
mation about themselves, including interests, friends, photos, and groups with
which they are affiliated. Facebook maintains a very large database to house
and manage all of this content. There are also many web-enabled databases in
the public sector to help consumers and citizens access helpful information.
6- 4 Why are information policy, data administration,
and data quality assurance essential for
managing the firm’s data resources?
Setting up a database is only a start. In order to make sure that the data for
your business remain accurate, reliable, and readily available to those who
need them, your business will need special policies and procedures for data
Establishing an Information Policy
Every business, large and small, needs an information policy. Your firm’s data
are an important resource, and you don’t want people doing whatever they
want with them. You need to have rules on how the data are to be organized and
maintained and who is allowed to view the data or change them.
264 Part Two Information Technology Infrastructure

An information policy specifies the organization’s rules for sharing, dis-
seminating, acquiring, standardizing, classifying, and inventorying informa-
tion. Information policy lays out specific procedures and accountabilities,
identifying which users and organizational units can share information,
where information can be distributed, and who is responsible for updat-
ing and maintaining the information. For example, a typical information
policy would specify that only selected members of the payroll and human
resources department would have the right to change and view sensitive
employee data, such as an employee’s salary or social security number, and
that these departments are responsible for making sure that such employee
data are accurate.
If you are in a small business, the information policy would be established
and implemented by the owners or managers. In a large organization, manag-
ing and planning for information as a corporate resource often require a formal
data administration function. Data administration is responsible for the spe-
cific policies and procedures through which data can be managed as an orga-
nizational resource. These responsibilities include developing an information
policy, planning for data, overseeing logical database design and data dictionary
development, and monitoring how information systems specialists and end-
user groups use data.
You may hear the term data governance used to describe many of these
activities. Promoted by IBM, data governance deals with the policies and pro-
cesses for managing the availability, usability, integrity, and security of the
data employed in an enterprise with special emphasis on promoting privacy,
security, data quality, and compliance with government regulations.
A large organization will also have a database design and management group
within the corporate information systems division that is responsible for defin-
ing and organizing the structure and content of the database and maintain-
ing the database. In close cooperation with users, the design group establishes
the physical database, the logical relations among elements, and the access
rules and security procedures. The functions it performs are called database
administration .
Ensuring Data Quality
A well-designed database and information policy will go a long way toward
ensuring that the business has the information it needs. However, additional
steps must be taken to ensure that the data in organizational databases are accu-
rate and remain reliable.
What would happen if a customer’s telephone number or account balance
were incorrect? What would be the impact if the database had the wrong price
for the product you sold or your sales system and inventory system showed
different prices for the same product? Data that are inaccurate, untimely, or
inconsistent with other sources of information lead to incorrect decisions,
product recalls, and financial losses. Gartner, Inc. reported that more than
25 percent of the critical data in large Global 1000 companies’ databases is
inaccurate or incomplete, including bad product codes and product descrip-
tions, faulty inventory descriptions, erroneous financial data, incorrect sup-
plier information, and incorrect employee data. Some of these data quality
problems are caused by redundant and inconsistent data produced by multi-
ple systems feeding a data warehouse. For example, the sales ordering system
and the inventory management system might both maintain data on the orga-
nization’s products. However, the sales ordering system might use the term
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 265

Item Number and the inventory system might call the same attribute Product
Number . The sales, inventory, or manufacturing systems of a clothing retailer
might use different codes to represent values for an attribute. One system
might represent clothing size as “medium,” whereas the other system might
use the code “M” for the same purpose. During the design process for the
warehouse database, data describing entities, such as a customer, product, or
order, should be named and defined consistently for all business areas using
the database.
Think of all the times you’ve received several pieces of the same direct mail
advertising on the same day. This is very likely the result of having your name
maintained multiple times in a database. Your name may have been misspelled
or you used your middle initial on one occasion and not on another or the
information was initially entered onto a paper form and not scanned properly
into the system. Because of these inconsistencies, the database would treat you
as different people! We often receive redundant mail addressed to Laudon, Lav-
don, Lauden, or Landon.
If a database is properly designed and enterprise-wide data standards estab-
lished, duplicate or inconsistent data elements should be minimal. Most data
quality problems, however, such as misspelled names, transposed numbers, or
incorrect or missing codes, stem from errors during data input. The incidence
of such errors is rising as companies move their businesses to the web and
allow customers and suppliers to enter data into their websites that directly
update internal systems.
Before a new database is in place, organizations need to identify and correct
their faulty data and establish better routines for editing data once their data-
base is in operation. Analysis of data quality often begins with a data quality
audit , which is a structured survey of the accuracy and level of completeness
of the data in an information system. Data quality audits can be performed by
surveying entire data files, surveying samples from data files, or surveying end
users for their perceptions of data quality.
Data cleansing , also known as data scrubbing , consists of activities for detect-
ing and correcting data in a database that are incorrect, incomplete, improp-
erly formatted, or redundant. Data cleansing not only corrects errors but also
enforces consistency among different sets of data that originated in separate
information systems. Specialized data-cleansing software is available to auto-
matically survey data files, correct errors in the data, and integrate the data in a
consistent companywide format.
Data quality problems are not just business problems. They also pose seri-
ous problems for individuals, affecting their financial condition and even their
jobs. For example, inaccurate or outdated data about consumers’ credit histo-
ries maintained by credit bureaus can prevent creditworthy individuals from
obtaining loans or lower their chances of finding or keeping a job.
A small minority of companies allow individual departments to be in charge
of maintaining the quality of their own data. However, best data administration
practices call for centralizing data governance, standardization of organizational
data, data quality maintenance, and accessibility to data assets.
The Interactive Session on Management illustrates Societe Generale’s expe-
rience with managing data as a resource. As you read this case, try to identify
the policies, procedures, and technologies that were required to improve data
management at this company.
266 Part Two Information Technology Infrastructure

Societe Generale is France’s largest bank and the
third largest bank in the European Union. In 2016
the bank reported revenues of €25 billion, and a net
income of €4 billion. Societe Generale has offices
in 76 countries and more than 33 million custom-
ers across the globe. Like many banks in Europe,
Societe Generale is still struggling from the near
collapse of the global financial system in 2008, and
is burdened by a large volume of underperforming
and non-performing loans and financial instruments.
Extremely low interest rates in the past four years
have also reduced the bank’s traditional source of
revenues, which is lending money to consumers and
firms alike.
Like many large money-center banks in Europe
and the U.S., Societe Generale has adopted a univer-
sal banking model, a one-stop shop for whatever its
clients want. It operates in three banking segments:
retail banking for consumers, international banking
to service corporate clients, and investment banking
for wealthy clients and other sources of capital like
pension funds, insurance firms, and sovereign off-
shore funds.
As a global universal bank, Societe Generale sells
hundreds of financial products to its customers, and
this in turn generates tens of millions of daily trans-
actions including account deposits, checks, credit
card charges, ATM cash dispensing, financial instru-
ment trades, and local payments. These transac-
tions are stored in over 1,500 files (generally along
product lines). These 1,500 files are sent each day
to its “back office” operations group for storage and
processing. Ultimately, the information in the files
is used to update the bank’s operational database
applications that maintain the general ledger and
sub-ledgers. In this sense, banks such as Societe
Generale are industrial-scale information processing
factories that are required to deliver bank services
and products to customers with minimal errors.
But before the main databases are updated, the
information streaming into the back office needs
to be verified. Why does this basic information
need to be verified? As it turns out, the data is often
“dirty”: record count and the amounts recorded can
change as information flows between and across
systems. Duplicate files are sometimes created,
and sometimes the files needed for a business
process are not present. A third problem is ensur-
ing the correct information is being produced for
downstream applications and the general ledger
system in particular. Sometimes, files and records
are out of sequence or incomplete, and that causes
a downstream application to close down. There are
hundreds of downstream applications relying on the
transaction data.
In the past, the process of verification was han-
dled manually by hundreds of employees checking
files and records, dealing with errors, omissions,
and system error messages on the fly, as they
occurred. Given the critical nature of the verifica-
tion process and the size and complexity of the task,
Societe Generale senior management decided to
find an automated solution that would capture the
knowledge of its employees and then apply that
knowledge to the verification process, which would
operate in real time. What Societe Generale needed
was an “intelligent system” to take over the work of
many employees, or at least reduce the burden and
the inherent chance for errors.
After evaluating several vendors, the chose
Infogix, a French-based database firm that specializes
in running data-intensive business environments.
The Infogix Enterprise Data Platform monitors
incoming transactions, provides balancing and rec-
onciliation and identifies and predicts fraud and cus-
tomer behavior. The Infogix Platform is a rule-based
system allowing development of complex business
rules for validating integrity. To implement this sys-
tem, Infogix had to identify the rules and procedures
that humans follow can when verifying the data, and
then implement those rules in computer code. The
firm identified over 220 business rules that employ-
ees had invented over many years of experience.
With the Infogix platform in operation, transac-
tions are verified several times a day, enabling the
bank to validate the accuracy of millions of transac-
tions and about 1,500 files daily. The cost of verifi-
cation and data management has been drastically
reduced along with error rates and system shut
downs. Humans are still needed to handle new situ-
ations or critical errors the system cannot decide.
In the event of critical errors that disrupt the opera-
tion of important bank systems, the bank’s produc-
tion support team swings into action and, using the
tools available on the Infogix platform, are able to
solve the problem in much less time than with the
manual system. Since automating the transaction
Societe Generale Builds an Intelligent System to Manage Information Flow
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 267

process, the bank has reassigned employees to other
tasks or to backing up the automated system .
Sources: David Jolly, “Société Générale Profit Rises Despite Weak-
ness in Investment Banking,” New York Times, May 4, 2016; “Societe
3. What is the role of human decision makers in the
new system?
4. Why did managers select the Infogix platform?
Generale Group Results Full Year 2016,” Annual Report, societe-, March 15, 2017; “Enhancing the Accuracy of Front-to-
Back Office Information Flow,”, 2016; Noemie Bisserbe,
“Société Générale Shares Plunge After Profit Warning,” Agence
France-Presse, February 11, 2016.
1. Why did Societe Generale’s managers decide to
develop an automated transaction processing
2. Why did managers decide they needed an “intelli-
gent system?” In what way was the new system
Review Summary
6- 1 What are the problems of managing data resources in a traditional file environment?
Traditional file management techniques make it difficult for organizations to keep track of all of the
pieces of data they use in a systematic way and to organize these data so that they can be easily
accessed. Different functional areas and groups were allowed to develop their own files indepen-
dently. Over time, this traditional file management environment creates problems such as data redun-
dancy and inconsistency, program-data dependence, inflexibility, poor security, and lack of data
sharing and availability. A database management system (DBMS) solves these problems with software
that permits centralization of data and data management so that businesses have a single consistent
source for all their data needs. Using a DBMS minimizes redundant and inconsistent files.
6- 2 What are the major capabilities of DBMS, and why is a relational DBMS so powerful?
The principal capabilities of a DBMS include a data definition capability, a data dictionary capabil-
ity, and a data manipulation language. The data definition capability specifies the structure and con-
tent of the database. The data dictionary is an automated or manual file that stores information about
the data in the database, including names, definitions, formats, and descriptions of data elements. The
data manipulation language, such as SQL, is a specialized language for accessing and manipulating the
data in the database.
The relational database has been the primary method for organizing and maintaining data in infor-
mation systems because it is so flexible and accessible. It organizes data in two-dimensional tables
called relations with rows and columns. Each table contains data about an entity and its attributes.
Each row represents a record, and each column represents an attribute or field. Each table also con-
tains a key field to uniquely identify each record for retrieval or manipulation. Relational database
tables can be combined easily to deliver data required by users, provided that any two tables share a
common data element. Non-relational databases are becoming popular for managing types of data that
can’t be handled easily by the relational data model. Both relational and non-relational database prod-
ucts are available as cloud computing services.
Designing a database requires both a logical design and a physical design. The logical design mod-
els the database from a business perspective. The organization’s data model should reflect its key
business processes and decision-making requirements. The process of creating small, stable, flexible,
and adaptive data structures from complex groups of data when designing a relational database is
termed normalization. A well-designed relational database will not have many-to-many relationships,
and all attributes for a specific entity will only apply to that entity. It will try to enforce referential
integrity rules to ensure that relationships between coupled tables remain consistent. An entity-
relationship diagram graphically depicts the relationship between entities (tables) in a relational
268 Part Two Information Technology Infrastructure

6- 3 What are the principal tools and technologies for accessing information from databases to improve business
performance and decision making?
Contemporary data management technology has an array of tools for obtaining useful information
from all the different types of data used by businesses today, including semi-structured and unstruc-
tured big data in vast quantities. These capabilities include data warehouses and data marts, Hadoop,
in-memory computing, and analytical platforms. OLAP represents relationships among data as a mul-
tidimensional structure, which can be visualized as cubes of data and cubes within cubes of data,
enabling more sophisticated data analysis. Data mining analyzes large pools of data, including the
contents of data warehouses, to find patterns and rules that can be used to predict future behavior
and guide decision making. Text mining tools help businesses analyze large unstructured data sets
consisting of text. Web mining tools focus on analysis of useful patterns and information from the
Web, examining the structure of websites and activities of website users as well as the contents of
webpages. Conventional databases can be linked via middleware to the web or a web interface to
facilitate user access to an organization’s internal data.
6- 4 Why are information policy, data administration, and data quality assurance essential for managing the
firm’s data resources?
Developing a database environment requires policies and procedures for managing organizational
data as well as a good data model and database technology. A formal information policy governs the
maintenance, distribution, and use of information in the organization. In large corporations, a formal
data administration function is responsible for information policy as well as for data planning, data
dictionary development, and monitoring data usage in the firm.
Data that are inaccurate, incomplete, or inconsistent create serious operational and financial prob-
lems for businesses because they may create inaccuracies in product pricing, customer accounts, and
inventory data and lead to inaccurate decisions about the actions that should be taken by the firm.
Firms must take special steps to make sure they have a high level of data quality. These include using
enterprise-wide data standards, databases designed to minimize inconsistent and redundant data, data
quality audits, and data cleansing software.
Key Terms
Analytic platform , 259
Attribute , 243
Big data , 255
Bit , 242
Byte , 242
Data administration , 265
Data cleansing , 266
Data definition , 248
Data dictionary , 248
Data governance , 265
Data inconsistency , 244
Data manipulation language , 248
Data mart , 257
Data mining , 261
Data quality audit , 266
Data redundancy , 244
Data warehouse , 255
Database , 245
Database administration , 265
Database management system (DBMS) , 245
Database server , 263
Entity , 243
Entity-relationship diagram , 252
Field , 242
File , 242
Foreign key , 247
Hadoop , 258
In-memory computing , 258
Information policy , 265
Key field , 247
Non-relational database management
systems , 253
Normalization , 251
Online analytical processing (OLAP) , 260
Primary key , 247
Program-data dependence , 244
Record , 242
Referential integrity , 252
Relational DBMS , 246
Sentiment analysis , 262
Structured Query Language (SQL) , 248
Text mining , 262
Tuple , 247
Web mining , 262
To complete the problems marked with the MyLab MIS , go to EOC Discussion Questions in MyLab MIS.
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 269

Review Questions
6- 1 What are the problems of managing data
resources in a traditional file environment?
• List and describe each of the components in
the data hierarchy.
• Define and explain the significance of enti-
ties and attributes.
• List and describe the problems of the tradi-
tional file environment.
6- 2 What are the major capabilities of database
management systems (DBMS), and why is a
relational DBMS so powerful?
• Define a database and a database manage-
ment system.
• Name and briefly describe the capabilities of
• Define a relational DBMS and explain how it
organizes data.
• Explain the importance of data manipula-
tion languages.
• Explain why non-relational databases are
• Define and describe normalization and refer-
ential integrity and explain how they contrib-
ute to a well-designed relational database.
• Define and describe an entity-relationship dia-
gram and explain its role in database design.
6- 3 What are the principal tools and technologies
for accessing information from databases to
improve business performance and decision
• Define big data and describe the technolo-
gies for managing and analyzing it.
• List and describe the components of a contem-
porary business intelligence infrastructure.
• Describe the capabilities of online analytical
processing (OLAP).
• Describe Hadoop and explain how it differs
from relational DBMS.
• Explain how text mining and web mining
differ from conventional data mining.
• Describe how users can access information
from a company’s internal databases
through the web.
6- 4 Why are information policy, data administra-
tion, and data quality assurance essential for
managing the firm’s data resources?
• Describe the roles of information policy and
data administration in information
• Explain why data quality audits and data
cleansing are essential.
Discussion Questions
6- 5 Imagine that you are the owner of a small
business. How might you use sentiment anal-
ysis to improve your performance?
6- 6 To what extent should end users be involved
in the selection of a database management
system and database design?
6- 7 What are the consequences of an organiza-
tion not having an information policy? MyLabMIS
Hands-On MIS Projects
The projects in this section give you hands-on experience in analyzing data quality problems, establishing
companywide data standards, creating a database for inventory management, and using the web to search
online databases for overseas business resources. Visit MyLab MIS’s Multimedia Library to access this chap-
ter’s Hands-On MIS Projects.
Management Decision Problems
6- 8 Iko Instruments Group, a global supplier of measurement, analytical, and monitoring instruments and ser-
vices based in the Netherlands, had a new data warehouse designed to analyze customer activity to improve
service and marketing. However, the data warehouse was full of inaccurate and redundant data. The data in
the warehouse came from numerous transaction processing systems in the United States, Europe, Asia, and
other locations around the world. The team that designed the warehouse had assumed that sales groups in all
these areas would enter customer names, telephone numbers, and addresses the same way. In fact, compa-
nies in different countries were using multiple ways of entering quote, billing, shipping, contact information
270 Part Two Information Technology Infrastructure

and other data. Assess the potential business impact of these data quality problems. What decisions have to
be made and steps taken to reach a solution?
6- 9 Your industrial supply company wants to create a data warehouse where management can obtain a single
corporate-wide view of critical sales information to identify bestselling products, key customers, and sales
trends. Your sales and product information are stored in two different systems: a divisional sales system
running on a Unix server and a corporate sales system running on an IBM mainframe. You would like to
create a single standard format that consolidates these data from both systems. In MyLab MIS, you can
review the proposed format along with sample files from the two systems that would supply the data for
the data warehouse. Then answer the following questions:
• What business problems are created by not having these data in a single standard format?
• How easy would it be to create a database with a single standard format that could store the data from
both systems? Identify the problems that would have to be addressed.
• Should the problems be solved by database specialists or general business managers? Explain.
• Who should have the authority to finalize a single companywide format for this information in the data
Achieving Operational Excellence: Building a Relational Database for Inventory Management
Software skills: Database design, querying, and reporting
Business skills: Inventory management
6- 10 In this exercise, you will use database software to design a database for managing inventory for a small
business. Sylvester’s Bike Shop, located in San Francisco, California, sells road, mountain, hybrid, leisure,
and children’s bicycles. Currently, Sylvester’s purchases bikes from three suppliers but plans to add new
suppliers in the near future. Using the information found in the tables in MyLab MIS, build a simple rela-
tional database to manage information about Sylvester’s suppliers and products. Once you have built the
database, perform the following activities.
• Prepare a report that identifies the five most expensive bicycles. The report should list the bicycles in
descending order from most expensive to least expensive, the quantity on hand for each, and the
markup percentage for each.
• Prepare a report that lists each supplier, its products, the quantities on hand, and associated reorder
levels. The report should be sorted alphabetically by supplier. For each supplier, the products should be
sorted alphabetically.
• Prepare a report listing only the bicycles that are low in stock and need to be reordered. The report
should provide supplier information for the items identified.
• Write a brief description of how the database could be enhanced to further improve management of the
business. What tables or fields should be added? What additional reports would be useful?
Improving Decision Making: Searching Online Databases for Overseas Business Resources
Software skills: Online databases
Business skills: Researching services for overseas operations
6- 11 This project develops skills in searching web-enabled databases with information about products and ser-
vices in faraway locations.
Your company, Caledonian Furniture, is located in Cumbernauld, Scotland, and manufactures office fur-
niture of various types. You are considering opening a facility to manufacture and sell your products in Australia.
You would like to contact organizations that offer many services necessary for you to open your Australian office
and manufacturing facility, including lawyers, accountants, import-export experts, and telecommunications
equipment and support firms. Access the following online databases to locate companies that you would like to
meet with during your upcoming trip: Australian Business Register, AustraliaTrade Now (,
and the Nationwide Business Directory of Australia ( If necessary, use search engines
such as Yahoo! and Google.
• List the companies you would contact on your trip to determine whether they can help you with these
and any other functions you think are vital to establishing your office.
• Rate the databases you used for accuracy of name, completeness, ease of use, and general helpfulness.
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 271

Collaboration and Teamwork Project
Identifying Entities and Attributes in an Online Database
6- 12 With your team of three or four other students, select an online database to explore, such as AOL Music, , or the Internet Movie Database. Explore one of these websites to see what information it pro-
vides. Then list the entities and attributes that the company running the website must keep track of in its
databases. Diagram the relationship between the entities you have identified. If possible, use Google Docs
and Google Drive or Google Sites to brainstorm, organize, and develop a presentation of your findings for
the class.
Lego’s Enterprise Software Spurs Growth
The Lego Group, headquartered in Billund, Denmark,
is one of the largest toy manufacturers in the world.
Lego’s main products have been the bricks and figures
that children have played with for generations. The
Danish company has experienced sustained growth
since its founding in 1932, and for most of its history
its major manufacturing facilities were located in
In 2003, Lego was facing tough competition from
imitators and manufacturers of electronic toys. In an
effort to reduce costs, the group decided to initiate a
gradual restructuring process that continues today.
In 2006, the company announced that a large part
of its production would be outsourced to the elec-
tronics manufacturing service company Flextronics,
which has plants in Mexico, Hungary, and the Czech
Republic. The decision to outsource production came
as a direct consequence of an analysis of Lego’s total
supply chain. To reduce labor costs, manually inten-
sive processes were outsourced, keeping only the
highly skilled workers in Billund. Lego’s workforce
was gradually reduced from 8,300 employees in 2003
to approximately 4,200 in 2010. Additionally, produc-
tion had to be relocated to places closer to its natural
markets. As a consequence of all these changes, Lego
transformed itself from a manufacturing firm to a
market-oriented company that is capable of reacting
fast to changing global demand.
Lego’s restructuring process, coupled with double-
digit sales growth in the past few years, has led to
the company’s expansion abroad and made its work-
force more international. These changes presented
supply chain and human resources (HR) challenges
to the company. The supply chain had to be reen-
gineered to simplify production without reducing
quality. Improved logistics planning allowed Lego to
work more closely with retailers, suppliers, and the
new outsourcing companies. At the same time, the
HR department needed to play a more strategic role
inside the company. HR was now responsible for
implementing effective policies aimed at retaining
and recruiting the most qualified employees from a
diversity of cultural backgrounds.
Adapting company operations to these changes
required a flexible and robust IT infrastructure with
business intelligence capabilities that could help
management perform better forecasting and plan-
ning. As part of the solution, Lego chose to move
to SAP business suite software. SAP AG, a German
company that specializes in enterprise software
solutions, is one of the leading software companies
in the world. SAP’s software products include a vari-
ety of applications designed to efficiently support
all of a company’s essential functions and opera-
tions. Lego chose to implement SAP’s Supply Chain
Management (SCM), Product Lifecycle Management
(PLM), and Enterprise Resources Planning (ERP)
The SCM module includes essential features such
as supply chain monitoring and analysis as well as
forecasting, planning, and inventory optimization.
The PLM module enables managers to optimize
development processes and systems. The ERP mod-
ule includes, among other applications, the Human
Capital Management (HCM) application for person-
nel administration and development.
272 Part Two Information Technology Infrastructure

SAP’s business suite is based on a flexible three-
tier client–server architecture that can easily be
adapted to the new service-oriented architecture
(SOA) available in the latest versions of the software.
In the first tier, a client interface—a browser-type
graphical user interface (GUI) running on a laptop,
desktop, or mobile device—submits users’ requests
to the application servers. The applications servers
(the second tier in the system) receive and process
clients’ requests. In turn, these application servers
send the processed requests to the database sys-
tem (the third tier), which consists of one or more
relational databases. SAP’s business suite supports
databases from different vendors, including those
offered by Oracle, Microsoft, MySQL, and others.
The relational databases contain tables that store
data on Lego’s products, daily operations, the supply
chain, and thousands of employees. Managers can
easily use the SAP query tool to obtain reports from
the databases because it does not require any techni-
cal skill. Additionally, the distributed architecture
enables authorized personnel to have direct access
to the database system from the company’s various
locations, including those in Europe, North America,
and Asia.
SAP’s ERP-HCM module includes advanced fea-
tures such as “Talent Manager” as well as those for
handling employee administration, reporting, and
travel and time management. These features allow
Lego’s HR personnel to select the best candidates,
schedule their training, and create a stimulus plan
to retain them. It is also possible to include perfor-
mance measurements and get real-time insight into
HR trends. Using these advanced features, together
with tools from other software vendors, Lego’s man-
agers are able to track employees’ leadership poten-
tial, develop their careers, and forecast the recruiting
of new employees with certain skills.
The investments that The Lego Group has made
in information systems and business re-design have
paid off handsomely. In 2014 the Group increased
sales by 13 percent to €3.8 billion against €3.3 billion
the year before. Operating profit increased 15 per-
cent to €1.26 billion. Full-time employees increased
to 11,755 as the company expanded production in
Asia. In 2015, sales surged by 25 percent.
Reflecting its growing emphasis on developing
a global company and its substantial investment in
global information systems both in the supply chain
and the distribution chain, The Lego Group in 2014
showed strong, long-term growth in all regions. In
Europe, America, and Asia, sales growth has been in
the double digits for over five years despite the fact
that the Global Great Recession (2008 to 2013) led
to flat sales of toys worldwide. In the Asian region,
growth in Lego sales varied from market to market.
China’s growth in consumer sales of more than 50
percent was the most significant in the region. This
supports The Lego Group’s ambitions to further glo-
balize the company and make Asia a significant con-
tributor to future growth.
In May 2014 The Lego Group opened its first fac-
tory in China, located in Jiaxing, and a new office in
Shanghai, which is one of five main offices globally
for The Lego Group. The executives at Lego believe
there is huge potential in Asia, and have decided to
learn more about the Asian market and build capa-
bilities in the region. The new factory and office rep-
resent a significant expansion of the Lego physical
presence in the region. According to executives, in
combination with their existing office in Singapore,
the Shanghai office and the new factory enable stra-
tegically important functions to be located close to
their customers as well as children and parents in
China and Asia.
The decision to place a Lego factory in China is a
direct consequence of The Lego Group’s ambition to
have production placed close to core markets. This
same philosophy has led to expansions of the Lego
factory in the Czech Republic, and an entirely new
factory was opened in Nyiregyhaza, Hungary, in
March 2014. These factories, along with the parent
factory in Denmark, serve the European markets.
To serve the Americas faster and with customized
products, the company expanded its Lego factory in
Monterrey, Mexico.
Executives believe the global approach to informa-
tion systems and production facilities enables the
company to deliver Lego products to retailers and
ultimately to children all over the world very fast,
offering world-class service to consumers. In 2014, in
addition to its growth across a variety of markets, The
LEGO Movie was also released to overwhelmingly
positive reviews, bolstering the company’s brand and
allowing it to develop a new array of products based
on the movie’s themes. The movie led to shortages of
Lego bricks for Christmas 2015.
The Lego Group is primed to continue its growth
throughout 2016 and beyond using its organizational
flexibility and the concepts it has honed for years.
The company is responding to its customers and
releasing new versions of some of its most popular
sets of toys, including its Bionicle series of block sets.
So far, Lego has built an impressive worldwide pres-
ence, block by block .
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 273

Sources: Bob Ferrari, “A New CEO for LEGO with an Operations
and Supply Chain Management Background,” Theferrarigroup.
com, December15, 2016; John Kell, “Lego Says 2015 Was Its ‘Best
Year Ever,’ With Huge Sales Jump,”, March 1, 2016;
“The LEGO Group Annual Report 2015,”, 2016; Mary
O’Connor, “LEGO Puts the RFID Pieces Together,” RFID Jour-
nal, accessed
December 21, 2015; Henrik Amsinck, “LEGO: Building Strong Cus-
tomer Loyalty Through Personalized Engagements,” http://events. accessed December 20, 2015; Gregory Schmidt, “Lego’s
Success Leads to Competitors and Spinoffs,” New York Times,
November 20, 2015; Niclas Rolander, “China Shock Can’t Halt
Lego Executive Chasing ‘Fantastic’ Growth,” Bloombergbusiness.
com, September 2, 2015; Rebecca Kanthor, “New Lego Facility in
China to Start Production This Year,” Plastics News, May 15, 2015;
“Now Lego’s Business Rules Are on the Table,” Economic Engineer-
ing, 2015; “The Lego Group Annual Report 2014,” The Lego Group,
April 2015; Roar Trangbaek, “New London Office Supports Lego
Group Strategy to Reach Children Globally, Newsroom, www., November 2014; “How Lego Became World’s Hottest
Toy Company,” Economist, March 9, 2013; “Lego, the Toy of the
Century Had to Reinvent the Supply-Chain to Save the Company,”
Supply Chain Digest, September 25, 2007,
assets/on_target/07-09-25- 7.php?cid=1237, accessed November
16, 2010.
6- 13 Explain the role of the database in SAP’s three-
tier system.
6- 14 Explain why distributed architectures are
6- 15 Identify some of the business intelligence fea-
tures included in SAP’s business software suite.
6- 16 What are the main advantages and disadvan-
tages of having multiple databases in a distrib-
uted architecture? Explain.
Go to the Assignments section of MyLab MIS to complete these writing exercises.
6- 17 Identify the five problems of a traditional file environment and explain how a database management system
solves them.
6- 18 Discuss how the following facilitate the management of big data: Hadoop, in-memory computing, analytic
Case contributed by Daniel Ortiz Arroyo, Aalborg
274 Part Two Information Technology Infrastructure 7.php?cid=1237 7.php?cid=1237

Chapter 6 References
Aiken, Peter, Mark Gillenson, Xihui Zhang, and David Rafner.
“Data Management and Data Administration. Assessing 25
Years of Practice.” Journal of Database Management (July-
September 2011).
Aline, Robert. “Big Data Revolutionises Europe’s Fight Against
Terrorism,”, June 23, 2016.
Barton, Dominic and David Court. “Making Advanced Analytics
Work for You.” Harvard Business Review (October 2012).
Beath, Cynthia, Irma Becerra-Fernandez, Jeanne Ross, and James
Short. “Finding Value in the Information Explosion.” MIT
Sloan Management Review 53, No. 4 (Summer 2012).
Bughin, Jacques, John Livingston, and Sam Marwaha. “Seizing the
Potential for Big Data.” McKinsey Quarterly (October 2011).
Caserta, Joe and Elliott Cordo. “Data Warehousing in the Era of Big
Data.” Big Data Quarterly (January 19, 2016).
Clifford, James, Albert Croker, and Alex Tuzhilin. “On Data
Representation and Use in a Temporal Relational DBMS.”
Information Systems Research 7, No. 3 (September 1996).
DataInformed. “The Database Decision: Key Considerations to
Keep in Mind.” Wellesley Information Services (2015).
Davenport, Thomas H. Big Data at Work: Dispelling the Myths,
Uncovering the Opportunities. Boston, MA: Harvard Business
School Press (2014).
Eckerson, Wayne W. “Analytics in the Era of Big Data: Exploring a
Vast New Ecosystem.” TechTarget (2012).
.“Data Quality and the Bottom Line.” The Data
Warehousing Institute (2002).
Experian Information Solutions. “The 2016 Global Data
Management Benchmark Report.” (2016).
Henschen, Doug. “MetLife Uses NoSQL for Customer Service
Breakthrough.” Information Week (May 13, 2013).
Hoffer, Jeffrey A., Ramesh Venkataraman, and Heikki Toppi.
Modern Database Management (12th ed.). Upper Saddle River,
NJ: Prentice-Hall (2016).
Horst, Peter and Robert Dubroff. “Don’t Let Big Data Bury Your
Brand.” Harvard Business Review (November 2015).
Jordan, John. “The Risks of Big Data for Companies.” Wall Street
Journal (October 20, 2013).
Kroenke, David M. and David Auer. Database Processing:
Fundamentals, Design, and Implementation (14th ed.). Upper
Saddle River, NJ: Prentice-Hall (2016).
Lee, Yang W. and Diane M. Strong. “Knowing-Why About Data
Processes and Data Quality.” Journal of Management
Information Systems 20, No. 3 (Winter 2004).
Loveman, Gary. “Diamonds in the Datamine.” Harvard Business
Review (May 2003).
Marcus, Gary and Ernest Davis. “Eight (No, Nine!) Problems with
Big Data.” New York Times (April 6, 2014).
Martens, David and Foster Provost. “Explaining Data-Driven
Document Classifications.” MIS Quarterly 38, No. 1 (March
McAfee, Andrew and Erik Brynjolfsson. “Big Data: The
Management Revolution.” Harvard Business Review (October
McKinsey Global Institute. “Big Data: The Next Frontier for
Innovation, Competition, and Productivity.” McKinsey &
Company (2011).
Morrow, Rich. “Apache Hadoop: The Swiss Army Knife of IT.”
Global Knowledge (2013).
Mulani, Narendra. “In-Memory Technology: Keeping Pace with
Your Data.” Information Management ( February 27, 2013).
O’Keefe, Kate. “Real Prize in Caesars Fight: Data on Players.” Wall
Street Journal (March 19, 2015).
Redman, Thomas. Data Driven: Profiting from Your Most Important
Business Asset . Boston: Harvard Business Press (2008).
Redman, Thomas C. “Data’s Credibility Problem” Harvard Business
Review (December 2013).
Ross, Jeanne W., Cynthia M. Beath, and Anne Quaadgras. “You
May Not Need Big Data After All.” Harvard Business Review
(December 2013).
TechTarget Inc. “Identifying and Meeting the Challenges of Big
Data.” (2016).
Wallace, David J. “How Caesar’s Entertainment Sustains a Data-
Driven Culture.” DataInformed (December 14, 2012).
Zoumpoulis, Spyros, Duncan Simester, and Theos Evgeniou, “Run
Field Experiments to Make Sense of Your Big Data.” Harvard
Business Review (November 12, 2015).
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 275

MyLab MIS™
Visit for simulations, tutorials, and end-of-chapter problems.
Learning Objectives
After reading this chapter , you will be able to answer the following questions:
7-1 What are the principal components of telecommunications networks and
key networking technologies?
7-2 What are the different types of networks?
7-3 How do the Internet and Internet technology work, and how do they
support communication and e-business?
7-4 What are the principal technologies and standards for wireless networking,
communication, and Internet access?
Telepresence Moves out of the Boardroom and into the Field
Virtual Collaboration with IBM Sametime
Wireless Technology Makes Dundee Precious Metals Good as Gold
The Global Battle over Net Neutrality
Monitoring Employees on Networks: Unethical or Good Business?
RFID Propels the Angkasa Library Management System

7 Telecommunications, the Internet, and Wireless Technology

Dundee Precious Metals (DPM) is a Canadian-based, international min-ing company engaged in the acquisition, exploration, development and mining, and processing of precious metal properties. One of the com-
pany’s principal assets is the Chelopech copper and gold mine east of Sofia,
Bulgaria; the company also has a gold mine in southern Armenia and a smelter
in Namibia.
The price of gold and other metals has fluctuated wildly, and Dundee was
looking for a way to offset lower gold prices by making its mining operations
more efficient. However, mines are very complex operations, and there are
special challenges with communicating and coordinating work underground.
Management decided to implement an underground wireless Wi-Fi net-
work that allows electronic devices
to exchange data wirelessly at the
Chelopech mine to monitor the
location of equipment, people, and
ore throughout the mine’s tunnels
and facilities. The company
deployed several hundred Cisco
Systems Inc. high-speed wireless
access points (in waterproof, dust-
proof, and crush-resistant enclo-
sures), extended-range antennas,
communications boxes with indus-
trial switches connected to 90 kilo-
meters of fiber optic lines that snake
through the mine, emergency boxes
on walls for Linksys Voice over
Internet Protocol (VoIP) phones,
protected vehicle antennas that can
withstand being knocked against a
mine ceiling, and custom walkie-
talkie software. Dundee was able to get access points that normally have a
range of 200 meters to work at a range of 600 to 800 meters in a straight line or
400 to 600 meters around a curve.
Another part of the solution was to use AeroScout Wi-Fi radio frequency
identification (RFID) technology to track workers, equipment, and vehicles.
About 1,000 AeroScout Wi-Fi RFID tags are worn by miners or mounted on
vehicles and equipment, transmitting data about vehicle rock loads and
mechanical status, miner locations, and the status of doors and ventilation
fans over the mine’s Wi-Fi network. AeroScout’s Mobile View software can
Wireless Technology Makes Dundee Precious
Metals Good as Gold
© Caro/Alamy

display a real-time visual representation of the location of people and items.
The software can determine where loads came from, where rock should be
sent, and where empty vehicles should go next. Data about any mishap or slow-
down, such as a truck that made an unscheduled stop or a miner who is behind
schedule, are transmitted to Dundee’s surface crew so that appropriate action
can be taken.
The Mobile View interface is easy to use and provides a variety of reports
and rules-based alerts. By using this wireless technology to track the location of
equipment and workers underground, Dundee has been able to decrease equip-
ment downtime and use resources more efficiently. Dundee also uses the data
from the underground wireless network for its Dassault Systemes’ Geovia mine
management software and IBM mobile planning software.
Before implementing AeroScout, Dundee kept track of workers by noting
who had turned in their cap lamps at the end of their shift. AeroScout has auto-
mated this process, enabling staff in the control room to determine the location
of miners quickly.
It is also essential for workers driving equipment underground to be able to
communicate closely with the mine’s control room. In the past, workers used a
radio checkpoint system to relay their location. The new wireless system
enables control room staff workers actually to see the location of machinery so
they can direct traffic more effectively, quickly identify problems, and respond
more rapidly to emergencies.
Thanks to wireless technology, Dundee has been able to reduce costs and
increase productivity while improving the safety of its workers. Communica-
tion costs have dropped 20 percent. According to Dundee CEO Rick Howes, the
$10 million project, along with new crushing and conveyor systems, helped
lower production costs to $40 a ton from $60. In 2013, Chelopech ore produc-
tion topped two million tons, a 12 percent increase over the previous year.
Sources: Clint Boulton, “Mining Sensor Data to Run a Better Gold Mine,” Wall Street Journal ,
February 17, 2015, and “Tags to Riches: Mining Company Tracks Production with Sensors,”
Wall Street Journal , February 18, 2015, , accessed April 29, 2015;
Eric Reguly, “Dundee’s Real-Time Data Innovations Are as Good as Gold,” The Globe and
Mail , December 1, 2013; and Howard Solomon, “How a Canadian Mining Company Put a
Wi-Fi Network Underground,” IT World Canada , December 3, 2013.
The experience of Dundee Precious Metals illustrates some of the power-ful capabilities and opportunities contemporary networking technology
provides. The company uses wireless networking, RFID technology, and Aero-
Scout MobileView software to automate tracking of workers, equipment, and
ore as they move through its Chelopech underground mine.
The chapter-opening diagram calls attention to important points this case
and this chapter raise. The Dundee Precious Metals production environment in
its Chelopech mine is difficult to monitor because it is underground yet requires
intensive oversight and coordination to make sure that people, materials, and
equipment are available when and where they are needed underground and
that work is flowing smoothly. Tracking components manually or using older
radio identification methods was slow, cumbersome, and error-prone. Dundee
was also under pressure to cut costs because the price of gold had dropped and
precious metals typically have wild price fluctuations.
278 Part Two Information Technology Infrastructure

Management decided that wireless Wi-Fi technology and RFID tagging pro-
vided a solution and arranged for the deployment of a wireless Wi-Fi network
throughout the entire underground Chelopech production facility. The net-
work made it much easier to track and supervise mining activities from above
Here are some questions to think about: Why did wireless technology play
such a key role in this solution? Describe how the new system changed the pro-
duction process at the Chelopech mine.
7-1 What are the principal components of
telecommunications networks and key
networking technologies?
If you run or work in a business, you can’t do without networks. You need
to communicate rapidly with your customers, suppliers, and employees. Until
about 1990, businesses used the postal system or telephone system with voice
or fax for communication. Today, however, you and your employees use com-
puters, e-mail, text messaging, the Internet, mobile phones, and mobile com-
puters connected to wireless networks for this purpose. Networking and the
Internet are now nearly synonymous with doing business.
Networking and Communication Trends
Firms in the past used two fundamentally different types of networks: tele-
phone networks and computer networks. Telephone networks historically
handled voice communication, and computer networks handled data traffic.
Telephone companies built telephone networks throughout the twentieth cen-
tury by using voice transmission technologies (hardware and software), and
these companies almost always operated as regulated monopolies throughout
the world. Computer companies originally built computer networks to transmit
data between computers in different locations.
• Select wireless
• Monitor underground
work flow
• Increase efficiency
• Lower costs
• Revise job functions
and production
• Train employees
• Cisco wireless access
• Aeroscout RFID tags
and software
• Wireless communication
• Inefficient manual processes
• Large, inaccessible
production environment
Wi-Fi Wireless Network
• Track people, equipment,
ore underground
• Optimize work flow
• Expedite communication
Chapter 7 Telecommunications, the Internet, and Wireless Technology 279

Thanks to continuing telecommunications deregulation and information
technology innovation, telephone and computer networks are converging into
a single digital network using shared Internet-based standards and technology.
Telecommunications providers today, such as AT&T and Verizon, offer data
transmission, Internet access, mobile phone service, and television program-
ming as well as voice service. Cable companies, such as Cablevision and Com-
cast, offer voice service and Internet access. Computer networks have expanded
to include Internet telephone and video services.
Both voice and data communication networks have also become more pow-
erful (faster), more portable (smaller and mobile), and less expensive. For
instance, the typical Internet connection speed in 2000 was 56 kilobits per sec-
ond, but today more than 80 percent of EU households have high-speed broad-
band connections provided by telephone and cable TV companies running at 1
to 15 million bits per second. The cost for this service has fallen exponentially,
from 25 cents per kilobit in 2000 to a tiny fraction of a cent today.
Increasingly, voice and data communication, as well as Internet access, are
taking place over broadband wireless platforms such as mobile phones, mobile
handheld devices, and PCs in wireless networks. More than half the Internet
users in the United States use smartphones and tablets to access the Internet.
What is a Computer Network?
If you had to connect the computers for two or more employees in the same
office, you would need a computer network. In its simplest form, a network
consists of two or more connected computers. Figure 7. 1 illustrates the major
hardware, software, and transmission components in a simple network: a client
Illustrated here is a simple computer network consisting of computers, a network operating system (NOS) residing on a dedi-
cated server computer, cable (wiring) connecting the devices, switches, and a router.
280 Part Two Information Technology Infrastructure

computer and a dedicated server computer, network interfaces, a connection
medium, network operating system software, and either a hub or a switch.
Each computer on the network contains a network interface device to link
the computer to the network. The connection medium for linking network
components can be a telephone wire, coaxial cable, or radio signal in the case of
cell phone and wireless local area networks (Wi-Fi networks).
The network operating system (NOS) routes and manages communica-
tions on the network and coordinates network resources. It can reside on every
computer in the network or primarily on a dedicated server computer for all
the applications on the network. A server is a computer on a network that
performs important network functions for client computers, such as display-
ing web pages, storing data, and storing the network operating system (hence
controlling the network). Microsoft Windows Server, Linux, and Novell Open
Enterprise Server are the most widely used network operating systems.
Most networks also contain a switch or a hub acting as a connection point
between the computers. Hubs are simple devices that connect network com-
ponents, sending a packet of data to all other connected devices. A switch has
more intelligence than a hub and can filter and forward data to a specified des-
tination on the network.
What if you want to communicate with another network, such as the Inter-
net? You would need a router. A router is a communications processor that
routes packets of data through different networks, ensuring that the data sent
get to the correct address.
Network switches and routers have proprietary software built into their
hardware for directing the movement of data on the network. This can cre-
ate network bottlenecks and makes the process of configuring a network more
complicated and time-consuming. Software-defined networking (SDN) is a
new networking approach in which many of these control functions are man-
aged by one central program, which can run on inexpensive commodity servers
that are separate from the network devices themselves. This is especially help-
ful in a cloud computing environment with many pieces of hardware because
it allows a network administrator to manage traffic loads in a flexible and more
efficient manner.
Networks in Large Companies
The network we’ve just described might be suitable for a small business, but
what about large companies with many locations and thousands of employees?
As a firm grows, its small networks can be tied together into a corporate-wide
networking infrastructure. The network infrastructure for a large corporation
consists of a large number of these small local area networks linked to other
local area networks and to firmwide corporate networks. A number of power-
ful servers support a corporate website, a corporate intranet, and perhaps an
extranet. Some of these servers link to other large computers supporting back-
end systems.
Figure 7. 2 provides an illustration of these more complex, larger scale cor-
porate-wide networks. Here the corporate network infrastructure supports a
mobile sales force using mobile phones and smartphones, mobile employees
linking to the company website, and internal company networks using mobile
wireless local area networks (Wi-Fi networks). In addition to these computer
networks, the firm’s infrastructure may include a separate telephone network
that handles most voice data. Many firms are dispensing with their traditional
telephone networks and using Internet telephones that run on their existing
data networks (described later).
Chapter 7 Telecommunications, the Internet, and Wireless Technology 281

As you can see from this figure, a large corporate network infrastructure uses
a wide variety of technologies—everything from ordinary telephone service
and corporate data networks to Internet service, wireless Internet, and mobile
phones. One of the major problems facing corporations today is how to inte-
grate all the different communication networks and channels into a coherent
system that enables information to flow from one part of the corporation to
another and from one system to another.
Key Digital Networking Technologies
Contemporary digital networks and the Internet are based on three key tech-
nologies: client/server computing, the use of packet switching, and the develop-
ment of widely used communications standards (the most important of which
is Transmission Control Protocol/Internet Protocol, or TCP/IP) for linking
disparate networks and computers.
Client/Server Computing
Client/server computing, introduced in Chapter 5 , is a distributed computing
model in which some of the processing power is located within small, inexpen-
sive client computers and resides literally on desktops or laptops or in handheld
devices. These powerful clients are linked to one another through a network
that is controlled by a network server computer. The server sets the rules of
Today’s corporate network infrastructure is a collection of many networks from the public switched
telephone network, to the Internet, to corporate local area networks linking workgroups, departments,
or office floors.
282 Part Two Information Technology Infrastructure

communication for the network and provides every client with an address so
others can find it on the network.
Client/server computing has largely replaced centralized mainframe comput-
ing in which nearly all the processing takes place on a central large mainframe
computer. Client/server computing has extended computing to departments,
workgroups, factory floors, and other parts of the business that could not be
served by a centralized architecture. It also makes it possible for personal com-
puting devices such as PCs, laptops, and mobile phones to be connected to
networks such as the Internet. The Internet is the largest implementation of
client/server computing.
Packet Switching
Packet switching is a method of slicing digital messages into parcels called
packets, sending the packets along different communication paths as they
become available and then reassembling the packets once they arrive at their
destinations (see Figure 7. 3 ). Prior to the development of packet switching,
computer networks used leased, dedicated telephone circuits to communicate
with other computers in remote locations. In circuit-switched networks, such as
the telephone system, a complete point-to-point circuit is assembled, and then
communication can proceed. These dedicated circuit-switching techniques
were expensive and wasted available communications capacity—the circuit was
maintained regardless of whether any data were being sent.
Packet switching makes much more efficient use of the communications
capacity of a network. In packet-switched networks, messages are first broken
down into small fixed bundles of data called packets. The packets include infor-
mation for directing the packet to the right address and for checking trans-
mission errors along with the data. The packets are transmitted over various
communications channels by using routers, each packet traveling indepen-
dently. Packets of data originating at one source will be routed through many
paths and networks before being reassembled into the original message when
they reach their destinations.
Data are grouped into small packets, which are transmitted independently over various communica-
tions channels and reassembled at their final destination.
Chapter 7 Telecommunications, the Internet, and Wireless Technology 283

TCP/IP and Connectivity
In a typical telecommunications network, diverse hardware and software com-
ponents need to work together to transmit information. Different components
in a network communicate with each other by adhering to a common set of
rules called protocols. A protocol is a set of rules and procedures governing
transmission of information between two points in a network.
In the past, diverse proprietary and incompatible protocols often forced busi-
ness firms to purchase computing and communications equipment from a sin-
gle vendor. However, today, corporate networks are increasingly using a single,
common, worldwide standard called Transmission Control Protocol/Inter-
net Protocol (TCP/IP) . TCP/IP was developed during the early 1970s to sup-
port U.S. Department of Defense Advanced Research Projects Agency (DARPA)
efforts to help scientists transmit data among different types of computers over
long distances.
TCP/IP uses a suite of protocols, the main ones being TCP and IP. TCP refers
to the Transmission Control Protocol, which handles the movement of data
between computers. TCP establishes a connection between the computers,
sequences the transfer of packets, and acknowledges the packets sent. IP refers
to the Internet Protocol (IP), which is responsible for the delivery of packets
and includes the disassembling and reassembling of packets during transmis-
sion. Figure 7. 4 illustrates the four-layered Department of Defense reference
model for TCP/IP, and the layers are described as follows.
1. Application layer. The Application layer enables client application programs to
access the other layers and defines the protocols that applications use to
exchange data. One of these application protocols is the Hypertext Transfer Pro-
tocol (HTTP), which is used to transfer web page files.
2. Transport layer. The Transport layer is responsible for providing the Application
layer with communication and packet services. This layer includes TCP and
other protocols.
3. Internet layer. The Internet layer is responsible for addressing, routing, and
packaging data packets called IP datagrams. The Internet Protocol is one of the
protocols used in this layer.
This figure illustrates the four layers of the TCP/IP reference model for communications.
284 Part Two Information Technology Infrastructure

4. Network Interface layer. At the bottom of the reference model, the Network
Interface layer is responsible for placing packets on and receiving them from
the network medium, which could be any networking technology.
Two computers using TCP/IP can communicate even if they are based on
different hardware and software platforms. Data sent from one computer to
the other passes downward through all four layers, starting with the sending
computer’s Application layer and passing through the Network Interface layer.
After the data reach the recipient host computer, they travel up the layers and
are reassembled into a format the receiving computer can use. If the receiving
computer finds a damaged packet, it asks the sending computer to retransmit
it. This process is reversed when the receiving computer responds.
7-2 What are the different types of networks?
Let’s look more closely at alternative networking technologies available to
Signals: Digital Versus Analog
There are two ways to communicate a message in a network: an analog signal
or a digital signal. An analog signal is represented by a continuous waveform
that passes through a communications medium and has been used for voice
communication. The most common analog devices are the telephone handset,
the speaker on your computer, or your iPod earphone, all of which create ana-
log waveforms that your ear can hear.
A digital signal is a discrete, binary waveform rather than a continuous wave-
form. Digital signals communicate information as strings of two discrete states:
one bits and zero bits, which are represented as on-off electrical pulses. Com-
puters use digital signals and require a modem to convert these digital signals
into analog signals that can be sent over (or received from) telephone lines,
cable lines, or wireless media that use analog signals (see Figure 7. 5 ). Modem
stands for modulator-demodulator. Cable modems connect your computer to
the Internet by using a cable network. DSL modems connect your computer to
the Internet using a telephone company’s landline network. Wireless modems
perform the same function as traditional modems, connecting your computer
to a wireless network that could be a cell phone network or a Wi-Fi network.
Types of Networks
There are many kinds of networks and ways of classifying them. One way of
looking at networks is in terms of their geographic scope (see Table 7. 1 ).
A modem is a device that translates digital signals into analog form (and vice versa) so that computers
can transmit data over analog networks such as telephone and cable networks.
Chapter 7 Telecommunications, the Internet, and Wireless Technology 285

Local Area Networks
If you work in a business that uses networking, you are probably connecting to
other employees and groups via a local area network. A local area network
(LAN) is designed to connect personal computers and other digital devices
within a half-mile or 500-meter radius. LANs typically connect a few comput-
ers in a small office, all the computers in one building, or all the computers in
several buildings in close proximity. LANs also are used to link to long-distance
wide area networks (WANs, described later in this section) and other networks
around the world, using the Internet.
Review Figure 7. 1 , which could serve as a model for a small LAN that might
be used in an office. One computer is a dedicated network, providing users
with access to shared computing resources in the network, including software
programs and data files.
The server determines who gets access to what and in which sequence. The
router connects the LAN to other networks, which could be the Internet, or
another corporate network, so that the LAN can exchange information with
networks external to it. The most common LAN operating systems are Win-
dows, Linux, and Novell.
Ethernet is the dominant LAN standard at the physical network level, specify-
ing the physical medium to carry signals between computers, access control rules,
and a standardized set of bits that carry data over the system. Originally, Ethernet
supported a data transfer rate of 10 megabits per second (Mbps). Newer versions,
such as Gigabit Ethernet, support a data transfer rate of 1 gigabit per second (Gbps).
The LAN illustrated in Figure 7. 1